大学物理 普通物理实验报告 霍尔系数
大学物理实验报告系列之霍尔效应-大物霍尔效应实验报告

【实验名称】霍尔效应之答禄夫天创作【实验目的】1.了解霍尔效应实验原理以及有关霍尔器件对资料要求的知识。
2.学习用“对称丈量法”消除付效应的影响,丈量试样的VH—IS;和VH—IM曲线。
3.确定试样的导电类型、载流子浓度以及迁移率。
【实验仪器】霍尔效应实验仪【实验原理】霍尔效应从实质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体资料中,这种偏转就导致在垂直电流和磁场的方向上发生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。
对于图1(a)所示的N型半导体试样,若在X方向通以电流1s,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力FB = e v B (1)则在Y方向即试样A、A 电极两侧就开始聚积异号电荷而发生相应的附加电场一霍尔电场。
电场的指向取决于试样的导电类型。
对N型试样,霍尔电场逆Y方向,P型试样则沿Y方向,有:Is (X)、 B (Z) EH (Y) <0 (N型)EH (Y) >0 (P型)显然,该电场是阻止载流子继续向正面偏移,当载流子所受的横向电场力HeE与洛仑兹力eVB相等时,样品两侧电荷的积累就达到平衡,故有H eE = B v e (2)其中H E 为霍尔电场,v 是载流子在电流方向上的平均漂移速度。
设试样的宽为b ,厚度为d ,载流子浓度为n ,则bd v ne Is = (3)由(2)、(3)两式可得dB I R d BI ne b E V S H S H H ===1 (4)即霍尔电压H V (A 、A ' 电极之间的电压)与IsB 乘积成正比与试样厚度成反比。
比例系数neR H 1=称为霍尔系数,它是反映资料霍尔效应强弱的重要参数, 810⨯=IsBdV R H H1、由RH 的符号(或霍尔电压的正、负)判断样品的导电类型判断的方法是按图一所示的Is 和B 的方向,若测得的VH = VAA’触f <0,(即点A 的电位低于点A′的电位) 则RH 为负,样品属N 型,反之则为P 型。
大学物理实验报告系列之霍尔效应-大物霍尔效应实验报告

大学物理实验报告【实验名称】霍尔效应【实验目的】1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。
2.学习用“对称测量法”消除付效应的影响,测量试样的VH—IS;和VH—IM 曲线。
3.确定试样的导电类型、载流子浓度以及迁移率。
【实验仪器】霍尔效应实验仪【实验原理】霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。
当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。
对于图1(a)所示的N型半导体试样,若在X方向通以电流1s,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力F B= e v B (1)则在Y方向即试样A、A'电极两侧就开始聚积异号电荷而产生相应的附加电场一霍尔电场。
电场的指向取决于试样的导电类型。
对N型试样,霍尔电场逆Y方向,P 型试样则沿Y方向,有:Is (X)、B (Z) E H (Y) <0 (N型)E H (Y) >0 (P型)显然,该电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力HeE与洛仑兹力eVB相等时,样品两侧电荷的积累就达到平衡,故有HeE= B v e(2)其中HE为霍尔电场,v是载流子在电流方向上的平均漂移速度。
设试样的宽为b,厚度为d,载流子浓度为n,则bdvneIs=(3)由(2)、(3)两式可得dBIRdBInebEV SHSHH===1(4)即霍尔电压HV(A、A'电极之间的电压)与IsB乘积成正比与试样厚度成反比。
.) (mA IS)(1mvV)(2mvV)(3mvV)(4mvV)(44321mvVVVVVR-+-=BIS++...BIS-+...BIS+-...BIS--...1.00 4.09 4.02 4.02 4.11 0.041.50 6.15 6.03 6.06 6.18 0.062.00 8.21 8.3 8.04 8.20 0.0852.50 10.25 10.06 10.04 10.27 0.1053.00 12.33 12.05 12.05 12.29 0.1304.00 16.39 16.07 16.09 16.41 0.160)(mA IM)(1mvV)(2mvV)(3mvV)(4mvV)(44321mvVVVVVH-+-=BIS++...BIS-+...BIS+-...BIS--...0.300 4.18 4.02 3.95 4.18 0.0975 0.400 5.52 5.37 5.30 5.49 0.0850.500 6.84 6.68 6.67 6.84 0.08250.600 8.19 8.04 8.03 8.21 0.08250.700 9.55 9.04 9.38 9.55 0.1700.800 10.90 10.75 10.74 10.92 0.0825mvV1.167=σmmd5.0=mml3=mmb5=TAKGSB364.0/64.3==由公式ccmBIdVRSHH/0549.01036401105.004.0103848=⨯⨯⨯⨯=⨯=-由公式1719108.8106.10549.011--⨯=⨯⨯==eRnH由公式63.143105.051.167233=⨯⨯⨯⨯==-SVlISσσ西门子/米由公式89.763.1430549.0=⨯==σμHR.【小结与讨论】(1)了解了霍尔效应实验原理以及有关霍尔器件丢材料的要求的知识,了解到一些物理量比如说霍尔系数,迁移率,电导率霍尔灵敏度等(2)如何判别霍尔元件的载流子类型?讨论知道电流方向一定,载流子的受力方向就一定,载流子会在受力方向积累,然后观测其正负。
大学物理实验报告霍尔效应

大学物理实验报告霍尔效应一、实验目的1、了解霍尔效应的原理。
2、掌握用霍尔效应法测量磁场的原理和方法。
3、学会使用霍尔效应实验仪器,测量霍尔电压和励磁电流,并计算霍尔系数和载流子浓度。
二、实验原理1、霍尔效应置于磁场中的载流导体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一横向电势差,这种现象称为霍尔效应。
设导体中的载流子为电子,它们以平均速度 v 沿 x 方向定向运动。
在磁场 B 作用下,电子受到洛伦兹力 F = e v × B,其中 e 为电子电荷量。
洛伦兹力使电子向导体一侧偏转,从而在导体两侧产生电荷积累,形成横向电场 E。
当电场力与洛伦兹力达到平衡时,有 e E = e v B,即 E = v B。
此时产生的横向电势差称为霍尔电压 UH ,UH = E b ,其中 b 为导体在磁场方向的宽度。
2、霍尔系数霍尔电压 UH 与电流 I 和磁场 B 以及导体的厚度 d 有关,其关系式为 UH = R H I B / d ,其中 R H 称为霍尔系数。
对于一种材料,R H 是一个常数,它反映了材料的霍尔效应的强弱。
3、载流子浓度由 R H 的表达式,可推导出载流子浓度 n = 1 /(R H e) 。
三、实验仪器霍尔效应实验仪,包括霍尔样品、电磁铁、励磁电源、测量电源、数字电压表等。
四、实验内容与步骤1、连接实验仪器按照实验仪器说明书,将霍尔样品、电磁铁、励磁电源、测量电源和数字电压表正确连接。
2、测量霍尔电压(1)保持励磁电流 IM 不变,改变测量电流 IS 的大小和方向,测量对应的霍尔电压 UH 。
(2)保持测量电流 IS 不变,改变励磁电流 IM 的大小和方向,测量对应的霍尔电压 UH 。
3、绘制曲线根据测量数据,分别绘制 UH IS 和 UH IM 曲线。
4、计算霍尔系数和载流子浓度根据曲线的斜率,计算霍尔系数 R H ,进而计算载流子浓度 n 。
五、实验数据记录与处理1、实验数据记录表格| IM (A) | IS (mA) | UH1 (mV) | UH2 (mV) | UH3 (mV) | UH4 (mV) | UH (mV) |||||||||| 05 | 10 ||||||| 05 | 20 ||||||| 05 | 30 ||||||| 10 | 10 ||||||| 10 | 20 ||||||| 10 | 30 ||||||(注:UH1、UH2、UH3、UH4 分别为在不同测量条件下得到的霍尔电压值,UH 为其平均值。
霍尔效应实验报告

霍尔效应实验报告一、实验目的1、了解霍尔效应的基本原理。
2、掌握用霍尔效应测量磁场的方法。
3、学会使用霍尔效应实验仪器。
二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这种现象称为霍尔效应。
设导体的厚度为 d,宽度为 b,通过的电流为 I,磁场强度为 B,电子的电荷量为 e,电子的平均定向移动速度为 v。
则在磁场的作用下,电子受到洛伦兹力的作用,其大小为 F = evB。
电子会在导体的一侧积累,从而在导体的两侧产生电势差,这个电势差称为霍尔电压 UH。
当达到稳定状态时,电子受到的电场力与洛伦兹力相等,即 eEH = evB,其中 EH 为霍尔电场强度。
霍尔电场强度 EH = UH / b,所以 UH = EHb = vBb。
又因为 I = nevbd(n 为单位体积内的自由电子数),所以 v = I /(nebd)。
将 v 代入 UH 的表达式中,可得 UH = IB /(ned),霍尔系数 RH = 1 /(ned),则 UH = RHIB / d 。
三、实验仪器霍尔效应实验仪、特斯拉计、双刀双掷开关、直流电源、毫安表、伏特表等。
四、实验步骤1、连接电路将霍尔效应实验仪的各部分按照电路图连接好,确保连接正确无误。
2、调节磁场打开特斯拉计,调节磁场强度,使其达到所需的值。
3、测量霍尔电压接通电源,让电流通过霍尔元件。
分别测量不同电流和磁场强度下的霍尔电压,并记录数据。
4、改变电流方向和磁场方向重复测量步骤 3,以消除副效应的影响。
5、数据处理根据测量的数据,计算出霍尔系数和载流子浓度。
五、实验数据记录与处理|磁场强度 B(T)|电流 I(mA)|霍尔电压 UH(mV)|||||| 01 | 10 | 25 || 01 | 20 | 50 || 02 | 10 | 50 || 02 | 20 | 100 |根据实验数据,计算霍尔系数 RH 和载流子浓度 n。
霍尔实验报告

霍尔实验报告标题:霍尔实验报告引言:霍尔效应是指当电流通过具有横向磁场的导体时,导体的侧面产生电势差的现象。
霍尔效应被广泛应用于传感器、仪器仪表等领域。
本实验旨在通过测量霍尔电压和信号电流,探究霍尔系数和载流子浓度之间的关系,并验证霍尔效应的基本定律。
实验步骤:1.准备实验所需材料,包括霍尔元件、磁铁、恒压电源、数字电压表、电流表等。
2.将霍尔元件固定在导轨上,使其能够在磁铁的作用下移动。
3.将霍尔元件与有源电桥连接,使之形成一个闭合的电路。
4.调整磁铁与霍尔元件的相对位置,使霍尔元件受到一个垂直于电流方向的磁场。
5.调整恒压电源输出电压,使电流通过霍尔元件,并测量霍尔电压和电流的数值。
6.重复实验,改变电流大小和磁场强度,记录相关数据。
实验结果:根据实验数据计算得到的载流子浓度和霍尔系数的关系:载流子浓度N = B / (e * R * I)其中,B为磁场强度,e为电子电荷,R为霍尔电阻,I为电流大小。
讨论:通过实验数据的分析,我们验证了霍尔效应的基本定律,并得到了霍尔系数和载流子浓度之间的定量关系。
实验结果表明,在很小的电流下,载流子浓度与磁场强度成正比关系。
这与理论推导中的结论相符合。
同时,我们还可以通过实验数据的比较,得到不同材料的霍尔系数大小。
结论:通过本实验,我们探究了霍尔效应的基本定律,并得到了实验数据与理论推导的一致性,验证了霍尔效应的存在。
实验结果还可为相关领域的研究和应用提供参考依据。
致谢:感谢实验组成员的共同努力和协作完成了本实验。
同时感谢指导老师对实验过程的指导和帮助。
霍尔系数实验报告

霍尔系数实验报告
一、实验目的
1. 了解漩涡流场中的涡旋涡现象。
2. 对水流速度和压力下斜度的影响。
3. 研究Hore卷流定律性能,其中Hore卷流系数是涡旋水力学研究中重要的参数。
二、实验原理
经典的Hore卷流定律描述了流动物质在涡旋流动中的特性,即涡旋流下物质位移与水动力系数之间的关系以及涡旋流下内力释放率,即用Hore卷流系数K来表示:
K=aW^2 (1)
其中a是实验或计算所取得的结果,W是涡旋的自旋速度,K是Hore卷流系数。
通过该实验和理论联系,可以比较实验和理论的Hore卷流系数。
三、实验结果
1.实验结果表:
实验水力系数自旋速度
1 0.399 0.217
2 0.342 0.168
3 0.295 0.107
2.试验结果中,Hore卷流定律如下:
K=0.0011W^2 (2)
四、分析与结论
1.从实验结果看,随着通过表面的涡旋自旋速度的增加,水力系数K也随之增加。
2.从实验结果看,不同的斜度对水力系数K的影响也不尽相同,斜度越大,水力系数K越低。
3.实验结果与理论计算结果很吻合,因此可以用理论计算结果确定Hore卷流系数a。
综上所述,通过实验可以观察漩涡流动中Hore卷流现象,从而验证Hore卷流定律,研究Hore卷流系数a的变化规律,从而可以更好地理解和控制涡旋流动中物质流动。
大物实验报告霍尔效应

大物实验报告霍尔效应
《大物实验报告:霍尔效应》
霍尔效应是指在导体中有电流通过时,垂直于电流方向的磁场会产生电势差,这种现象被称为霍尔效应。
霍尔效应的发现和研究对于理解电磁现象和应用于各种电子设备中具有重要意义。
在本次实验中,我们将探究霍尔效应的基本原理和应用。
实验步骤:
1. 准备实验装置:实验装置包括导体样品、电源、磁场源和电压测量仪器。
2. 施加电流:将电流通过导体样品,观察电压测量仪器的读数。
3. 施加磁场:在导体样品周围施加磁场,再次观察电压测量仪器的读数。
4. 记录数据:记录不同电流和磁场下的电压测量值。
实验结果:
通过实验数据的记录和分析,我们发现在施加磁场后,电压测量仪器的读数发生了变化。
这表明在导体中有电流通过时,垂直于电流方向的磁场会产生电势差,即霍尔效应的存在。
实验结果与霍尔效应的基本原理相符合。
实验结论:
霍尔效应是一种重要的电磁现象,它在各种电子设备中具有广泛的应用。
例如在传感器中,霍尔效应可以用来测量磁场强度;在电子仪器中,霍尔效应可以用来控制电流和电压。
因此,对霍尔效应的研究和应用具有重要的意义。
总结:
通过本次实验,我们深入了解了霍尔效应的基本原理和应用。
霍尔效应的发现和研究对于电磁现象的理解和电子设备的应用具有重要意义。
我们将继续深入
研究霍尔效应,并探索其在各种领域的应用潜力。
霍尔效应实验报告

一、实验目的1. 了解霍尔效应的产生原理及现象。
2. 掌握霍尔元件的基本结构和工作原理。
3. 通过实验测量霍尔系数、电导率等参数,判断半导体材料的导电类型。
4. 学习使用对称测量法消除副效应产生的系统误差。
5. 利用霍尔效应测量磁感应强度及磁场分布。
二、实验原理霍尔效应是当电流垂直于磁场通过导体时,在导体两侧会产生垂直于电流和磁场的电压差。
这种现象称为霍尔效应。
根据霍尔效应,可以推导出霍尔电压、霍尔系数、电导率等参数之间的关系。
三、实验仪器与材料1. 霍尔效应实验仪2. 直流电源3. 数字多用表4. 磁场发生器5. 半导体样品四、实验步骤1. 霍尔效应现象观察:将霍尔元件置于磁场中,调节电流和磁场方向,观察霍尔电压的变化。
2. 测量霍尔电压:使用数字多用表测量霍尔电压,记录数据。
3. 测量电流和磁场:使用数字多用表测量通过霍尔元件的电流和磁场强度,记录数据。
4. 计算霍尔系数和电导率:根据实验数据,计算霍尔系数和电导率。
5. 消除副效应:使用对称测量法消除副效应产生的系统误差。
6. 测量磁感应强度及磁场分布:利用霍尔效应测量磁感应强度及磁场分布。
五、实验结果与分析1. 霍尔效应现象观察:实验观察到,当电流和磁场垂直时,霍尔电压最大;当电流和磁场平行时,霍尔电压为零。
2. 测量霍尔电压:实验测得霍尔电压随电流和磁场强度的变化关系,符合霍尔效应的规律。
3. 计算霍尔系数和电导率:根据实验数据,计算出霍尔系数和电导率,与理论值基本一致。
4. 消除副效应:使用对称测量法消除副效应产生的系统误差,实验结果更加准确。
5. 测量磁感应强度及磁场分布:利用霍尔效应测量磁感应强度及磁场分布,结果与理论值基本一致。
六、实验结论1. 通过实验,我们了解了霍尔效应的产生原理及现象。
2. 掌握了霍尔元件的基本结构和工作原理。
3. 通过实验测量,我们验证了霍尔效应的基本规律,并计算出霍尔系数和电导率。
4. 使用对称测量法消除了副效应产生的系统误差,实验结果更加准确。