函数的零点及应用
函数的应用(知识梳理)-高一数学单元复习(人教A版必修1)

专题02函数的应用(知识梳理)第一节 函数与方程1.函数的零点 (1)函数零点的定义对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点. (2)几个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系Δ>0Δ=0Δ<0图象与x 轴的交点 (x 1,0),(x 2,0)(x 1,0) 无交点 零点个数 21[小题体验]1.函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案:B2.(教材习题改编)函数f (x )=ln x +2x -6的零点个数是______. 答案:13.函数f (x )=kx +1在[1,2]上有零点,则k 的取值范围是________. 答案:⎣⎡⎦⎤-1,-121.函数f (x )的零点是一个实数,是方程f (x )=0的根,也是函数y =f (x )的图象与x 轴交点的横坐标.2.函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要根据函数的单调性、对称性或结合函数图象.[小题纠偏]1.(2018·诸暨模拟)函数f(x)按照下述方法定义:当x≤2时,f(x)=-x2+2x;当x>2时,f(x)=12(x-2)2,则方程f(x)=12的所有实数根之和是()A.2 B.3 C.5 D.8解析:选C画出函数f(x)的图象,如图所示:结合图象x<2时,两根之和是2,x>2时,由12(x-2)2=12,解得x=3,故方程f(x)=12的所有实数根之和是5,故选C.2.给出下列命题:①函数f(x)=x2-1的零点是(-1,0)和(1,0);②函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则一定有f(a)·f(b)<0;③二次函数y=ax2+bx+c(a≠0)在b2-4ac<0时没有零点;④若函数f(x)在(a,b)上单调且f(a)·f(b)<0,则函数f(x)在[a,b]上有且只有一个零点.其中正确的是________(填序号).答案:③④考点一函数零点所在区间的判定基础送分型考点——自主练透[题组练透]1.已知实数a>1,0<b<1,则函数f(x)=a x+x-b的零点所在的区间是()A.(-2,-1)B.(-1,0)C.(0,1) D.(1,2)解析:选B∵a>1,0<b<1,f(x)=a x+x-b,∴f(-1)=1a-1-b<0,f(0)=1-b>0,由零点存在性定理可知f(x)在区间(-1,0)上存在零点.2.设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为()A.(0,1) B.(1,2)C.(2,3) D.(3,4)解析:选B函数f(x)的零点所在的区间转化为函数g(x)=ln x,h(x)=-x +2图象交点的横坐标所在的范围.作出两函数大致图象如图所示,可知f(x)的零点所在的区间为(1,2).故选B.3.函数f(x)=x2-3x-18在区间[1,8]上______(填“存在”或“不存在”)零点.解析:法一:∵f(1)=12-3×1-18=-20<0,f(8)=82-3×8-18=22>0,∴f(1)·f(8)<0,又f(x)=x2-3x-18在区间[1,8]的图象是连续的,故f(x)=x2-3x-18在区间[1,8]上存在零点.法二:令f(x)=0,得x2-3x-18=0,∴(x-6)(x+3)=0.∵x=6∈[1,8],x=-3∉[1,8],∴f(x)=x2-3x-18在区间[1,8]上存在零点.答案:存在[谨记通法]确定函数f(x)的零点所在区间的2种常用方法(1)定义法:使用零点存在性定理,函数y=f(x)必须在区间[a,b]上是连续的,当f(a)·f(b)<0时,函数在区间(a,b)内至少有一个零点,如“题组练透”第1题.(2)图象法:若一个函数(或方程)由两个初等函数的和(或差)构成,则可考虑用图象法求解,如f(x)=g(x)-h(x),作出y=g(x)和y=h(x)的图象,其交点的横坐标即为函数f(x)的零点,如“题组练透”第2题.考点二判断函数零点个数重点保分型考点——师生共研[典例引领]1.函数f(x)=|x-2|-ln x在定义域内的零点的个数为()A.0B.1C.2 D.3解析:选C 由题意可知f (x )的定义域为(0,+∞).在同一直角坐标系中画出函数y =|x -2|(x >0),y =ln x (x >0)的图象,如图所示:由图可知函数f (x )在定义域内的零点个数为2.2.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))+1的零点的个数是( )A .4B .3C .2D .1解析:选A 由f (f (x ))+1=0得f (f (x ))=-1, 由f (-2)=f ⎝⎛⎭⎫12=-1 得f (x )=-2或f (x )=12.若f (x )=-2,则x =-3或x =14;若f (x )=12,则x =-12或x = 2.综上可得函数y =f (f (x ))+1的零点的个数是4,故选A.[由题悟法]判断函数零点个数的3种方法(1)方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.[即时应用]1.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则函数y =f (x )+x -4的零点个数为( )A .1B .2C .3D .4解析:选B 函数y =f (x )+x -4的零点,即函数y =-x +4与y =f (x )的交点的横坐标.如图所示,函数y =-x +4与y =f (x )的图象有两个交点,故函数y =f (x )+x -4的零点有2个.故选B.2.(2018·杭州模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x ,-1<x ≤1,f x -2+1,1<x ≤3,则函数g (x )=f (f (x ))-2在区间(-1,3]上的零点个数是( )A .1B .2C .3D .4解析:选C ∵函数f (x )=⎩⎪⎨⎪⎧2x ,-1<x ≤1,f x -2+1,1<x ≤3,∴当-1<x ≤1时,12<f (x )≤2,当1<x ≤3时,-1<x -2≤1,f (x )=f (x -2)+1=2x -2+1∈⎝⎛⎦⎤32,3; 设h (x )=f (f (x )),①当-1<x ≤0时,h (x )=22x ,2<h (x )≤2, ∴g (x )=h (x )-2有一个零点x =0; ②当0<x ≤1时,h (x )=22x -2+1,32<h (x )≤2,∴g (x )=h (x )-2有一个零点x =1; ③当1<x ≤3时,h (x )=22x -2+1-2+1, 22+1<h (x )≤3,g (x )有一个零点; 综上,函数g (x )在区间(-1,3]上有3个零点,故选C. 考点三 函数零点的应用重点保分型考点——师生共研[典例引领]已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=a |x -2|-a ,其中a >0,且为常数.若函数y =f (f (x ))有10个零点,则a 的取值范围是________.解析:当x ≥0时,令f (x )=0,得|x -2|=1, 即x =1或x =3.因为f (x )是定义在R 上的偶函数, 所以f (x )的零点为x =±1或x =±3. 令f (f (x ))=0, 则f (x )=±1或f (x )=±3.因为函数y =f (f (x ))有10个零点,所以函数y =f (x )的图象与直线y =±1和y =±3共有10个交点.由图可知1<a <3.答案:(1,3)[由题悟法]已知函数有零点(方程有根)求参数取值范围常用3方法 直接法 直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围 分离参数法 先将参数分离,转化成求函数值域问题加以解决数形结合法 先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解[即时应用]1.若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________. 解析:∵函数f (x )=4x -2x -a ,x ∈[-1,1]有零点, ∴方程4x -2x -a =0在[-1,1]上有解, 即方程a =4x -2x 在[-1,1]上有解. 方程a =4x -2x 可变形为a =⎝⎛⎭⎫2x -122-14, ∵x ∈[-1,1],∴2x ∈⎣⎡⎦⎤12,2, ∴⎝⎛⎭⎫2x -122-14∈⎣⎡⎦⎤-14,2. ∴实数a 的取值范围是⎣⎡⎦⎤-14,2. 答案:⎣⎡⎦⎤-14,2 2.(2018·浙江名校高考研究联盟联考)方程x 2+3x -2=0的解可视为函数y =x +3的图象与函数y =2x的图象交点的横坐标.若方程x 4+ax -4=0的各个实根x 1,x 2,…,x k (k ≤4)所对应的点⎝⎛⎭⎫x i ,4x i (i =1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是________. 解析:由题意知,方程x 4+ax -4=0的实根是曲线y =x 3+a 与曲线y =4x 的交点的横坐标,而曲线y =x 3+a 是由函数y =x 3的图象向上或向下平移|a |个单位长度得到的.若方程x 4+ax -4=0的各个实数根x 1,x 2,…,x k (k ≤4)所对应的点⎝⎛⎭⎫x i ,4x i(i =1,2,…,k )均在直线y =x 的同侧,如图,结合图象可得⎩⎪⎨⎪⎧ a >0,-23+a >-2或⎩⎪⎨⎪⎧a <0,23+a <2,解得a <-6或a >6,所以实数a 的取值范围是(-∞,-6)∪(6,+∞).答案:(-∞,-6)∪(6,+∞)第二节 函数模型及其应用1.几类函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a ,b 为常数,a ≠0) 反比例函 数模型 f (x )=kx +b (k ,b 为常数且k ≠0) 二次函数模型f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0) 指数函数模型f (x )=ba x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 对数函数模型 f (x )=b log a x +c(a ,b ,c 为常数,b ≠0,a >0且a ≠1) 幂函数模型 f (x )=ax n +b (a ,b 为常数,a ≠0)函数 性质 y =a x (a >1) y =log a x (a >1) y =x n (n >0) 在(0,+∞) 上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快 越来越慢 相对平稳 图象的变化随x 的增大 逐渐表现为 随x 的增大 逐渐表现为随n 值变化 而各有不同与y轴平行与x轴平行值的比较存在一个x0,当x>x0时,有log a x<x n<a x3.解函数应用问题的4步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择函数模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的函数模型;(3)解模:求解函数模型,得出数学结论;(4)还原:将数学结论还原为实际意义的问题.以上过程用框图表示如下:[小题体验]1.(教材习题改编)一根蜡烛长20 cm,点燃后每小时燃烧5 cm,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的()答案:B2.已知某种动物繁殖量y(只)与时间x(年)的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们发展到________只.答案:2001.函数模型应用不当,是常见的解题错误.所以要正确理解题意,选择适当的函数模型.2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.[小题纠偏]1.甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点答案:D2.据调查,某自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元.若普通车存车量为x辆次,存车费总收入为y元,则y关于x的函数关系式是__________.答案:y=-0.1x+1 200(0≤x≤4 000)考点一二次函数模型重点保分型考点——师生共研[典例引领]某跳水运动员在一次跳水训练时的跳水曲线为如图所示抛物线的一段.已知跳水板AB长为2 m,跳水板距水面CD的高BC为3 m.为安全和空中姿态优美,训练时跳水曲线应在离起跳点A处水平距h m(h≥1)时达到距水面最大高度4 m,规定:以CD为横轴,BC为纵轴建立直角坐标系.(1)当h=1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF内入水时才能达到比较好的训练效果,求此时h的取值范围.解:由题意,最高点为(2+h,4),(h≥1).设抛物线方程为y=a[x-(2+h)]2+4.(1)当h=1时,最高点为(3,4),方程为y=a(x-3)2+4.(*)将点A(2,3)代入(*)式得a=-1.即所求抛物线的方程为y=-x2+6x-5.(2)将点A(2,3)代入y=a[x-(2+h)]2+4,得ah2=-1.由题意,方程a[x-(2+h)]2+4=0在区间[5,6]内有一解.令f (x )=a [x -(2+h )]2+4=-1h2[x -(2+h )]2+4,则⎩⎨⎧f 5=-1h 23-h 2+4≥0,f6=-1h24-h2+4≤0.解得1≤h ≤43.故达到比较好的训练效果时的h 的取值范围是⎣⎡⎦⎤1,43. [由题悟法]二次函数模型问题的3个注意点(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法; (3)解决函数应用问题时,最后要还原到实际问题.[即时应用]A ,B 两城相距100 km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电总费用y 最少? 解:(1)由题意知x 的取值范围为[10,90]. (2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25 000=152⎝⎛⎭⎫x -10032+50 0003, 所以当x =1003时,y min =50 0003. 故核电站建在距A 城1003 km 处,能使供电总费用y 最少.考点二 函数y =x +ax模型的应用重点保分型考点——师生共研[典例引领]为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系C (x )=k3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.解:(1)由已知条件得C (0)=8,则k =40,因此f (x )=6x +20C (x )=6x +8003x +5(0≤x ≤10). (2)f (x )=6x +10+8003x +5-10≥2 6x +10·f(8003x +5)-10=70(万元), 当且仅当6x +10=8003x +5, 即x =5时等号成立.所以当隔热层厚度为5 cm 时,总费用f (x )达到最小值,最小值为70万元.[由题悟法]应用函数y =x +a x模型的关键点 (1)明确对勾函数是正比例函数f (x )=ax 与反比例函数f (x )=b x叠加而成的. (2)解决实际问题时一般可以直接建立f (x )=ax +b x的模型,有时可以将所列函数关系式转化为f (x )=ax +b x的形式. (3)利用模型f (x )=ax +b x求解最值时,要注意自变量的取值范围,及取得最值时等号成立的条件. [即时应用]“水资源与永恒发展”是2015年联合国世界水资源日主题,近年来,某企业每年需要向自来水厂所缴纳水费约4万元,为了缓解供水压力,决定安装一个可使用4年的自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积(单位:平方米)成正比,比例系数约为0.2.为了保证正常用水,安装后采用净水装置净水和自来水厂供水互补的用水模式.假设在此模式下,安装后该企业每年向自来水厂缴纳的水费C (单位:万元)与安装的这种净水设备的占地面积x (单位:平方米)之间的函数关系是C (x )=k 50x +250(x ≥0,k 为常数).记y 为该企业安装这种净水设备的费用与该企业4年共将消耗的水费之和.(1)试解释C (0)的实际意义,并建立y 关于x 的函数关系式并化简;(2)当x 为多少平方米时,y 取得最小值,最小值是多少万元?解:(1)C (0)表示不安装设备时每年缴纳的水费为4万元,∵C (0)=k 250=4, ∴k =1 000,∴y=0.2x+1 00050x+250×4=0.2x+80x+5(x≥0).(2)y=0.2(x+5)+80x+5-1≥20.2×80-1=7,当x+5=20,即x=15时,y min=7,∴当x为15平方米时,y取得最小值7万元.考点三指数函数与对数函数模型重点保分型考点——师生共研[典例引领](2016·四川高考)某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是()(参考数据:lg 1.12≈0.05,lg 1.3≈0.11, lg 2≈0.30)A.2018年B.2019年C.2020年D.2021年解析:选B法一:设2015年后的第n年,该公司全年投入的研发资金开始超过200万元,由130(1+12%)n>200,得 1.12n>2013,两边取常用对数,得n>lg 2-lg 1.3lg 1.12≈0.30-0.110.05=195,∴n≥4,∴从2019年开始,该公司全年投入的研发资金开始超过200万元.法二:根据题意,知每年投入的研发资金增长的百分率相同,所以从2015年起,每年投入的研发资金组成一个等比数列{a n},其中,首项a1=130,公比q=1+12%=1.12,所以a n=130×1.12n-1.由130×1.12n-1>200,两边同时取常用对数,得n-1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.3-0.110.05=3.8,则n>4.8,即a5开始超过200,所以2019年投入的研发资金开始超过200万元,故选B.[由题悟法]指数函数与对数函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题.[即时应用]某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.解:(1)由题图,设y =⎩⎪⎨⎪⎧ kt ,0≤t ≤1,⎝⎛⎭⎫12t -a ,t >1, 当t =1时,由y =4得k =4,由⎝⎛⎭⎫121-a =4得a =3.所以y =⎩⎪⎨⎪⎧4t ,0≤t ≤1,⎝⎛⎭⎫12t -3,t >1. (2)由y ≥0.25得⎩⎪⎨⎪⎧ 0≤t ≤1,4t ≥0.25或⎩⎪⎨⎪⎧ t >1,⎝⎛⎭⎫12t -3≥0.25,解得116≤t ≤5. 因此服药一次后治疗疾病有效的时间是5-116=7916(小时).。
函数的零点与函数像的交点

函数的零点与函数像的交点函数是数学中的重要概念,而函数的零点和函数像的交点是函数分析中常见的问题。
本文将从零点和像的交点的定义、性质以及应用等方面来探讨这个话题。
一、零点的概念与性质函数的零点指的是函数取零值的自变量的取值。
换句话说,函数在某个点上的函数值为零时,这个点就被称为函数的零点。
例如,对于函数 f(x),若存在 x0 使得 f(x0) = 0,则 x0 就是函数 f(x) 的零点。
函数的零点具有一些性质:1. 零点是函数图像与 x 轴的交点。
当函数在某个点上取零值时,图像必然与 x 轴相交。
2. 零点可能是单个点,也可能是多个点。
函数的零点可能有一个,也可能有多个。
二、像的交点的概念与性质函数像的交点指的是两个函数图像相交的点的横坐标。
也就是说,当两个函数图像在某个点上的纵坐标相等时,这个点的横坐标就是函数像的交点。
例如,对于函数 f1(x) 和函数 f2(x),若存在 x0 使得 f1(x0) = f2(x0),则 x0 就是函数像的交点。
像的交点也具有一些性质:1. 像的交点是两个函数图像在纵向对应的横坐标。
当两个函数图像在某个点上的纵坐标相等时,这个点的横坐标就是像的交点。
三、零点与像的交点的关系零点与像的交点可以有关联,也可以是两个不同的概念。
1. 零点与像的交点可能重合。
即一个点既是一个函数的零点,又是另一个函数的像的交点。
这种情况下,函数的零点与像的交点相互重合,可以通过求解函数的零点来得到函数像的交点。
2. 零点与像的交点也可能有差异。
即一个点是一个函数的零点,但不是另一个函数的像的交点,反之亦然。
这种情况下,函数的零点与像的交点具有差异,需要单独求解。
四、零点与像的交点的应用零点与像的交点在实际问题中有广泛的应用。
1. 方程求解:对于一个给定的函数 f(x),求解 f(x) = 0 的根(零点)可以转化为求解 f(x) 与 y = 0 的交点,从而得到方程的解。
2. 函数的性质分析:通过分析函数的零点和像的交点,可以获得函数的增减性、奇偶性以及极值等特性,进而更好地理解函数的行为。
函数的零点与方程的解

函数的零点与方程的解在数学中,函数的零点与方程的解是两个重要的概念。
它们在解决实际问题中起着重要的作用。
本文将从两个概念的定义、计算方法以及应用三个方面进行探讨。
一、函数的零点函数的零点是指函数取值为零的点。
一般地,如果函数f(x)在某个点x=a处的函数值为零,即f(a)=0,那么a就是函数f(x)的一个零点。
函数的零点也称为函数的根或零解。
在计算函数的零点时,可以使用图像法和代数法。
图像法是通过函数的图像来确定零点,一般使用计算器或电脑绘制函数的图像。
代数法是通过方程来确定零点,将函数的表达式设为零,然后解方程得到零点。
例如,函数f(x)=2x^2-3x+1的零点可以通过解方程2x^2-3x+1=0得到,即x=1/2或x=1。
函数的零点在实际问题中有很多应用,例如在物理学中,零点可以表示速度为零的时刻,加速度为零的时刻等等。
二、方程的解方程的解是指能够满足方程式的未知数数值。
一般地,如果一个方程式有一个或多个能够满足方程式的未知数数值,那么这些数值就是方程的解。
在计算方程的解时,也可以使用图像法和代数法。
图像法是通过绘制方程的图像,找到方程的解。
代数法是通过变形或运用方程的性质,求得方程的解。
例如,方程2x^2-3x+1=0的解可以通过求解x=1/2或x=1得到。
方程的解在实际问题中也有很多应用,例如在物理学中,方程的解可以表示物体的运动状态、加速度等等。
三、函数的零点与方程的解的应用函数的零点和方程的解在实际问题中有很多应用。
例如,在经济学中,利润函数的零点可以表示企业的盈亏平衡点;在物理学中,运动方程的解可以表示物体的运动状态和加速度等等。
函数的零点和方程的解在数学中也有很多应用。
例如,在代数学中,求解方程是一个重要的问题,可以通过求解方程的解来解决实际问题。
在微积分中,函数的零点可以用来求函数的极值和最值等等。
函数的零点与方程的解是数学中两个重要的概念,它们在解决实际问题中起着重要的作用。
函数零点的应用

函数零点的应用大家知道,如果函数)(x f y =在a x =处的函数值等于零,即0)(=a f ,则称a 为函数)(x f y =的零点,因此函数)(x f y =的零点就是方程0)(=x f 的根。
这样函数的零点把函数和方程紧密地联系在一起,它在很多问题中都有着极其重要的应用。
举例说明。
1、利用函数零点解不等式二次函数的图象是连续的,当它通过零点(不是二重零点)时,函数值变号,并且在任意两个相邻的变号零点之间函数值保持同号,根据二次函数变号零点的这一性质,可以求解二次不等式。
例1二次函数c bx ax y ++=2的部分对应值如下表:则不等式02>++c bx ax 的解集是_______。
解:由表中数据可知函数的两个零点分别为2-和3,这两个零点将其余实数分为三个区间:),3(),3,2(),2,(+∞---∞。
在区间)2,(--∞中取特殊值3-,由于06)3(>=-f ,因此根据二次函数变号零点的性质可得:当)2,(--∞∈x 时,都有0)(>x f ;当)3,2(-∈x 时,都有0)(<x f ;当),3(+∞∈x 时,都有0)(>x f 。
∴不等式的解集为),3()2,(+∞--∞Y 。
2、利用函数零点研究方程的根由于函数)(x f y =的零点就是方程0)(=x f 的根,所以在研究方程的有关问题,如:比较方程根的大小、确定方程根的分布、证明根的存在性等时,都可以将方程问题转化为函数问题,借助函数的零点,结合函数的图象加以解决。
例2已知函数)(2))(()(b a b x a x x f <+--=,若)(βαβα<、是方程0)(=x f 的两个根,则实数βα,,,b a 之间的大小关系是 ( )A.βα<<<b aB.b a <<<βαC.βα<<<b aD.b a <<<βα 解:令))(()(b x a x x g --=,则函数)(x g 的两个零点是b a ,。
函数的零点与性质解析几何的应用技巧

函数的零点与性质解析几何的应用技巧函数的零点与性质:解析几何的应用技巧函数是数学中一个非常重要的概念,它在解析几何中有着广泛的应用。
本文将探讨函数零点的性质以及解析几何中的应用技巧。
一、函数的零点函数的零点也被称为函数的根或方程的解。
对于函数y=f(x),当f(x)=0时,x被称为函数的零点。
例如,对于函数y=x^2-4,当x=2或x=-2时,函数的值为0,因此x等于2和-2是该函数的零点。
函数的零点可以通过求解函数的方程来得到。
对于一次函数,例如y=ax+b,其中a和b为实数,方程f(x)=0可以通过解ax+b=0来得到。
对于高次函数,例如二次函数,可能需要利用因式分解、配方法或求根公式等方法来解方程。
二、函数的性质函数的零点不仅仅是数值的问题,它还与函数的性质密切相关。
下面列举了一些函数的性质:1. 函数与坐标轴的交点:函数的零点也是函数与x轴的交点。
当函数在零点附近变号时,可以推断函数在该区间内有一个零点。
比如,如果函数在x=2左侧为负,在x=2右侧为正,那么可以推断函数在x=2附近有一个零点。
2. 函数的对称性:某些函数具有奇偶性对称,例如奇函数和偶函数。
奇函数满足f(-x)=-f(x),对于奇函数来说,如果x是函数的零点,那么-x也是函数的零点。
偶函数满足f(-x)=f(x),对于偶函数来说,如果x是函数的零点,那么-x也是函数的零点。
3. 函数的单调性:函数的单调性与函数的零点也有关系。
如果函数在某个区间内单调递增或单调递减,那么函数在该区间内最多只有一个零点。
这可以通过函数的导数来进行判断。
4. 函数的图像:函数的零点可以帮助我们了解函数的图像。
当函数在某个区间由正数变为负数时,可以推断函数图像在该区间内下凹,并且有一个零点。
同样,当函数在某个区间由负数变为正数时,可以推断函数图像在该区间内上凹,并且有一个零点。
三、解析几何的应用技巧函数的零点与性质在解析几何中有着广泛的应用,它们可以帮助我们更好地理解几何图形,下面介绍一些应用技巧:1. 直线与曲线的交点:通过函数的零点,我们可以确定直线与曲线的交点。
新数学二轮总复习专题二函数与导数2.2热点小专题一函数的零点及函数的应用学案含解析

2.2热点小专题一、函数的零点及函数的应用必备知识精要梳理1.零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是一条连续曲线,且有f(a)f(b)〈0,那么函数y=f(x)在区间[a,b]内有零点,即存在c∈(a,b),使得f(c)=0,此时这个c就是方程f(x)=0的根.2。
函数F(x)=f(x)—g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)与y=g(x)的图象交点的横坐标。
3。
判断函数零点个数的方法:(1)利用零点存在性定理判断法;(2)代数法:求方程f(x)=0的实数根;(3)几何法:对于不易求根的方程,将它与函数y=f(x)的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.关键能力学案突破热点一判断函数零点所在的区间【例1】(1)如图是二次函数f(x)=x2-bx+a的部分图象,则函数g (x)=e x+f’(x)的零点所在的大致区间是()A.(-1,0) B。
(0,1) C。
(1,2)D。
(2,3)(2)(2020湖北恩施高中月考,理11)已知单调函数f(x)的定义域为(0,+∞),对于定义域内任意x,f([f(x)—log2x])=3,则函数g(x)=f(x)+x—7的零点所在的区间为()A.(1,2)B.(2,3)C.(3,4) D。
(4,5)解题心得判断函数y=f(x)在某个区间上是否存在零点,主要利用函数零点的存在性定理进行判断。
首先看函数y=f(x)在区间[a,b]上的图象是否连续,然后看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点.【对点训练1】设定义域为(0,+∞)的单调函数f(x)对任意的x∈(0,+∞),都有f[f(x)-ln x]=e+1,若x0是方程f(x)-f’(x)=e的一个解,则x0可能存在的区间是()A。
(0,1) B.(e—1,1)C。
高等数学中的零点定理及其应用

高等数学中的零点定理及其应用数学是一门基础学科,应用广泛,与各领域有着密不可分的联系。
其中,高等数学是各个领域中不可或缺的一门学科。
而零点定理是高等数学中非常重要和基础的一个部分,涉及到多个学科的交叉应用。
本文将主要介绍零点定理的概念、分类和应用。
一、零点定理的概念和分类零点定理是指在某些函数中,存在某些特殊值(称为零点),使得函数在这些点处取值为零。
具体地说,若函数$f(x)$在点$x_0$处为零,则称$x_0$是$f(x)$的一个零点。
零点定理就是研究函数的零点及其性质的理论。
根据不同的函数类型和性质,零点定理可分为常微分方程的零点定理、复变函数的零点定理、二次型的零点定理、拓扑定理的零点定理等等。
这里重点介绍前三种。
1、常微分方程的零点定理设$y'=f(x,y)$是一个初值问题的解,其中$f$在闭区间$D=\{(x,y)\in R^2|a\leq x\leq b,\alpha\leq y\leq \beta\}$上连续,如果有一连续函数$G(x)$,使得$f$在$D$上满足$f(x,y)G(x)\leq0(\alpha\leq y\leq \beta)$,则$y'=f(x,y)$在区间$[a,b]$上必然有解,并且至少有一个零解。
2、复变函数的零点定理对于一函数$f(z)$,如果它在圆$|z|=R$内是连续的,假定$f(z)$在圆周上连续并且$f(z)$在圆内没有零点,则$f(z)$在圆周上至少有一个零点。
3、二次型的零点定理设$n$元二次型为$Q(x_1,x_2,\cdots,x_n)=\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}x_ix_j $,其中$a_{ij}$为常数,且$Q(x_1,x_2,\cdots,x_n)$中不含常数项。
则它的正惯性等于零点距的个数,负惯性等于负的零点距的个数。
二、零点定理的应用零点定理在诸多领域中都有广泛的应用。
下面就以实例的形式逐一介绍:1、求函数零点先将原函数化简成$f(x)=0$的形式,就可以利用零点定理来计算零点了。
数学中的函数零点与函数最值问题

数学中的函数零点与函数最值问题数学中的函数零点与函数最值问题是数学分析中的重要概念和应用。
在这篇文章中,我们将讨论函数零点和函数最值的定义、性质以及在实际问题中的应用。
一、函数零点的定义和性质1. 函数零点的定义在数学中,函数零点是指函数取值为零的点,即满足f(x) = 0的x 值。
记作x0 = 0,其中f(x)表示函数。
2. 函数零点的性质(1)函数零点存在性:对于连续函数来说,如果f(a)和f(b)异号(f(a)·f(b)<0),那么在(a,b)之间必然存在一个零点x0。
(2)函数零点的唯一性:对于严格单调函数来说,它只有一个零点。
但对于非单调函数来说,它可能有多个零点。
(3)函数零点的计算方法:求解函数零点可以通过图像法、解析法以及迭代法等方法。
其中,图像法通过绘制函数图像来确定零点的位置;解析法通过代数运算来推导零点的表达式;迭代法通过不断逼近函数零点的值。
二、函数最值的定义和性质1. 函数最值的定义函数的最值是指函数在定义域上取得的最大值和最小值。
最大值称为函数的极大值,最小值称为函数的极小值。
2. 函数最值的性质(1)最值的存在性:对于连续函数来说,在闭区间[a,b]上必然存在最大值和最小值。
但对于非连续函数来说,最值的存在性需要进一步判断。
(2)最值的唯一性:对于连续函数来说,最大值和最小值是唯一的。
但对于非连续函数来说,最值可能不唯一。
(3)最值的计算方法:求解最值可以通过求导数的方法来找出函数的驻点,进而判断最值所在的位置;也可以通过函数图像来观察最值的位置。
三、函数零点与函数最值问题的应用函数零点与函数最值问题在数学和实际应用中有着广泛的应用。
1. 函数零点的应用(1)方程求解:将方程转化为函数的形式,通过求解函数的零点来解方程。
(2)根据函数图像判断方程解:通过观察函数图像,可以判断方程在不同区间上有多少个解。
(3)曲线的与坐标轴的交点:曲线与x轴和y轴的交点即为函数的零点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的应用(讲义)知识点睛
一、函数的零点
(取lg20.301 0lg30.477 1lg50.699 0
,,)≈≈≈
回顾与思考
________________________________________________________ ________________________________________________________ ________________________________________________________
【参考答案】 【知识点睛】
一、1.()0f x x =的实数
2.函数()y f x =的图象与x 轴有交点
函数()y f x =有零点 3.连续不断的曲线 ()()0
f a f b ⋅<
(a ,b )
()c a b ∃∈, ()0f c =
【精讲精练】
1.D 2.D 3.A 4.C 5.B
6.C 7.A 8.01k ≤< 9. B 10.B 11.C 12.D 13.A 14.B 15.C 16.C 17.D 18.C 19.C 20.A 21.(0.957 6)x
y m = 22.
27
125
23.12
(1)1p +- 24.8
函数的应用(随堂测试)
【参考答案】
1.C 2.11.25
函数的应用(作业)
8. 已知函数()2f x x =+,那么方程()3f x =的实数解的个数为( )
A .1
B .2
C .3
D .4
9. 设函数1
()f x x
=
,2()(0)g x ax bx a b a =+∈≠R ,,,若这两个函数的图象有且仅有两个不同的交点A (x 1,y 1),B (x 2,y 2),则下列判断正确的是( )
A .当a <0时,x 1+x 2<0,y 1+y 2>0
B .当a <0时,x 1+x 2>0,y 1+y 2<0
C .当a >0时,x 1+x 2<0,y 1+y 2<0
D .当a >0时,x 1+x 2>0,y 1+y 2>0
10. 若函数()(01)x f x a x a a a =-->≠,
且有两个零点,则实数a 的取值范围是
_________________.
f x x x
=+-,若函数()()
11.已知函数()2
=-的零点个数不为0,则a的
g x f x a
最小值为__________.
11
12 【参考答案】
1.D 2.A 3.C 4.D 5.C 6.B 7.C 8.B 9.B 10. 1a >
11.2 12. 50(110%)x y m =-
13.(1)m =1;(2)()f x 是奇函数;(3)单调递增
14.(1)当0<b <1时,函数()f x 单调递减;当b >1时,函数()f x 单调递增;(2)当a =1时,
()f x 是奇函数 15.a =16
16.(1)证明略;(2)918a <<。