人教版七年级下册数学中考总复习多边形与平行四边形巩固练习题及答案解析(提高)
(名师整理)最新人教版数学中考《平行四边形》专题精练(含答案解析)

平行四边形一选择题:1.下列给出的条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD=BCB.∠A=∠C,∠B=∠DC.AB∥CD,AD∥BC D.AB=CD,AD=BC2.能判定四边形是平行四边形的条件是( )A.一组对边平行,另一组对边相等;B.一组对边相等,一组邻角相等;C.一组对边平行,一组邻角相等;D.一组对边平行,一组对角相等。
3.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD 4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18cm,CD:DA=2:3,△AOB的周长为13cm,那么BC的长是()A.6cm B.9cm C.3cm D.12cm 5、如图,平行四边形ABCD中,DE⊥AB于E,DF⊥BC于F,若□ABCD的周长为48,DE=5,DF=10,则□ABCD的面积等于( )A.87.5 B.80 C.75 D.72.56.如图,任意四边形ABCD各边中点分别是E、F、G、H,若对角线AC、BD的长都为20cm,则四边形EFGH的周长是 ( )A.80cmB.40cmC.20cmD.10cm7.如图,在□ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x﹣3=0根,则□ABCD周长为( )A.4+2B.12+6C.2+2D.2+或12+68.如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为()A.4cm B.5cm C.6cm D.8cm9.如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF周长为()A.9B.10C.11D.1210.如图,□ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为()A.16B.14C.12D.1011.如图,E为▱ABCD外一点,且EB⊥BC,ED⊥CD,若∠E=65°,则∠A的度数为()A.65°B.100°C.115°D.135°12.如图,在□ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,□ABCD的周长是14,则DM等于()A.1 B.2 C.3 D.413.如图,在□ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC的值为()A.2:5B.2:3C.3:5D.3:214.如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动时间为()A.4s B.3s C.2sD.1s15.如图,□ABCD的周长为20cm,AC与BD相交于点O,OE⊥AC交AD于E,则△CDE的周长为()A.6cm B.8cm C.10cm D.12cm16.如图,已知四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是AP、RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不变D.线段EF的长与点P的位置有关17.如图,平行四边形ABCD绕点A逆时针旋转300,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=()A.155° B.170° C.105°D.145°18.如图1,平行四边形纸片ABCD的面积为120,AD=20,AB=18.今沿两对角线将四边形ABCD剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD、CB 重合)形成一线对称图形戊,如图2所示,则图形戊的两对角线长度和()A.26 B.29 C.24D.2519.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第个图中平行四边形的个数是( )A.3n B.3n(n+1) C.6n D.6n(n+1)20、如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E 在线段AB上,连接EF、CF,则下列结论中一定成立的是()①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.A.①② B.②③④ C.①②④ D.①②③④二填空题:21.如图,□ABCD中,点E是边BC上一点,AE交BD于点F,若BE=2,EC=3,则的值为22.如图,在平行四边形ABCD中,E是AD边上的中点.若∠ABE=∠EBC,AB=2,则□ABCD周长是.23.如图,在□ABCD中,对角线AC,BD相交于点O,P是BC边中点,AP交BD 于点Q. 则的值为________.24.如图,□ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.25.如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE 相交于点F,若S△AFD=9,则S△EFC= .26.E为□ABCD边AD上一点,将ABE沿BE翻折得到FBE,点F在BD上,且EF=DF.若∠C=52°,则∠ABE=______27.在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点C(4,0),B(6,2),直线y=2x+1以每秒1个单位的速度向下平移,经过秒该直线可将平行四边形OABC的面积平分.28.如图,若将四根木条钉成的矩形木框变成平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最大内角等于29.如图,在平行四边形ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N. 给出下列结论:①△ABM≌△CDN;②AM=AC;③DN=2NF;④S△AMB=S △ABC.其中正确的结论是_______________(只填番号)30.一个四边形四条边顺次是a、b、c、d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是_________.三简答题:31.如图,在平行四边形ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm,求平行四边形ABCD的周长.32.如图,已知□ABCD中,、分别是、上的点,,、分别是、的中点,求证:四边形是平行四边形。33.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.34.如图,已知AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.35.△ABC中,中线BE、CF相交于O,M是BO的中点,N是CO的中点.求证:四边形MNEF是平行四边形.36.如图,已知E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.37.在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC.(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.(3)若AC=6,DE=4,则DF= .38.如图,长方形ABCD,AB=9,AD=4.E为CD边上一点,CE=6.(1)求AE的长.(2)点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒,则当t为何值时,△PAE为等腰三角形?39.如图,已知在等边△ABC中,D、F分别为CB、BA上的点,且CD=BF,以AD 为边作等边三角形ADE.求证:(1)△ACD≌△CBF;(2)四边形CDEF为平行四边形.40.如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.(1)求证:△AEF≌△BEC;(2)判断四边形BCFD是何特殊四边形,并说出理由;(3)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,若BC=1,求AH 的长.参考答案1、A2、D;3、D4、A5、B;6、B;7、A8、A.9、A 10、C 11、C 12、C; 13、B14、B. 15、C 16、C 17、A 18、A 19、B;20、C 21、. 22、12 23、24、3; 25、 4 . 26、51 27、6 28、150° 29、①②③; 30、平行四边形;31、【解答】解:在平行四边形ABCD中,∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABE=∠EBC,∠BCE=∠ECD.,∴∠EBC+∠BCE=90°,∴∠BEC=90°,∴BC2=BE2+CE2=122+52=132∴BC=13cm,∵AD∥BC,∴∠AEB=∠EBC,∴∠AEB=∠ABE,∴AB=AE,同理CD=ED,∵AB=CD,∴AB=AE=CD=ED=0.5BC=6.5cm,∴平行四边形ABCD的周长=2(AB+BC)=2(6.5+13)=39cm32、略; 33、略34、证明:∵BE⊥AD,BE⊥AD,∴∠AEB=∠DFC=90°,∵AB∥CD,∴∠A=∠D,在△AEB与△DFC中,,∴△AEB≌△DFC(ASA),∴BE=CF.∵BE⊥AD,BE⊥AD,∴BE∥CF.∴四边形BECF是平行四边形.35、【解答】证明:∵BE,CF是△ABC的中线,∴EF∥BC且EF=0.5BC,∵M是BO的中点,N是CO的中点,∴MN∥BC且MN=0.5BC,∴EF∥MN且EF=MN,∴四边形MNEF是平行四边形.36、连结BE,CE //且=AB□ABEC BF=FC.□ABCD AO=OC,∴AB=2OF.37、【解答】解:(1)证明:∵DF∥AC,DE∥AB,∴四边形AFDE是平行四边形.∴AF=DE,∵DF∥AC,∴∠FDB=∠C又∵AB=AC,∴∠B=∠C,∴∠FDB=∠B∴DF=BF∴DE+DF=AB=AC;(2)图②中:AC+DE=DF.图③中:AC+DF=DE.(3)当如图①的情况,DF=AC﹣DE=6﹣4=2;当如图②的情况,DF=AC+DE=6+4=10.故答案是:2或10.38、(1) 5 (2)或或39、提示:(1)∵△ABC为等边三角形,∴AC=CB,∠ACD=∠CBF=60°.又∵CD=BF,∴△ACD≌△CBF.(2)∵△ACD≌△CBF,∴AD=CF,∠CAD=∠BCF.∵△AED为等边三角形,∴∠ADE=60°,且AD=DE.∴FC=DE.∵∠EDB+60°=∠BDA=∠CAD+∠ACD=∠BCF+60°,∴∠EDB=∠BCF.∴ED∥FC.∵ED FC,∴四边形CDEF为平行四边形.40、(1)证明:①在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°.∵E为AB的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC.(2)在△ABC中,∠ACB=90°,E为AB的中点,∴CE=AB,BE=AB.∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°.又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°.又∵∠D=60°,∴∠AFE=∠D=60°.∴FC∥BD.又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC.∴四边形BCFD是平行四边形(3)解:∵∠BAD=60°,∠CAB=30°,∴∠CAH=90°.在Rt△ABC中,∠CAB=30°,BC=1,∴AB=2BC=2.∴AD=AB=2.设AH=x,则HC=HD=AD﹣AH=2﹣x,在Rt△ABC中,AC2=22﹣12=3,在Rt△ACH中,AH2+AC2=HC2,即x2+3=(2﹣x)2,解得x=,即AH=.。
中考数学总复习分层提分训练《多边形与平行四边形》含答案

多边形与平行四边形一级训练1.(2011年广东)正八边形的每个内角为()A.120°B.135°C.140°D.144°2.用正方形一种图形进行平面镶嵌时,在它的一个顶点周围的正方形的个数是() A.3 B.4 C.5 D.63.(2011年湖南邵阳)如图4-3-6,▱ABCD中,对角线AC,BD相交于点O,且AB≠AD,则下列式子不正确的是()A.AC⊥BD B.AB=CD C.BO=OD D.∠BAD=∠BCD图4-3-6 图4-3-7 图4-3-84.如图4-3-7,在▱ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则阴影部分的面积为()A.3 B.6 C.12 D.245.某多边形的内角和是其外角和的3倍,则此多边形的边数是()A.5 B.6 C.7 D.86.在▱ABCD中,∠A∶∠B∶∠C∶∠D的比值是()A.1∶2∶3∶4 B.1∶2∶2∶1 C.2∶2∶1∶1 D.2∶1∶2∶17.(2012年广西南宁)如图4-3-8,在平行四边形ABCD中,AB=3 cm,BC=5 cm,对角线AC,BD相交于点O,则OA的取值范围是()A.2 cm<OA<5 cm B.2 cm<OA<8 cm C.1 cm<OA<4 cm D.3 cm<OA<8 cm 8.(2011年江苏泰州)在四边形ABCD中,对角线AC,BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有()A.1组B.2组C.3组D.4组9.(2011年四川广安)若凸n边形的内角和为1 260°,则从一个顶点出发引的对角线条数是__________.10.在下列四组多边形地板砖中:①正三角形与正方形;②正三角形与正六边形;③正六边形与正方形;④正八边形与正方形. 将每组中的两种多边形结合,能密铺地面的是__________(填正确序号).11.(2011年四川宜宾)如图4-3-9,平行四边形ABCD的对角线AC,BD交于点O,E,F 在AC上,G,H在BD上,AF=CE,BH=DG.求证:GF∥HE.图4-3-912.如图4-3-10,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE 与DF有怎样的位置关系和数量关系?并对你的猜想加以证明.图4-3-10二级训练13.(2009年广东茂名)如图4-3-11,杨伯家小院子的四棵小树E,F,G,H刚好在其梯形院子ABCD各边的中点上,若在四边形EFGH种上小草,则这块草地的形状是() A.平行四边形B.矩形C.正方形D.菱形图4-3-11 图4-3-12 图4-3-13 14.(2011年浙江金华)如图4-3-12,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是________.15.(2010年广东)如图4-3-13,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.三级训练16.如图4-3-14,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在BC,DE上分别找一点M,N,使得△AMN的周长最小时,则∠AMN+∠ANM的度数为()A. 100°B.110° C. 120° D. 130°图4-3-1417.(2012年山东威海)(1)如图4-3-15(1)□ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE=CF.(2)如图4-3-15(2),将▱ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.图4-3-15参考答案1.B 2.B 3.A 4.C 5.D 6.D7.C8.C9.610.①②④解析:①正三角形内角为60°,正方形内角为90°,可以由3个正三角形和2个正方形可以密铺;②正六边形内角为120°,可由2个正三角形2个正六边形密铺;③正六边形和正方形无法密铺;④正八边形内角为135°,正方形内角为90°,2个正八边形和1个正方形可以密铺.故选D.11.证明:∵在平行四边形ABCD中,OA=OC,又已知AF=CE,∴AF-OA=CE-OC.∴OF=OE.同理,得OG=OH.∴四边形EGFH是平行四边形.∴GF∥HE.12.解:猜想:BE∥DF,BE=DF.证法一:如图D13.图D13∵四边形ABCD是平行四边形,∴BC=AD,∠1=∠2,又∵CE=A F,∴△BCE≌DAF.∴BE=DF,∠3=∠4.∴BE∥DF.证法二:如图D14.图D14连接BD,交AC于点O,连接D E,BF,∵四边形ABCD是平行四边形,∴BO=OD,AO=CO.又∵AF=CE,∴AE=CF.∴EO=FO.∴四边形BEDF 是平行四边形. ∴BE 綊DF . 13.A14.2 3 提示:△EFD 的面积与△EHD 的面积相等. 15.证明:(1)∵在Rt △ABC 中,∠BAC =30°,∴AB =2BC . 又△ABE 是等边三角形,EF ⊥AB , ∴∠AEF =30°.∴AE =2AF ,且AB =2AF .∴AF =CB . 而∠ACB =∠AFE =90°, ∴△AFE ≌△BCA .∴AC =EF .(2)由(1)知道AC =EF ,而△ACD 是等边三角形, ∴∠DAC =60°.∴EF =AC =AD ,且AD ⊥AB .而EF ⊥AB , ∴EF ∥AD .∴四边形ADFE 是平行四边形. 16.C17.证明:(1)如图D15,∵四边形ABCD 是平行四边形,图D15∴AD ∥BC ,OA =OC . ∴∠1=∠2.在△AOE 和△COF 中, ⎩⎪⎨⎪⎧∠1=∠2,OA =OC ,∠3=∠4,∴△AOE ≌△COF (ASA). ∴AE =CF .(2)如图D16,∵四边形ABCD 是平行四边形,图D16∴∠A =∠C ,∠B =∠D . 由(1),得AE =CF .由折叠的性质,可得AE =A 1E ,∠A 1=∠A ,∠B 1=∠B . ∴A 1E =CF ,∠A 1=∠A =∠C ,∠B 1=∠B =∠D .又∵∠1=∠2, ∴∠3=∠4.∵∠5=∠3,∠4=∠6, ∴∠5=∠6.在△AIE 与△CGF 中, ⎩⎪⎨⎪⎧∠A 1=∠C ,∠5=∠6,A 1E =CF ,∴△AIE ≌△CGF (AAS). ∴EI =FG .。
专题22多边形和平行四边形(基础巩固练习)解析版

2021年中考数学专题22 多边形和平行四边形(基础巩固练习,共40个小题)一、选择题(共12小题):1.(2020•广安)如图,在五边形ABCDE中,若去掉一个30°的角后得到一个六边形BCDEMN,则∠1+∠2的度数为()A.210°B.110°C.150°D.100°【答案】A【解析】解:解法一:∵∠A+∠B+∠C+∠D+∠E=(5﹣2)×180°=540°,∠A=30°,∴∠B+∠C+∠D+∠E=510°,∵∠1+∠2+∠B+∠C+∠D+∠E=(6﹣2)×180°=720°,∴∠1+∠2=720°﹣510°=210°,解法二:在△ANM中,∠ANM+∠AMN=180°﹣∠A=180°﹣30°=150°,∴∠1+∠2=360°﹣(∠AMN+∠ANM)=360°﹣150°=210°;故选:A.2.(2020秋•黄石港区校级期中)如图,五边形ABCDE是正五边形,则x为()A.30°B.35°C.36°D.45°【答案】C【解析】解:因为五边形ABCDE是正五边形,所以∠E=∠CDE=180°×(5−2)5=108°,AE=DE,所以∠1=∠3=180°−108°2=36°,所以x=∠CDE﹣∠1﹣∠3=36°.故选:C.3.(2020•无锡)正十边形的每一个外角的度数为()A.36°B.30°C.144°D.150°【答案】A【解析】解:正十边形的每一个外角都相等,因此每一个外角为:360°÷10=36°,故选:A.4.(2020秋•东莞市校级期中)七边形共有几条对角线()A.6 B.7 C.10 D.14【答案】D【解析】解:七边形的对角线的条数是:n(n−3)2=7×(7−3)2=14,故选:D.5.(2020春•长春期末)学校购买一种正多边形形状的瓷砖来铺满教室的地面,所购买的瓷砖形状不可能是()A.等边三角形B.正五边形C.正六边形D.正方形【答案】B【解析】解:A、等边三角形的每个内角是60°,能整除360°,能密铺;B、正五边形的每个内角为:180°﹣360°÷5=108°,不能整除360°,不能密铺;C、正六边形的每个内角是120°,能整除360°,能密铺;D、正方形的每个内角是90°,4个能密铺.故选:B.6.(2020•河池)如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE的长是()A.5√2B.6√2C.4√5D.5√5【答案】C【解析】解:∵CE平分∠BCD,∴∠BCE=∠DCE,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5,∵EA=3,ED=4,在△AED中,32+42=52,即EA2+ED2=AD2,∴∠AED=90°,∴CD=AB=3+5=8,∠EDC=90°,在Rt△EDC中,CE=2+DC2=√42+82=4√5.故选:C.7.(2020•益阳)如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A .10B .8C .7D .6【答案】D【解析】解:∵四边形ABCD 是平行四边形,∴OA =12AC =3,OB =12BD =4,在△AOB 中:4﹣3<AB <4+3,即1<AB <7,∴AB 的长可能为6.故选:D .8.(2020•温州)如图,在△ABC 中,∠A =40°,AB =AC ,点D 在AC 边上,以CB ,CD 为边作▱BCDE ,则∠E 的度数为( )A .40°B .50°C .60°D .70°【答案】D【解析】解:∵在△ABC 中,∠A =40°,AB =AC ,∴∠C =(180°﹣40°)÷2=70°, ∵四边形BCDE 是平行四边形,∴∠E =70°.故选:D .9.(2020•自贡)如图,在平行四边形ABCD 中,AD =2,AB =√6,∠B 是锐角,AE ⊥BC 于点E ,F 是AB 的中点,连结DF 、EF .若∠EFD =90°,则AE 长为( )A.2 B.√C.3√22D.3√32【答案】B【解析】解:如图,延长EF交DA的延长线于Q,连接DE,设BE=x,∵四边形ABCD是平行四边形,∴DQ∥BC,∴∠Q=∠BEF,∵AF=FB,∠AFQ=∠BFE,∴△QFA≌△EFB(AAS),∴AQ=BE=x,QF=EF,∵∠EFD=90°,∴DF⊥QE,∴DQ=DE=x+2,∵AE⊥BC,BC∥AD,∴AE⊥AD,∴∠AEB=∠EAD=90°,∵AE2=DE2﹣AD2=AB2﹣BE2,∴(x+2)2﹣4=6﹣x2,整理得:2x2+4x﹣6=0,解得x=1或﹣3(舍弃),∴BE=1,∴AE=√AB2−BE2=√6−1=√5,故选:B.10.(2019•遂宁)如图,▱ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为28,则△ABE的周长为()A.28 B.24 C.21 D.14【答案】D【解析】解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵平行四边形的周长为28,∴AB+AD=14∵OE⊥BD,∴OE是线段BD的中垂线,∴BE=ED,∴△ABE的周长=AB+BE+AE=AB+AD=14,故选:D.11.(2020秋•苏州期末)如图,四边形ABCD中,以对角线AC为斜边作Rt△ACE,连接BE、DE,BE⊥DE,AC,BD互相平分.若2AB=BC=4,则BD的值为()A.2√5B.√5C.3 D.4【答案】A【解析】解:连接OE,如图所示:∵2AB=BC=4,∴AB=2,∵AC,BD互相平分,∴OA=OC,OB=OD,四边形ABCD是平行四边形,∵以AC为斜边作Rt△ACE,AC,∴OE=OA=OC=12∵BE⊥DE,∴OE=OB=OD=1BD,2∴AC=BD,∴四边形ABCD是矩形,∴AD=BC=4,∠BAD=90°,∴BD=2+AD2=√22+42=2√5,故选:A.12.(2020•陕西)如图,在▱ABCD中,AB=5,BC=8.E是边BC的中点,F是▱ABCD内一点,且∠BFC=90°.连接AF并延长,交CD于点G.若EF∥AB,则DG的长为()A .52B .32C .3D .2【答案】D 【解析】解:如图,延长BF 交CD 的延长线于H ,∵四边形ABCD 是平行四边形,∴AB =CD =5,AB ∥CD ,∴∠H =∠ABF ,∵EF ∥AB ,∴EF ∥CD ,∵E 是边BC 的中点,∴EF 是△BCH 的中位线,∴BF =FH ,∵∠BFC =90°,∴CF ⊥BF ,∴CF 是BH 的中垂线,∴BC =CH =8,∴DH =CH ﹣CD =3,在△ABF 和△GHF 中,{∠ABF =∠H∠AFB =∠GFH BF =FH,∴△ABF ≌△GFH (AAS ),∴AB =GH =5,∴DG =GH ﹣DH =2,故选:D .二、填空题(共13小题):13.(2020•陕西)如图,P为正五边形ABCDE的边AE上一点,过点P作PQ∥BC,交DE于点Q,则∠EPQ的度数为.【答案】36°【解析】解:连接AD,∵五边形ABCDE是正五边形,∴∠B=∠BAE=∠E=∠EDC=∠C=108°,AE=DE,∴∠EAD=∠EDA=36°,∴∠BAD=72°,∵∠BAD+∠ABC=180°,∴BC∥AD,∵PQ∥BC,∴AD∥PQ,∴∠EPQ=∠EAD=36°,故答案为:36°.14.(2020•福建)如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=度.【答案】30=120°,【解析】解:正六边形的每个内角的度数为:(6−2)×180°6所以∠ABC=120°﹣90°=30°,故答案为:30.15.(2020•陕西)如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD,则∠BDM的度数是.【答案】144°【解析】解:因为五边形ABCDE是正五边形,=108°,BC=DC,所以∠C=(5−2)×180°5=36°,所以∠BDC=180°−108°2所以∠BDM=180°﹣36°=144°,故答案为:144°.16.(2020•包头)如图,在▱ABCD中,AB=2,∠ABC的平分线与∠BCD的平分线交于点E,若点E恰好在边AD上,则BE2+CE2的值为.【答案】16【解析】解:∵BE 、CE 分别平分∠ABC 和∠BCD∴∠EBC =12∠ABC ,∠ECB =12∠BCD ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD =2,BC =AD ,∴∠ABC+∠BCD =180°,∴∠EBC+∠ECB =90°,∴∠BEC =90°,∴BE 2+CE 2=BC 2 ,∵AD ∥BC ,∴∠EBC =∠AEB ,∵BE 平分∠ABC ,∴∠EBC =∠ABE ,∴∠AEB =∠ABE ,∴AB =AE =2,同理可证 DE =DC =2,∴DE+AE =AD =4,∴BE 2+CE 2=BC 2=AD 2=16.故答案为:16.17.(2020•武汉)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD的对角线,点E在AC上,AD=AE=BE,∠D=102°,则∠BAC的大小是.【答案】26°【解析】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=102°,AD=BC,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠ECB,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠CAB,∴∠CAB+∠ACB=3∠CAB=180°﹣∠ABC=180°﹣102°,∴∠BAC=26°,故答案为:26°.18.(2020•天津)如图,▱ABCD的顶点C在等边△BEF的边BF上,点E在AB的延长线上,G为DE的中点,连接CG.若AD=3,AB=CF=2,则CG的长为.【答案】32【解析】解:∵四边形ABCD 是平行四边形,∴AD =BC ,CD =AB ,DC ∥AB ,∵AD =3,AB =CF =2,∴CD =2,BC =3,∴BF =BC+CF =5,∵△BEF 是等边三角形,G 为DE 的中点,∴BF =BE =5,DG =EG ,延长CG 交BE 于点H ,∵DC ∥AB ,∴∠CDG =∠HEG ,在△DCG 和△EHG 中,{∠CDG =∠HEGDG =EG ∠DGC =∠EGH,∴△DCG ≌△EHG (ASA ),∴DC =EH ,CG =HG ,∵CD =2,BE =5,∴HE =2,BH =3,∵∠CBH =60°,BC =BH =3,∴△CBH 是等边三角形,∴CH =BC =3,∴CG =12CH =32,故答案为:32.19.(2020•甘孜州)如图,在▱ABCD 中,过点C 作CE ⊥AB ,垂足为E ,若∠EAD =40°,则∠BCE 的度数为 .【答案】50°【解析】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠B =∠EAD =40°,∵CE ⊥AB ,∴∠BCE =90°﹣∠B =50°;故答案为:50°.20.(2020•德阳)如图,在平行四边形ABCD 中,BE 平分∠ABC ,CF ⊥BE ,连接AE ,G 是AB 的中点,连接GF ,若AE =4,则GF = .【答案】2【解析】解:在平行四边形ABCD中,AB∥CD,∴∠ABE=∠BEC.∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CBE=∠BEC,∴CB=CE.∵CF⊥BE,∴BF=EF.∵G是AB的中点,∴GF是△ABE的中位线,AE,∴GF=12∵AE=4,∴GF=2.故答案为2.21.(2020•鞍山)如图,在平行四边形ABCD中,点E是CD的中点,AE,BC的延长线交于点F.若△ECF的面积为1,则四边形ABCE的面积为.【答案】3【解析】解:∵在▱ABCD中,AB∥CD,点E是CD中点,∴EC是△ABF的中位线;∵∠B=∠DCF,∠F=∠F(公共角),∴△ABF∽△ECF,∵ECAB =EFAF=CFBF=12,∴S△ABF :S△CEF=4:1;又∵△ECF的面积为1,∴S△ABF=4,∴S四边形ABCE =S△ABF﹣S△CEF=3.故答案为:3.22.(2020•沈阳)如图,在平行四边形ABCD中,点M为边AD上一点,AM=2MD,点E,点F分别是BM,CM中点,若EF=6,则AM的长为.【答案】8【解析】解:∵点E,点F分别是BM,CM中点,∴EF是△BCM的中位线,∵EF=6,∴BC=2EF=12,∵四边形ABCD是平行四边形,∴AD=BC=12,∵AM=2MD,∴AM=8,故答案为:8.23.(2020•凉山州)如图,▱ABCD的对角线AC、BD相交于点O,OE∥AB交AD于点E,若OA=1,△AOE的周长等于5,则▱ABCD的周长等于.【答案】16【解析】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD,∵OE∥AB,∴OE是△ABD的中位线,∴AB=2OE,AD=2AE,∵△AOE的周长等于5,∴OA+AE+OE=5,∴AE+OE=5﹣OA=5﹣1=4,∴AB+AD=2AE+2OE=8,∴▱ABCD的周长=2×(AB+AD)=2×8=16;故答案为:16.24.(2020•株洲)如图所示,点D、E分别是△ABC的边AB、AC的中点,连接BE,过点C作CF∥BE,交DE的延长线于点F,若EF=3,则DE的长为.【答案】32【解析】解:∵D、E分别是△ABC的边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=12BC,∵CF∥BE,∴四边形BCFE为平行四边形,∴BC=EF=3,∴DE=12BC=32.故答案为:32.25.(2020•黔东南州)以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为.【答案】(2,﹣1)【解析】解:方法一:∵▱ABCD对角线的交点O为原点,A点坐标为(﹣2,1),∴点C的坐标为(2,﹣1),故答案为:(2,﹣1).方法二:∵四边形ABCD为平行四边形,∴点A和C关于对角线的交点O对称,又∵O为原点,∴点A和C关于原点对称,∵点A(﹣2,1),∴点C的坐标为(2,﹣1),故答案为:(2,﹣1).三、解答题(共15小题):26.(2020•济南)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD,BC于点E,F.求证:AE=CF.【答案】见解析。
中考数学复习《多边形》专项提升训练(附答案)

中考数学复习《多边形》专项提升训练(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法中,正确的是( )A.直线有两个端点B.射线有两个端点C.有六边相等的多边形叫做正六边形D.有公共端点的两条射线组成的图形叫做角2.如图,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是( )A.7B.8C.9D.103.有下列说法:①由许多条线段连接而成的图形叫做多边形;②多边形的边数是不小于4的自然数;③从一个多边形(边数为n)的同一个顶点出发,分别连接这个顶点与其余与之不相邻的各顶点,可以把这个多边形分割成(n-2)个三角形;其中正确的结论有( )A.1个B.2个C.3个D.4个4.一个多边形的外角中,钝角的个数不可能是( )A.1个B.2个C.3个D.4个5.若一个正多边形的一个外角是36°,则这个正多边形的边数是( )A.10B.9C.8D.66.如图,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是( )A.140米B.150米C.160米D.240米7.如图,将三个同样的正方形的一个顶点重合放置,如果∠1=45°,∠3=30°时,那么∠2 的度数是( )A.15°B.25°C.30°D.45°8.如果仅用一种多边形进行镶嵌,那么下列正多边形不能够将平面密铺的是( )A.正三角形B.正四边形C.正六边形D.正八边形9.用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第n个图案中,所包含的黑色正三角形和白色正六边形的个数总和是( )A.n2+4n+2B.6n+1C..n2+3n+3D.2n+410.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是( )A.222B.280C.286D.292二、填空题11.形状、大小完全相同的三角形________(填“能”或“不能”)铺满地面;形状、大小完全相同的四边形________(填“能”或“不能”)铺满地面.12.如果一个多边形的各个外角都是40°,那么这个多边形的内角和是.13.一个多边形有44条对角线,那么这个多边形内角和是__________.14.如图是由射线AB、BC、CD、DE、EA组成的图形,∠1+∠2+∠3+∠4+∠5=.15.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消融,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=_____度.16.两个完全相同的正五边形都有一边在直线上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB= .三、解答题17.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.18.若两个多边形的边数之比为1:2,两个多边形的内角和之和为1440°,求这两个多边形的边数.19.一个多边形的内角和比四边形的内角和多540°并且这个多边形的各个内角都相等,这个多边形的每个内角等于几度?20.如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数.21.如图,四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F.(1)若∠F=80,则∠ABC+∠BCD=;∠E=;(2)探索∠E与∠F有怎样的数量关系,并说明理由;(3)给四边形ABCD添加一个条件,使得∠E=∠F所添加的条件为.22.如图,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠BCD=124°,∠DEF=80°.(1)观察直线AB与直线DE的位置关系,你能得出什么结论并说明理由;(2)试求∠AFE的度数.23.探索问题:(1)如图①,你知道∠BOC=∠B+∠C+∠A的奥秘吗?请你用学过的知识予以证明;(2)如图②﹣1,则∠A+∠B+∠C+∠D+∠E=°;如图②﹣2,则∠A+∠B+∠C+∠D+∠E=°;如图②﹣3,则∠A+∠B+∠C+∠D+∠E=°;(3)如图③,下图是一个六角星,其中∠BOD=70°,则∠A+∠B+∠C+∠D+∠E+∠F =°.参考答案1.D2.B.3.A4.D5.A6.B.7.A8.D9.B10.D11.答案为:能,能.12.答案为:1260°.13.答案为:1 620°14.答案为:360°.15.答案为:360.16.答案为:108°.17.解:设这个多边形的边数是n依题意得(n﹣2)×180°=3×360°﹣180°,n﹣2=6﹣1,n=7. ∴这个多边形的边数是7.18.解:设这两个多边形的边数分别为n、2n,依题意得180(n﹣2)+180(2n﹣2)=1440540n﹣720=1440540n=2160n=4所以这两个多边形的边数分别为4和8所以这两个多边形的内角和分别为:180°×(4﹣2)=360°和180°×(8﹣2)=1080°19.解:设这个多边形的边数为n则有(n﹣2)•180°=360°+540°解得n=7.∵这个多边形的每个内角都相等∴它每一个内角的度数为900°÷7=20.解:连接AF.∵在△AOF和△COD中,∠AOF=∠COD∴∠C+∠D=∠OAF+∠AFD∴∠A+∠B+∠C+∠D+∠E+∠F=∠OAF+∠OFA+∠CFE+∠OAB+∠E+∠F=∠BAF+∠AFE+∠E+∠B=360°.21.解:(1)∵∠F=80∴∠FBC+∠BCF=180°﹣∠F=100°.∵∠ABC、∠BCD的角平分线交于点F∴∠ABC=2∠FBC,∠BCD=2∠BCF∴∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=200°;∵四边形ABCD的内角和为360°∴∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=160°.∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E∴∠DAE=12∠BAD,∠ADE=12∠CDA∴∠DAE+∠ADE=12∠BAD+12∠CDA=12(∠BAD+∠CDA)=80°∴∠E=180°﹣(∠DAE+∠ADE)=100°;(2)∠E+∠F=180°.理由如下:∵∠BAD+∠CDA+∠ABC+∠BCD=360°∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E∠ABC、∠BCD的角平分线交于点F∴∠DAE+∠ADE+∠FBC+∠BCF=180°∵∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°∴∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°∴∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)AB∥CD.故答案为200°;100°;AB∥CD.22.解:(1)AB∥DE.理由如下:延长AF、DE相交于点G∵CD∥AF∴∠CDE+∠G=180°.∵∠CDE=∠BAF∴∠BAF+∠G=180°∴AB∥DE;(2)延长BC、ED相交于点H.∵AB⊥BC∴∠B=90°.∵AB∥DE∴∠H+∠B=180°∴∠H=90°.∵∠BCD=124°∴∠DCH=56°∴∠CDH=34°∴∠G=∠CDH=34°.∵∠DEF=80°∴∠EFG=80°﹣34°=46°∴∠AFE=180°﹣∠EFG=180°﹣46°=134°.23.解:(1)如图①,∠BOC=∠B+∠C+∠A.(2)如图②,∠A+∠B+∠C+∠D+∠E=180°.如图③根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D∵∠1+∠2+∠E=180°∴x=∠A+∠B+∠C+∠D+∠E=180°.如图④,延长EA交CD于点F,EA和BC交于点G根据外角的性质,可得∠GFC=∠D+∠E,∠FGC=∠A+∠B ∵∠GFC+∠FGC+∠C=180°∴x=∠A+∠B+∠C+∠D+∠E=180°.(3)如图⑤,∵∠BOD=70°∴∠A+∠C+∠E=70°∴∠B+∠D+∠F=70°∴∠A+∠B+∠C+∠D+∠E+∠F=70°+70°=140°.。
中考数学总复习《平行四边形与多边形》专题训练(附带答案)

中考数学总复习《平行四边形与多边形》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________命题点1多边形及其性质1(2022河北)如图,将三角形纸片剪掉一角得四边形,设△ABC与四边形BCDE的外角和的度数分别为α,β,则正确的是()A.α-β=0°B.α-β<0°C.α-β>0°D.无法比较α与β的大小2(2022怀化)一个多边形的内角和为900°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形3(2022烟台)一个正多边形每个内角与它相邻外角的度数比为3∶1,则这个正多边形是() A.正方形 B.正六边形C.正八边形D.正十边形4(2022丽水)三个能够重合的正六边形的位置如图.已知B点的坐标是(-√3,3),则A点的坐标是.(第4题) (第5题)5(2022株洲)如图所示,已知∠MON=60°,正五边形ABCDE的顶点A,B在射线OM上,顶点E在射线ON上,则∠AEO=度.6(2022遂宁)如图,正六边形ABCDEF的顶点A,F分别在正方形BMGH的边BH,GH上.若正方形BMGH的边长为6,则正六边形ABCDEF的边长为.(第6题) (第7题)7(2021上海)如图,六个含30°角的直角三角板拼成一个正六边形,直角三角板的最短边为1,则中间正六边形的面积为.命题点2平行四边形的判定8(2022河北)依据所标数据,下列一定为平行四边形的是()9(2022临沂)如图,在正六边形ABCDEF中,M,N是对角线BE上的两点,添加下列条件中的一个:①BM=EN;②∠FAN=∠CDM;③AM=DN;④∠AMB=∠DNE.能使四边形AMDN是平行四边形的是(填上所有符合要求的条件的序号).10(2022株洲)如图所示,点E在四边形ABCD的边AD上,连接CE,并延长CE交BA的延长线于点F,已知AE=DE,FE=CE.(1)求证:△AEF≌△DEC.(2)若AD∥BC,求证:四边形ABCD为平行四边形.11(2021连云港)如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;(2)如果AB=AE,求证:四边形ACED是矩形.命题点3与平行四边形有关的证明与计算12(2021南充)如图,点O是▱ABCD对角线的交点,EF过点O分别交AD,BC于点E,F,下列结论成立的是() A.OE=OF B.AE=BFC.∠DOC=∠OCDD.∠CFE=∠DEF(第12题) (第13题)13(2022内江)如图,在▱ABCD中,已知AB=12,AD=8,∠ABC的平分线BM交CD边于点M,则DM的长为() A.2 B.4 C.6 D.814(2022泰安)如图,平行四边形ABCD的对角线AC,BD相交于点O,点E为BC的中点,连接EO并延长交AD于点F,∠ABC=60°,BC=2AB.下列结论:①AB⊥AC;②AD=4OE;③四边形AECF是菱形;④S△BOE =14S△ABC.其中正确结论的个数是()A.4B.3C.2D.1(第14题) (第15题)15(2022无锡) 如图,在▱ABCD中,AD=BD,∠ADC=105°,点E在AD上,∠EBA=60°,则EDCD的值是()A.23B.12C.√32D.√2216(2022邵阳)如图,在等腰三角形ABC中,∠A=120°,顶点B在▱ODEF的边DE 上,已知∠1=40°,则∠2=.(第16题) (第17题)17(2022泰安)如图,四边形ABCD为平行四边形,则点B的坐标为..过点D作DE⊥AB,垂足为18(2021广东)如图,在▱ABCD中,AD=5,AB=12,sin A=45E,连接CE,则sin∠BCE=.19(2022连云港)如图,在▱ABCD中,∠ABC=150°.利用尺规在BC,BA上分别截取EF的长为半径作弧,两弧在∠CBA内BE,BF,使BE=BF;分别以E,F为圆心,大于12交于点G;作射线BG交DC于点H.若AD=√3+1,则BH的长为.20(2022广西北部湾经济区)如图,在▱ABCD中,BD是它的一条对角线.(1)求证:△ABD≌△CDB;(2)尺规作图:作BD的垂直平分线EF,分别交AD,BC于点E,F(不写作法,保留作图痕迹);(3)连接BE,若∠DBE=25°,求∠AEB的度数.21(2022无锡)如图,在▱ABCD中,点O为对角线BD的中点,EF过点O且分别交AB,DC于点E,F,连接DE,BF.求证:(1)△DOF≌△BOE;(2)DE=BF.22(2022温州) 如图,在△ABC中,AD⊥BC于点D,E,F分别是AC,AB的中点,O是DF的中点,EO的延长线交线段BD于点G,连接DE,EF,FG.(1)求证:四边形DEFG是平行四边形.时,求FG的长.(2)当AD=5,tan∠EDC=5223(2022扬州)如图,在▱ABCD中,BE,DG分别平分∠ABC,∠ADC,交AC于点E,G.(1)求证:BE∥DG,BE=DG.(2)过点E作EF⊥AB,垂足为F.若▱ABCD的周长为56,EF=6,求△ABC的面积.24(2021绍兴)问题:如图,在▱ABCD中,AB=8,AD=5,∠DAB,∠ABC的平分线分别与直线CD交于点E,F,求EF的长.答案:EF=2.探究:(1)把“问题”中的条件“AB=8”去掉,其余条件不变.①当点E与点F重合时,求AB的长;②当点E与点C重合时,求EF的长.(2)把“问题”中的条件“AB=8,AD=5”去掉,其余条件不变,当点C,D,E,F相邻两点间的距离相等时,求AD的值.AB分类训练16平行四边形与多边形1.A【解析】∵任意多边形的外角和为360°,∴α=β=360°,∴α-β=0.2.A【解析】设该多边形的边数为n,由题意得(n-2)×180°=900°,解得n=7.3.C【解析】∵该正多边形每个内角与它相邻外角的度数比为3∶1,∴设这个多边形的每个外角是x°,则每个内角是3x°.根据题意得x+3x=180,解得x=45,故该正多边形的边数为360°÷45°=8.4.(√3,-3)【解析】如图,连接AO,BO,易得OB=OA,∠BOA=30°+120°+30°=180°,∴A,B关于点O对称,∴A(√3,-3).5.48【解析】∵五边形ABCDE是正五边形,∴∠BAE=108°,∴∠OAE=180°-108°=72°.在△AOE中,∠AEO=180°-∠MON-∠OAE=180°-60°-72°=48°.6.4 【解析】 ∵六边形ABCDEF 是正六边形,∴∠HAF=60°.又∵∠AHF=90°,∴∠AFH=30°,∴AF=2AH.设AB=AF=x ,则AH=6-x ,∴x=2(6-x ),解得x=4,∴AB=4,即正六边形的边长为4. 7.3√32【解析】 如图,连接BD ,DF ,BF ,过点A 作AG ⊥BF 于点G.易知△ABF ≌△CDB ≌△EFD ,AB=AF=1,∠BAF=120°,△BDF 是等边三角形,∴∠ABF=∠AFB=30°,BG=GF ,∴AG=12,BG=GF=√32,∴BF=√3,∴S △ABF =12×√3×12=√34,S △BDF =√34×(√3)2=3√34,∴S 正六边形ABCDEF=3S △ABF +S △BDF =3√34+3√34=3√32.8.D 【解析】 逐项分析如下.故选D .选项分析是否符合题意 A 可判定上下两边平行,左右两边不平行,故不是平行四边形. 否B 只能判定左右两边平行,故不一定是平行四边形.否C 只能判定左右两边相等,故不一定是平行四边形. 否D上下两边既平行又相等,故是平行四边形.是9.①②④ 【解析】 ∵六边形ABCDEF 是正六边形,∴AB=DE ,∠ABM=∠DEN=60°.若添加BM=EN ,则BN=EM ,∴△ABN ≌△DEM ,∴AN=DM ,∠ANB=∠DME ,∴AN ∥DM ,∴四边形AMDN 是平行四边形.若添加∠FAN=∠CDM ,则∠BAN=∠EDM ,∴△ABN ≌△DEM.同上可证四边形AMDN 是平行四边形.若添加AM=DN ,无法证明四边形AMDN 是平行四边形.若添加∠AMB=∠DNE ,则∠AMN=∠DNM,∴AM∥DN.∵AB=DE,∠AMB=∠DNE,∠ABM=∠DEN,∴△ABM ≌△DEN,∴AM=DN,∴四边形AMDN是平行四边形.10.【参考答案】证明:(1)在△AEF和△DEC中{AE=DE,∠AEF=∠DEC, FE=CE,∴△AEF≌△DEC(SAS).(2)∵△AEF≌△DEC∴∠AFE=∠DCE∴AF∥CD,即AB∥CD.∵AD∥BC∴四边形ABCD为平行四边形.11.【参考答案】(1)证明:∵四边形ABCD是平行四边形∴AD∥BC,且AD=BC.∵点C是BE的中点,∴BC=CE,∴AD=CE又∵AD∥CE,∴四边形ACED是平行四边形.(2)证明:∵四边形ABCD是平行四边形,∴AB=DC.∵AB=AE,∴DC=AE.又∵四边形ACED是平行四边形∴四边形ACED是矩形.12.A【解析】在▱ABCD中,AD∥BC.∵点O是AC,BD的交点,∴OA=OC,∴OE=OF.易得△OAE≌△OCF,∴AE=CF,点F不一定为BC的中点,∴AE=BF不一定成立.∵AD∥BC,∴∠CFE+∠DEF=180°.因∠CFE不一定为直角,故∠CFE=∠DEF不一定成立.显然,∠DOC=∠OCD不一定成立.故选A.13.B【解析】∵四边形ABCD是平行四边形,∴CD=AB=12,BC=AD=8,AB∥CD,∴∠ABM=∠CMB.又∵BM是∠ABC的平分线,∴∠CBM=∠ABM=∠CMB,∴MC=BC=8,∴DM=CD-MC=12-8=4.14.A【解析】∵点E为BC的中点,∴BC=2BE=2CE.又∵BC=2AB,∴AB=BE.又∵∠ABC=60°,∴△ABE是等边三角形,∴∠BAE=∠BEA=60°,AE=BE=EC,∴∠EAC=∠ECA=30°,∴∠BAC=∠BAE+∠EAC=90°,即AB⊥AC,故结论①正确.在平行四边形ABCD中,AD=BC=2AB,AO=CO,BE=EC,∴OE是△ABC的中位线,∴AB=2OE,∴AD=4OE,故结论②正确.∵AD∥BC,AO=OC,∴OF=OE,∴四边形AECF是平行四边形,又AE=EC,∴平行四边形AECF 是菱形,故结论③正确.∵OA=OC ,BE=EC ,∴S △BOE =12S △BOC =14S △ABC ,故结论④正确.综上所述,正确的结论有4个.15.D 【解析】 ∵四边形ABCD 是平行四边形,∴CD=AB ,CD ∥AB ,∴∠A=180°-∠ADC=75°.又∵∠ABE=60°,∴∠AEB=180°-∠A-∠ABE=45°.如图,过点B 作BF ⊥AD 于点F ,则BF=FE.∵AD=BD ,∴∠ABD=∠A=75°,∴∠ADB=30°.设BF=EF=x ,则BD=2x ,DF=√3x ,∴DE=DF-EF=(√3-1)x ,AF=AD-DF=BD-DF=(2-√3)x.由勾股定理,得AB 2=AF 2+BF 2=(2-√3)2x 2+x 2=(8-4√3)x 2,∴DE 2AB 2=√3-1)22(8-4√3)x 2=12,∴DE AB =√22.又∵AB=CD ,∴DE CD =√22.故选D.16.110° 【解析】 在等腰三角形ABC 中,∠A=120°,∴∠ABC=30°.又∵∠1=40°,∴∠ABE=70°.∵四边形ODEF 是平行四边形,∴OF ∥DE ,∴∠2=180°-∠ABE=180°-70°=110°.17.(-2,-1) 【解析】 易知点C (2,-1)向左平移4个单位长度与点B 重合,∴B (-2,-1). 18.9√1050【解析】 在Rt △ADE 中,DE=AD sin A=5×45=4,∴AE=√AD 2-DE 2=3,∴BE=12-3=9.在Rt △DCE 中,CE=√CD 2+DE 2=4√10.设点B 到CE 的距离为h ,则S △BCE =12×h×CE=12×BE×DE ,∴h=BE×DE CE=4√10=9√1010,则sin ∠BCE=ℎBC =9√10105=9√1050. 19.√2 【解析】 如图,过点H 作HM ⊥BC 于点M.由题意可知,BH 平分∠ABC ,∴∠ABH=∠CBH.∵四边形ABCD 是平行四边形,∴BC=AD=√3+1,AB ∥CD ,∴∠CHB=∠ABH ,∠C=180°-∠ABC=30°,∴∠CBH=∠CHB ,∴CH=BC=√3+1,∴HM=12CH=√3+12,CM=√32CH=3+√32,∴BM=BC-CM=√3+1-3+√32=√3-12,∴BH=√HM 2+BM 2=√2.20.【参考答案】 (1)证明:∵四边形ABCD 是平行四边形∴AB=CD ,AD=BC. 又∵BD=BD∴△ABD ≌△CDB (SSS). (2)如图所示.(3)∵EF 垂直平分BD∴BE=DE ,∴∠BDE=∠DBE=25° ∴∠AEB=∠BDE+∠DBE=50°.21.【参考答案】 证明:(1)∵四边形ABCD 是平行四边形,O 是BD 的中点∴AB ∥DC ,OB=OD ∴∠OBE=∠ODF. 在△DOF 和△BOE 中{∠ODF =∠OBE ,OD =OB ,∠DOF =∠BOE ,∴△DOF ≌△BOE. (2)∵△DOF ≌△BOE∴FO=EO. 又∵OB=OD∴四边形BEDF 是平行四边形 ∴DE=BF.22.【参考答案】 (1)证明:∵E ,F 分别是AC ,AB 的中点∴EF ∥BC∴∠FEO=∠DGO ,∠EFO=∠GDO.∵O 是DF 的中点 ∴FO=DO∴△EFO ≌△GDO (AAS) ∴EF=GD∴四边形DEFG 是平行四边形. (2)∵AD ⊥BC ,E 是AC 的中点∴DE=12AC=EC ∴∠EDC=∠C ∴tan C=tan ∠EDC=52 ∴AD DC =52. ∵AD=5,∴CD=2 ∴AC=√52+22=√29 ∴DE=12AC=√292. 由平行四边形的性质可得FG=DE=√292. 23.【参考答案】 (1)证明:∵四边形ABCD 是平行四边形∴AD ∥BC ,AD=BC ,∠ABC=∠ADC ∴∠DAC=∠BCA.又∵BE ,DG 分别平分∠ABC ,∠ADC∴∠ADG=∠CBE. 在△ADG 和△CBE 中{∠DAG =∠BCE ,AD =BC ,∠ADG =∠CBE ,∴△ADG ≌△CBE ∴BE=DG ,∠AGD=∠CEB.∵∠DGE=180°-∠AGD ,∠BEG=180°-∠CEB ∴∠DGE=∠BEG ,∴BE ∥DG.(2)如图,过点E 作EH ⊥BC 于点H又∵BE平分∠ABC,EF⊥AB ∴EH=EF=6.∵▱ABCD的周长为56∴AB+BC=28∴S△ABC =12AB·EF+12BC·EH=12EF(AB+BC)=12×6×28=84.24.【参考答案】(1)①如图(1).∵四边形ABCD是平行四边形图(1)∴AB∥CD,BC=AD=5∴∠DEA=∠EAB.∵AE平分∠DAB∴∠DAE=∠EAB∴∠DAE=∠DEA∴DE=AD=5.同理可得CF=BC=5.∵点E与点F重合∴AB=CD=10.②如图(2),由①可知CF=BC=5.图(2)∵点E与点C重合∴EF=CF=5.(2)分3种情况讨论.①当DE=EF=CF时,如图(3).图(3) ∵AD=DE,AB=DC∴ADAB =DE CD=13.②当DF=EF=CE时,如图(4).图(4) ∵AD=DE∴ADAB =DE CD=23.③当DF=CD=CE时,如图(5).图(5) ∵AD=DE∴ADAB =DECD=2.综上可知,ADAB 的值是13,23或2.。
多边形与平行四边形(共27题)(解析版)--2023年中考数学真题分项汇编(全国通用)

多边形与平行四边形(27题)一、单选题1(2023·湖南·统考中考真题)如图,在四边形ABCD中,BC∥AD,添加下列条件,不能判定四边形ABCD是平行四边形的是()A.AB=CDB.AB∥CDC.∠A=∠CD.BC=AD【答案】A【分析】依据平行四边形的判定,依次分析判断即可得出结果.【详解】解:A、当BC∥AD,AB=CD时,不能判定四边形ABCD是平行四边形,故此选项符合题意;B、当AB∥CD,BC∥AD时,依据两组对边分别平行的四边形是平行四边形,能判定四边形ABCD是平行四边形,故此选项不合题意;C、当BC∥AD,∠A=∠C时,可推出AB∥DC,依据两组对边分别平行的四边形是平行四边形,能判定四边形ABCD是平行四边形,故此选项不合题意;D、当BC∥AD,BC=AD时,依据一组对边平行且相等的四边形是平行四边形,能判定四边形ABCD是平行四边形,故此选项不合题意;故选:A.【点睛】此题考查了平行四边形的判定,解决问题的关键要熟记平行四边形的判定方法.2(2023·湖南永州·统考中考真题)下列多边形中,内角和等于360°的是()A. B.C. D.【答案】B【分析】根据n边形内角和公式n-2⋅180°分别求解后,即可得到答案【详解】解:A.三角形内角和是180°,故选项不符合题意;B.四边形内角和为4-2×180°=360°,故选项符合题意;C.五边形内角和为5-2×180°=540°,故选项不符合题意;D.六边形内角和为6-2×180°=720°,故选项不符合题意.故选:B.【点睛】此题考查了n边形内角和,熟记n边形内角和公式n-2⋅180°是解题的关键.3(2023·湖南·统考中考真题)如图,在四边形ABCD中,AB∥CD,若添加一个条件,使四边形ABCD为平形四边形,则下列正确的是()A.AD=BCB.∠ABD=∠BDCC.AB=ADD.∠A=∠C【答案】D【分析】根据平行四边形的判定定理逐项分析判断即可求解.【详解】解:A.根据AB∥CD,AD=BC,不能判断四边形ABCD为平形四边形,故该选项不正确,不符合题意;B.∵AB∥CD,∴∠ABD=∠BDC,不能判断四边形ABCD为平形四边形,故该选项不正确,不符合题意;C.根据AB∥CD,AB=AD,不能判断四边形ABCD为平形四边形,故该选项不正确,不符合题意; D.∵AB∥CD,∴∠ABC+∠C=180°,∵∠A=∠C∴∠ABC+∠A=180°,∴AD∥BC∴四边形ABCD为平形四边形,故该选项正确,符合题意;故选:D.【点睛】本题考查了平行四边形的判定定理,熟练掌握平行四边形的判定定理是解题的关键.4(2023·内蒙古通辽·统考中考真题)如图,用平移方法说明平行四边形的面积公式S=ah时,若△ABE平移到△DCF,a=4,h=3,则△ABE的平移距离为()A.3B.4C.5D.12【答案】B【分析】根据平移的方向可得,△ABE平移到△DCF,则点A与点D重合,故△ABE的平移距离为AD的长.【详解】解:用平移方法说明平行四边形的面积公式S=ah时,将△ABE平移到△DCF,故平移后点A与点D重合,则△ABE的平移距离为AD=a=4,故选:B.【点睛】本题考查了平移的性质,熟练掌握平移的性质是解题的关键.5(2023·四川泸州·统考中考真题)如图,▱ABCD的对角线AC,BD相交于点O,∠ADC的平分线与边AB相交于点P,E是PD中点,若AD=4,CD=6,则EO的长为()A.1B.2C.3D.4【答案】A【分析】根据平行四边形的性质、平行线的性质、角平分线的定义以及等腰三角形的判定可得AP=AD= 4,进而可得BP=2,再根据三角形的中位线解答即可.【详解】解:∵四边形ABCD是平行四边形,CD=6,∴AB∥CD,AB=CD=6,DO=BO,∴∠CDP=∠APD,∵PD平分∠ADC,∴∠ADP=∠CDP,∴∠ADP=∠APD,∴AP=AD=4,∴BP=AB-AP=6-4=2,∵E是PD中点,BP=1;∴OE=12故选:A.【点睛】本题考查了平行四边形的性质、平行线的性质、等腰三角形的判定以及三角形的中位线定理等知识,熟练掌握相关图形的判定与性质是解题的关键.6(2023·四川成都·统考中考真题)如图,在▱ABCD中,对角线AC与BD相交于点O,则下列结论一定正确的是()A.AC=BDB.OA=OCC.AC⊥BDD.∠ADC=∠BCD【答案】B【分析】根据平行四边形的性质逐项分析判断即可求解.【详解】∵四边形ABCD是平行四边形,对角线AC与BD相交于点O,A. AC=BD,不一定成立,故该选项不正确,不符合题意;B. OA=OC,故该选项正确,符合题意;C. AC⊥BD,不一定成立,故该选项不正确,不符合题意;D. ∠ADC=∠BCD,不一定成立,故该选项不正确,不符合题意;故选:B.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.7(2023·安徽·统考中考真题)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD=()A.60°B.54°C.48°D.36°【答案】D【分析】先计算正五边形的内角,再计算正五边形的中心角,作差即可.【详解】∵∠BAE=180°-360°5,∠COD=360°5,∴∠BAE-∠COD=180°-360°5-360°5=36°,故选D.【点睛】本题考查了正五边形的外角,内角,中心角的计算,熟练掌握计算公式是解题的关键.二、填空题8(2023·云南·统考中考真题)五边形的内角和是度.【答案】540【分析】根据n边形内角和为n-2×180°求解即可.【详解】五边形的内角和是5-2×180°=540°.故答案为:540.【点睛】本题考查求多边形的内角和.掌握n边形内角和为n-2×180°是解题关键.9(2023·新疆·统考中考真题)若正多边形的一个内角等于144°,则这个正多边形的边数是.【答案】10【分析】本题需先根据已知条件设出正多边形的边数,再根据正多边形的计算公式得出结果即可.【详解】解:设这个正多边形是正n边形,根据题意得:n-2×180°÷n=144°,解得:n=10.故答案为:10.【点睛】本题主要考查了正多边形的内角,在解题时要根据正多边形的内角公式列出式子是本题的关键.10(2023·上海·统考中考真题)如果一个正多边形的中心角是20°,那么这个正多边形的边数为.【答案】18【分析】根据正n边形的中心角的度数为360°÷n进行计算即可得到答案.【详解】根据正n边形的中心角的度数为360°÷n,则n=360÷20=18,故这个正多边形的边数为18,故答案为:18.【点睛】本题考查的是正多边形内角和中心角的知识,掌握中心角的计算公式是解题的关键.11(2023·江苏扬州·统考中考真题)如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.【答案】6【详解】解:根据多边形的外角和等于360°和正多边形的每一个外角都相等,得多边形的边数为360°÷60°=6.故答案为:6.12(2023·山东临沂·统考中考真题)如图,三角形纸片ABC中,AC=6,BC=9,分别沿与BC,AC 平行的方向,从靠近A的AB边的三等分点剪去两个角,得到的平行四边形纸片的周长是.【答案】14【分析】由平行四边形的性质推出DF∥BC,DE∥AC,得到△ADF∽△ABC,△BDE∽△BAC,利用相似三角形的性质求解即可.【详解】解:如图,由题意得ADAB=13,四边形DECF是平行四边形,∴DF∥BC,DE∥AC,∴△ADF∽△ABC,△BDE∽△BAC,∴DF BC =ADAB=13,DEAC=BDAB=23,∵AC=6,BC=9,∴DF=3,DE=4,∵四边形DECF平行四边形,∴平行四边形DECF纸片的周长是23+4=14,故答案为:14.【点睛】本题考查了平行四边形的性质,相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题.13(2023·湖南·统考中考真题)如图,在平行四边形ABCD中,AB=3,BC=5,∠B的平分线BE交AD于点E,则DE的长为.【答案】2【分析】根据平行四边形的性质可得AD∥BC,则∠AEB=∠CBE,再由角平分线的定义可得∠ABE=∠CBE,从而求得∠AEB=∠ABE,则AE=AB,从而求得结果.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠B的平分线BE交AD于点E,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AE=AB,∵AB=3,BC=5,∴DE=AD-AE=BC-AB=5-3=2,故答案为:2.【点睛】本题考查平行四边形的性质、角平分线的定义、等腰三角形的判定,掌握平行四边形的性质是解题的关键.14(2023·重庆·统考中考真题)如图,在正五边形ABCDE中,连接AC,则∠BAC的度数为.【答案】36°【分析】首先利用多边形的内角和公式求得正五边形的内角和,再求得每个内角的度数,利用等腰三角形的性质可得∠BAC的度数.【详解】正五边形内角和:(5-2)×180°=3×180°=540°∴∠B=540°5=108°,∴∠BAC=180°-∠B2=180°-108°2=36° .故答案为36°.【点睛】本题主要考查了正多边形的内角和,熟记多边形的内角和公式:(n-2)×180°是解答此题的关键.15(2023·湖北黄冈·统考中考真题)若正n边形的一个外角为72°,则n=.【答案】5【分析】正多边形的外角和为360°,每一个外角都相等,由此计算即可.【详解】解:由题意知,n=36072=5,故答案为:5.【点睛】本题考查正多边形的外角问题,解题的关键是掌握正n边形的外角和为360°,每一个外角的度数均为360°n.16(2023·福建·统考中考真题)如图,在▱ABCD中,O为BD的中点,EF过点O且分别交AB,CD 于点E,F.若AE=10,则CF的长为.【答案】10【分析】由平行四边形的性质可得DC∥AB,DC=AB即∠OFD=∠OEB,∠ODF=∠EBO,再结合OD =OB可得△DOF≌△BOE AAS可得DF=EB,最进一步说明FC=AE=10即可解答.【详解】解:∵ABCD中,∴DC∥AB,DC=AB,∴∠OFD=∠OEB,∠ODF=∠EBO,∵OD=OB,∴△DOF≌△BOE AAS,∴DF=EB,∴DC-DF=AB-BE,即FC=AE=10.故答案为:10.【点睛】本题主要考查了平行四边形的性质、全等三角形的判定与性质等知识点,证明三角形全等是解答本题的关键.17(2023·山东·统考中考真题)已知一个多边形的内角和为540°,则这个多边形是边形.【答案】5【详解】设这个多边形是n边形,由题意得,(n-2)×180°=540°,解之得,n=5.18(2023·甘肃兰州·统考中考真题)如图,在▱ABCD中,BD=CD,AE⊥BD于点E,若∠C=70°,则∠BAE=°.【答案】50【分析】证明∠DBC=∠C=70°,∠BDC=180°-2×70°=40°,由AB∥CD,可得∠ABE=∠BDC=40°,结合AE⊥BD,可得∠BAE=90°-40°=50°.【详解】解:∵BD=CD,∠C=70°,∴∠DBC=∠C=70°,∠BDC=180°-2×70°=40°,∵▱ABCD,∴AB∥CD,∴∠ABE=∠BDC=40°,∵AE⊥BD,∴∠BAE=90°-40°=50°;故答案为:50【点睛】本题考查的是等腰三角形的性质,平行四边形的性质,三角形的内角和定理的应用,熟记基本几何图形的性质是解本题的关键.19(2023·吉林长春·统考中考真题)如图,将正五边形纸片ABCDE折叠,使点B与点E重合,折痕为AM,展开后,再将纸片折叠,使边AB落在线段AM上,点B的对应点为点B ,折痕为AF,则∠AFB 的大小为度.【答案】45【分析】根据题意求得正五边形的每一个内角为155-2×180°=108°,根据折叠的性质求得∠BAM,∠FAB ,在△AFB 中,根据三角形内角和定理即可求解.【详解】解:∵正五边形的每一个内角为155-2×180°=108°,将正五边形纸片ABCDE折叠,使点B与点E重合,折痕为AM,则∠BAM=12∠BAE=12×108°=54°,∵将纸片折叠,使边AB落在线段AM上,点B的对应点为点B ,折痕为AF,∴∠FAB =12∠BAM=12×54°=27°,∠AB F=∠B=108°,在△AFB 中,∠AFB =180°-∠B-∠FAB =180°-108°-27°=45°,故答案为:45.【点睛】本题考查了折叠的性质,正多边形的内角和的应用,熟练掌握折叠的性质是解题的关键.20(2023·重庆·统考中考真题)若七边形的内角中有一个角为100°,则其余六个内角之和为.【答案】800°/800度【分析】根据多边形的内角和公式180°n-2即可得.【详解】解:∵七边形的内角中有一个角为100°,∴其余六个内角之和为180°×7-2-100°=800°,故答案为:800°.【点睛】本题考查了多边形的内角和,熟记多边形的内角和公式是解题关键.三、解答题21(2023·四川自贡·统考中考真题)在平行四边形ABCD中,点E、F分别在边AD和BC上,且DE =BF.求证:AF=CE.【答案】见解析【分析】平行四边形的性质得到AD=BC,AD∥BC,进而推出AE=CF,得到四边形AECF是平行四边形,即可得到AF=EC.【详解】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE=DF,∴AE=CF,∴AE=CF,AE∥CF∴四边形AECF是平行四边形,∴AF=CE.【点睛】本题考查平行四边形的判定和性质.熟练掌握平行四边形的判定方法,是解题的关键.22(2023·湖南·统考中考真题)如图所示,在△ABC中,点D、E分别为AB、AC的中点,点H在线段CE上,连接BH,点G、F分别为BH、CH的中点.(1)求证:四边形DEFG为平行四边形(2)DG⊥BH,BD=3,EF=2,求线段BG的长度.【答案】(1)见解析(2)5【分析】(1)由三角形中位线定理得到DE∥BC,DE=12BC,GF∥BC,GF=12BC,得到GF∥DE,GF=DE,即可证明四边形DEFG为平行四边形;(2)由四边形DEFG为平行四边形得到DG=EF=2,由DG⊥BH得到∠DGB=90°,由勾股定理即可得到线段BG的长度.【详解】(1)解:∵点D、E分别为AB、AC的中点,∴DE∥BC,DE=12BC,∵点G、F分别为BH、CH的中点.∴GF∥BC,GF=12BC,∴GF∥DE,GF=DE,∴四边形DEFG为平行四边形;(2)∵四边形DEFG为平行四边形,∴DG=EF=2,∵DG ⊥BH ,∴∠DGB =90°,∵BD =3,∴BG =BD 2-DG 2=32-22=5.【点睛】此题考查了中位线定理、平行四边形的判定和性质、勾股定理等知识,证明四边形DEFG 为平行四边形和利用勾股定理计算是解题的关键.23(2023·浙江杭州·统考中考真题)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 在对角线BD 上,且BE =EF =FD ,连接AE ,EC ,CF ,FA .(1)求证:四边形AECF 是平行四边形.(2)若△ABE 的面积等于2,求△CFO 的面积.【答案】(1)见解析(2)1【分析】(1)根据平行四边形对角线互相平分可得OA =OC ,OB =OD ,结合BE =FD 可得OE =OF ,即可证明四边形AECF 是平行四边形;(2)根据等底等高的三角形面积相等可得S △AEF =S △ABE =2,再根据平行四边形的性质可得S △CFO =12S △CEF =12S △AEF =12×2=1.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵BE =FD ,∴OB -BE =OD -FD ,∴OE =OF ,又∵OA =OC ,∴四边形AECF 是平行四边形.(2)解:∵S △ABE =2,BE =EF ,∴S △AEF =S △ABE =2,∵四边形AECF 是平行四边形,∴S △CFO =12S △CEF =12S △AEF =12×2=1.【点睛】本题考查平行四边形的判定与性质,解题的关键是掌握平行四边形的对角线互相平分.24(2023·山东·统考中考真题)如图,在▱ABCD 中,AE 平分∠BAD ,交BC 于点E ;CF 平分∠BCD ,交AD 于点F .求证:AE =CF .【答案】证明见解析【分析】由平行四边形的性质得∠B =∠D ,AB =CD ,AD ∥BC ,由平行线的性质和角平分线的性质得出∠BAE =∠DCF ,可证△BAE ≌△DCF ,即可得出AE =CF .【详解】证明:∵四边形ABCD 是平行四边形,∴∠B =∠D ,AB =CD ,∠BAD =∠DCB ,AD ∥BC ,∵AE 平分∠BAD ,CF 平分∠BCD ,∴∠BAE =∠DAE =∠BCF =∠DCF ,在△BAE 和△DCF 中,∠B =∠DAB =CD∠BAE =∠DCF∴△BAE ≌△DCF ASA ∴AE =CF .【点睛】本题主要考查平行四边形的性质,平行线的性质及全等三角形的判定与性质,根据题目已知条件熟练运用平行四边形的性质,平行线的性质是解答本题的关键.25(2023·重庆·统考中考真题)学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O .求证:OE =OF .证明:∵四边形ABCD 是平行四边形,∴DC ∥AB .∴∠ECO =①.∵EF 垂直平分AC ,∴②.又∠EOC =_③.∴ΔCOE ≅ΔAOF ASA .∴OE =OF .小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线④.【答案】作图:见解析;∠FAO;AO=CO;∠FOA;被平行四边形一组对边所截,截得的线段被对角线中点平分【分析】根据线段垂直平分线的画法作图,再推理证明即可并得到结论.【详解】解:如图,即为所求;证明:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=∠FAO.∵EF垂直平分AC,∴AO=CO.又∠EOC=∠FOA.∴△COE≅△AOF ASA.∴OE=OF.故答案为:∠FAO;AO=CO;∠FOA;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质,作线段的垂直平分线,全等三角形的判定和性质,熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.26(2023·四川南充·统考中考真题)如图,在▱ABCD中,点E,F在对角线AC上,∠CBE=∠ADF.求证:(1)AE=CF;(2)BE∥DF.【答案】见解析【分析】(1)根据平行四边形的性质推出相应的线段和相应的角度相等,再利用已知条件求证∠ABE=∠CDF,最后证明△ABE≌△CDF ASA即可求出答案.(2)根据三角形全等证明角度相等,再利用邻补角定义推出∠BEF=∠EFD即可证明两直线平行.【详解】(1)证明:∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∠ABC=∠ADC,∴∠BAE=∠FCD.∵∠CBE=∠ADF,∠ABC=∠ADC,∴∠ABE=∠CDF.∴△ABE≌△CDF ASA.∴AE=CF.(2)证明:由(1)得△ABE≌△CDF ASA,∴∠AEB=∠CFD.∵∠AEB+∠BEF=180°,∠CFD+∠EFD=180°,∴∠BEF=∠EFD.∴BE∥DF.【点睛】本题考查了平行四边形的性质,邻补角定义,三角形全等,平行线的判定,解题的关键在于熟练掌握平行四边形的性质.27(2023·四川广安·统考中考真题)如图,在四边形ABCD中,AC与BD交于点O,BE⊥AC,DF ⊥AC,垂足分别为点E、F,且AF=CE,∠BAC=∠DCA.求证:四边形ABCD是平行四边形.【答案】见详解【分析】先证明△AEB≌△CFD(ASA),再证明AB=CD,AB∥CD,再由平行四边形的判定即可得出结论.【详解】证明:∵BE⊥AC,DF⊥AC,∴∠AEB=∠CFD=90°,∵AF=CE,AE=AF-EF,CF=CE-EF,∴AE=CF,又∵∠BAC=∠DCA,∴△AEB≌△CFD(ASA),∴AB=CD,∵∠BAC=∠ACD,∴AB∥CD,四边形ABCD是平行四边形.【点睛】本题考查了平行四边形的判定、全等三角形的判定与性质等知识,熟练掌握平行四边形的判定,证明三角形全等是解题的关键.。
中考数学真题《多边形与平行四边形》专项测试卷(附答案)

中考数学真题《多边形与平行四边形》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(27题)一 、单选题1.(2023·湖南·统考中考真题)如图,在四边形ABCD 中 BC ∥AD 添加下列条件 不能判定四边形ABCD 是平行四边形的是( )A .AB =CD B .AB ∥CDC .∥A =∥CD .BC =AD2.(2023·湖南永州·统考中考真题)下列多边形中 内角和等于360︒的是( )A .B .C .D .3.(2023·湖南·统考中考真题)如图,在四边形ABCD 中 AB CD ∥ 若添加一个条件 使四边形ABCD 为平形四边形,则下列正确的是( )A .AD BC =B .ABD BDC ∠=∠ C .AB AD = D .A C ∠=∠4.(2023·内蒙古通辽·统考中考真题)如图,用平移方法说明平行四边形的面积公式S ah =时 若ABE 平移到DCF 4a = 3h =,则ABE 的平移距离为( )A .3B .4C .5D .125.(2023·四川泸州·统考中考真题)如图,ABCD 的对角线AC BD 相交于点O ADC ∠的平分线与边AB 相交于点P E 是PD 中点 若4=AD 6CD =,则EO 的长为( )A .1B .2C .3D .46.(2023·四川成都·统考中考真题)如图,在ABCD 中 对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A .AC BD =B .OA OC = C .AC BD ⊥ D .ADC BCD ∠=∠7.(2023·安徽·统考中考真题)如图,正五边形ABCDE 内接于O 连接,OC OD ,则BAE COD ∠-∠=( )A .60︒B .54︒C .48︒D .36︒二 填空题8.(2023·云南·统考中考真题)五边形的内角和是________度.9.(2023·新疆·统考中考真题)若正多边形的一个内角等于144︒,则这个正多边形的边数是 ______. 10.(2023·上海·统考中考真题)如果一个正多边形的中心角是20︒ 那么这个正多边形的边数为________. 11.(2023·江苏扬州·统考中考真题)如果一个正多边形的一个外角是60° 那么这个正多边形的边数是_____. 12.(2023·山东临沂·统考中考真题)如图,三角形纸片ABC 中 69AC BC ==, 分别沿与BC AC ,平行的方向 从靠近A 的AB 边的三等分点剪去两个角 得到的平行四边形纸片的周长是____________.13.(2023·湖南·统考中考真题)如图,在平行四边形ABCD 中 3AB = 5BC = B ∠的平分线BE 交AD 于点E ,则DE 的长为_____________.14.(2023·重庆·统考中考真题)如图,在正五边形ABCDE 中 连接AC ,则∥BAC 的度数为_____.15.(2023·湖北黄冈·统考中考真题)若正n 边形的一个外角为72︒,则n =_____________.16.(2023·福建·统考中考真题)如图,在ABCD 中 O 为BD 的中点 EF 过点O 且分别交,AB CD 于点,E F .若10AE =,则CF 的长为___________.17.(2023·山东·统考中考真题)已知一个多边形的内角和为540°,则这个多边形是______边形. 18.(2023·甘肃兰州·统考中考真题)如图,在ABCD 中 BD CD = AE BD ⊥于点E 若70C ∠=︒,则BAE ∠=______︒.19.(2023·吉林长春·统考中考真题)如图,将正五边形纸片ABCDE 折叠 使点B 与点E 重合 折痕为AM 展开后 再将纸片折叠 使边AB 落在线段AM 上 点B 的对应点为点B ' 折痕为AF ,则AFB '∠的大小为__________度.20.(2023·重庆·统考中考真题)若七边形的内角中有一个角为100︒,则其余六个内角之和为________.三 解答题21.(2023·四川自贡·统考中考真题)在平行四边形ABCD 中 点E F 分别在边AD 和BC 上 且DE BF =. 求证:AF CE =.22.(2023·湖南·统考中考真题)如图所示 在ABC 中 点D E 分别为AB AC 、的中点 点H 在线段CE 上 连接BH 点G F 分别为BH CH 、的中点.(1)求证:四边形DEFG 为平行四边形(2)32DG BH BD EF ⊥==,, 求线段BG 的长度.23.(2023·浙江杭州·统考中考真题)如图,平行四边形ABCD 的对角线,AC BD 相交于点O 点,E F 在对角线BD 上 且BE EF FD == 连接,AE EC ,CF FA .(1)求证:四边形AECF 是平行四边形.(2)若ABE 的面积等于2 求CFO △的面积.24.(2023·山东·统考中考真题)如图,在ABCD 中 AE 平分BAD ∠ 交BC 于点E CF 平分BCD ∠ 交AD 于点F .求证:AE CF =.25.(2023·重庆·统考中考真题)学习了平行四边形后 小虹进行了拓展性研究.她发现 如果作平行四边形一条对角线的垂直平分线 那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分. 她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空: 用直尺和圆规 作AC 的垂直平分线交DC 于点E 交AB 于点F 垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形 AC 是对角线 EF 垂直平分AC 垂足为点O .求证:OE OF =.证明:∥四边形ABCD 是平行四边形∥DC AB ∥.∥ECO ∠= ∥ .∥EF 垂直平分AC∥ ∥ .又EOC ∠=___________∥ .∥()COE AOF ASA ∆≅∆.∥OE OF =.小虹再进一步研究发现 过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线 ∥ .26.(2023·四川南充·统考中考真题)如图,在ABCD 中 点E F 在对角线AC 上 CBE ADF ∠=∠.求证:(1)AE CF =(2)BE DF ∥.27.(2023·四川广安·统考中考真题)如图,在四边形ABCD 中 AC 与BD 交于点,O BE AC ⊥ DF AC ⊥ 垂足分别为点E F 、 且,AF CE BAC DCA =∠=∠.求证:四边形ABCD 是平行四边形.参考答案一单选题1.(2023·湖南·统考中考真题)如图,在四边形ABCD中BC∥AD添加下列条件不能判定四边形ABCD 是平行四边形的是()A.AB=CD B.AB∥CD C.∥A=∥C D.BC=AD【答案】A【分析】依据平行四边形的判定依次分析判断即可得出结果.【详解】解:A 当BC∥AD AB=CD时不能判定四边形ABCD是平行四边形故此选项符合题意B 当AB∥CD BC∥AD时依据两组对边分别平行的四边形是平行四边形能判定四边形ABCD是平行四边形故此选项不合题意C 当BC∥AD∥A=∥C时可推出AB∥DC依据两组对边分别平行的四边形是平行四边形能判定四边形ABCD是平行四边形故此选项不合题意D 当BC∥AD BC=AD时依据一组对边平行且相等的四边形是平行四边形能判定四边形ABCD是平行四边形故此选项不合题意故选:A.【点睛】此题考查了平行四边形的判定解决问题的关键要熟记平行四边形的判定方法.2.(2023·湖南永州·统考中考真题)下列多边形中内角和等于360︒的是()A.B.C.D.【答案】Bn-⋅︒分别求解后即可得到答案【分析】根据n边形内角和公式()2180【详解】解:A.三角形内角和是180︒故选项不符合题意B .四边形内角和为()42180360-⨯︒=︒ 故选项符合题意C .五边形内角和为()52180540-⨯︒=︒ 故选项不符合题意D .六边形内角和为()62180720-⨯︒=︒ 故选项不符合题意.故选:B .【点睛】此题考查了n 边形内角和 熟记n 边形内角和公式()2180n -⋅︒是解题的关键.3.(2023·湖南·统考中考真题)如图,在四边形ABCD 中 AB CD ∥ 若添加一个条件 使四边形ABCD 为平形四边形,则下列正确的是( )A .AD BC =B .ABD BDC ∠=∠ C .AB AD = D .A C ∠=∠【答案】D 【分析】根据平行四边形的判定定理逐项分析判断即可求解.【详解】解:A .根据AB CD ∥ AD BC = 不能判断四边形ABCD 为平形四边形 故该选项不正确 不符合题意B . ∥AB CD ∥ ∥ABD BDC ∠=∠ 不能判断四边形ABCD 为平形四边形 故该选项不正确 不符合题意C .根据AB CD ∥ AB AD = 不能判断四边形ABCD 为平形四边形 故该选项不正确 不符合题意D .∥AB CD ∥∥180ABC C ∠+∠=︒∥A C ∠=∠∥180ABC A ∠+∠=︒∥AD BC ∥∥四边形ABCD 为平形四边形故该选项正确 符合题意故选:D .【点睛】本题考查了平行四边形的判定定理 熟练掌握平行四边形的判定定理是解题的关键.4.(2023·内蒙古通辽·统考中考真题)如图,用平移方法说明平行四边形的面积公式S ah =时 若ABE 平移到DCF 4a = 3h =,则ABE 的平移距离为( )A .3B .4C .5D .12【答案】B 【分析】根据平移的方向可得 ABE 平移到DCF ,则点A 与点D 重合 故ABE 的平移距离为AD 的长.【详解】解:用平移方法说明平行四边形的面积公式S ah =时 将ABE 平移到DCF 故平移后点A 与点D 重合,则ABE 的平移距离为4AD a ==故选:B .【点睛】本题考查了平移的性质 熟练掌握平移的性质是解题的关键.5.(2023·四川泸州·统考中考真题)如图,ABCD 的对角线AC BD 相交于点O ADC ∠的平分线与边AB 相交于点P E 是PD 中点 若4=AD 6CD =,则EO 的长为( )A .1B .2C .3D .4【答案】A 【分析】根据平行四边形的性质 平行线的性质 角平分线的定义以及等腰三角形的判定可得4AP AD == 进而可得2BP = 再根据三角形的中位线解答即可.【详解】解:∥四边形ABCD 是平行四边形 6CD =∥AB CD 6AB CD == DO BO =∥CDP APD ∠=∠∥PD 平分ADC ∠∥ADP CDP ∠=∠∥ADP APD ∠=∠∥4AP AD ==∥642BP AB AP =-=-=∥E 是PD 中点∥112OE BP == 故选:A.【点睛】本题考查了平行四边形的性质 平行线的性质 等腰三角形的判定以及三角形的中位线定理等知识 熟练掌握相关图形的判定与性质是解题的关键.6.(2023·四川成都·统考中考真题)如图,在ABCD 中 对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A .AC BD =B .OA OC = C .AC BD ⊥ D .ADC BCD ∠=∠【答案】B【分析】根据平行四边形的性质逐项分析判断即可求解.【详解】∥四边形ABCD 是平行四边形 对角线AC 与BD 相交于点OA. AC BD = 不一定成立 故该选项不正确 不符合题意B. OA OC = 故该选项正确 符合题意C. AC BD ⊥ 不一定成立 故该选项不正确 不符合题意D. ADC BCD ∠=∠ 不一定成立 故该选项不正确 不符合题意故选:B .【点睛】本题考查了平行四边形的性质 熟练掌握平行四边形的性质是解题的关键.7.(2023·安徽·统考中考真题)如图,正五边形ABCDE 内接于O 连接,OC OD ,则BAE COD ∠-∠=()A .60︒B .54︒C .48︒D .36︒【答案】D【分析】先计算正五边形的内角 再计算正五边形的中心角 作差即可.【详解】∥360360180,55BAE COD ︒︒∠=︒-∠=∥3603601803655BAE COD ︒︒∠-∠=︒--=︒ 故选D . 【点睛】本题考查了正五边形的外角 内角 中心角的计算 熟练掌握计算公式是解题的关键.二 填空题8.(2023·云南·统考中考真题)五边形的内角和是________度.【答案】540【分析】根据n 边形内角和为()2180n -⨯︒求解即可.【详解】五边形的内角和是()52180540-⨯︒=︒.故答案为:540.【点睛】本题考查求多边形的内角和.掌握n 边形内角和为()2180n -⨯︒是解题关键.9.(2023·新疆·统考中考真题)若正多边形的一个内角等于144︒,则这个正多边形的边数是 ______.【答案】10【分析】本题需先根据已知条件设出正多边形的边数 再根据正多边形的计算公式得出结果即可.【详解】解:设这个正多边形是正n 边形 根据题意得:()2180144n n -⨯︒÷=︒解得:10n =.故答案为:10.【点睛】本题主要考查了正多边形的内角 在解题时要根据正多边形的内角公式列出式子是本题的关键. 10.(2023·上海·统考中考真题)如果一个正多边形的中心角是20︒ 那么这个正多边形的边数为________.【答案】18【分析】根据正n 边形的中心角的度数为360n ︒÷进行计算即可得到答案.【详解】根据正n 边形的中心角的度数为360n ︒÷则3602018n =÷=故这个正多边形的边数为18故答案为:18.【点睛】本题考查的是正多边形内角和中心角的知识 掌握中心角的计算公式是解题的关键.11.(2023·江苏扬州·统考中考真题)如果一个正多边形的一个外角是60° 那么这个正多边形的边数是_____.【答案】6【详解】解:根据多边形的外角和等于360°和正多边形的每一个外角都相等 得多边形的边数为360°÷60°=6.故答案为:6.12.(2023·山东临沂·统考中考真题)如图,三角形纸片ABC 中 69AC BC ==, 分别沿与BC AC ,平行的方向 从靠近A 的AB 边的三等分点剪去两个角 得到的平行四边形纸片的周长是____________.【答案】14【分析】由平行四边形的性质推出DF BC ∥ DE AC ∥ 得到∽ADF ABC BDE BAC ∽△△ 利用相似三角形的性质求解即可. 【详解】解:如图,由题意得13AD AB = 四边形DECF 是平行四边形∥DF BC ∥ DE AC ∥ ∥∽ADF ABC BDE BAC ∽△△ ∥13DF AD BC AB == 23DE BD AC AB == ∥69AC BC ==,∥3DF = 4DE =∥四边形DECF 平行四边形∥平行四边形DECF 纸片的周长是()23414+=故答案为:14.【点睛】本题考查了平行四边形的性质 相似三角形的判定和性质 解题的关键是灵活运用所学知识解决问题.13.(2023·湖南·统考中考真题)如图,在平行四边形ABCD 中 3AB = 5BC = B ∠的平分线BE 交AD 于点E ,则DE 的长为_____________.【答案】2【分析】根据平行四边形的性质可得AD BC ∥,则AEB CBE ∠=∠ 再由角平分线的定义可得ABE CBE ∠=∠ 从而求得AEB ABE ∠=∠,则AE AB = 从而求得结果.【详解】解:∥四边形ABCD 是平行四边形∥AD BC ∥∥AEB CBE ∠=∠∥B ∠的平分线BE 交AD 于点E∥ABE CBE ∠=∠∥AEB ABE ∠=∠∥AE AB =∥3AB = 5BC =∥===53=2DE AD AE BC AB ---故答案为:2.【点睛】本题考查平行四边形的性质 角平分线的定义 等腰三角形的判定 掌握平行四边形的性质是解题的关键.14.(2023·重庆·统考中考真题)如图,在正五边形ABCDE 中 连接AC ,则∥BAC 的度数为_____.【答案】36°【分析】首先利用多边形的内角和公式求得正五边形的内角和 再求得每个内角的度数 利用等腰三角形的性质可得∥BAC 的度数.【详解】正五边形内角和:(5﹣2)×180°=3×180°=540° ∥5401085B ︒︒∠==∥180B 1801083622BAC ︒︒︒︒-∠-∠=== . 故答案为36°.【点睛】本题主要考查了正多边形的内角和 熟记多边形的内角和公式:(n -2)×180°是解答此题的关键. 15.(2023·湖北黄冈·统考中考真题)若正n 边形的一个外角为72︒,则n =_____________.【答案】5【分析】正多边形的外角和为360︒ 每一个外角都相等 由此计算即可.【详解】解:由题意知 360572n == 故答案为:5.【点睛】本题考查正多边形的外角问题 解题的关键是掌握正n 边形的外角和为360︒ 每一个外角的度数均为360n ︒. 16.(2023·福建·统考中考真题)如图,在ABCD 中 O 为BD 的中点 EF 过点O 且分别交,AB CD 于点,E F .若10AE =,则CF 的长为___________.【答案】10【分析】由平行四边形的性质可得,DC AB DC AB =∥即,OFD OEB ODF EBO ∠=∠∠=∠ 再结合OD OB=可得()AAS DOF BOE ≌△△可得DF EB = 最进一步说明10FC AE ==即可解答. 【详解】解:∥ABCD 中∥,DC AB DC AB =∥∥,OFD OEB ODF EBO ∠=∠∠=∠∥OD OB =∥()AAS DOF BOE ≌△△ ∥DF EB =∥DC DF AB BE -=-,即10FC AE ==.故答案为:10.【点睛】本题主要考查了平行四边形的性质 全等三角形的判定与性质等知识点 证明三角形全等是解答本题的关键.17.(2023·山东·统考中考真题)已知一个多边形的内角和为540°,则这个多边形是______边形.【答案】5【详解】设这个多边形是n 边形 由题意得(n -2) ×180°=540° 解之得 n =5.18.(2023·甘肃兰州·统考中考真题)如图,在ABCD 中 BD CD = AE BD ⊥于点E 若70C ∠=︒,则BAE ∠=______︒.【答案】50【分析】证明70DBC C ∠=∠=︒ 18027040BDC ∠=︒-⨯︒=︒ 由AB CD ∥ 可得40ABE BDC ∠=∠=︒ 结合AE BD ⊥ 可得904050BAE ∠=︒-︒=︒.【详解】解:∥BD CD = 70C ∠=︒∥70DBC C ∠=∠=︒ 18027040BDC ∠=︒-⨯︒=︒∥ABCD∥AB CD ∥∥40ABE BDC ∠=∠=︒∥AE BD ⊥∥904050BAE ∠=︒-︒=︒故答案为:50【点睛】本题考查的是等腰三角形的性质 平行四边形的性质 三角形的内角和定理的应用 熟记基本几何图形的性质是解本题的关键.19.(2023·吉林长春·统考中考真题)如图,将正五边形纸片ABCDE 折叠 使点B 与点E 重合 折痕为AM 展开后 再将纸片折叠 使边AB 落在线段AM 上 点B 的对应点为点B ' 折痕为AF ,则AFB '∠的大小为__________度.【答案】45【分析】根据题意求得正五边形的每一个内角为()5218101508-⨯︒=︒ 根据折叠的性质求得,,BAM FAB '∠∠在AFB '中 根据三角形内角和定理即可求解.【详解】解:∥正五边形的每一个内角为()5218101508-⨯︒=︒ 将正五边形纸片ABCDE 折叠 使点B 与点E 重合 折痕为AM 则111085422BAM BAE ∠=∠=⨯︒=︒ ∥将纸片折叠 使边AB 落在线段AM 上 点B 的对应点为点B ' 折痕为AF ∥11542722FAB BAM '∠=∠=⨯︒=︒ 108AB F B '∠=∠=︒ 在AFB '中 1801801082745AFB B FAB ''∠=︒-∠-∠=︒-︒-︒=︒故答案为:45.【点睛】本题考查了折叠的性质 正多边形的内角和的应用 熟练掌握折叠的性质是解题的关键. 20.(2023·重庆·统考中考真题)若七边形的内角中有一个角为100︒,则其余六个内角之和为________.【答案】800︒/800度【分析】根据多边形的内角和公式()1802n ︒-即可得.【详解】解:∥七边形的内角中有一个角为100︒∥其余六个内角之和为()180********︒⨯--︒=︒故答案为:800︒.【点睛】本题考查了多边形的内角和 熟记多边形的内角和公式是解题关键.三 解答题21.(2023·四川自贡·统考中考真题)在平行四边形ABCD 中 点E F 分别在边AD 和BC 上 且DE BF =.求证:AF CE =.【答案】见解析【分析】平行四边形的性质得到,AD BC AD BC = 进而推出AE CF = 得到四边形AECF 是平行四边形 即可得到AF EC =. 【详解】解:四边形ABCD 是平行四边形∴,AD BC AD BC =BE DF =AE CF ∴=∥,AE CF AE CF =∥∴四边形AECF 是平行四边形AF CE ∴=.【点睛】本题考查平行四边形的判定和性质.熟练掌握平行四边形的判定方法 是解题的关键. 22.(2023·湖南·统考中考真题)如图所示 在ABC 中 点D E 分别为AB AC 、的中点 点H 在线段CE 上 连接BH 点G F 分别为BH CH 、的中点.(1)求证:四边形DEFG 为平行四边形(2)32DG BH BD EF ⊥==,, 求线段BG 的长度.【答案】(1)见解析 5【分析】(1)由三角形中位线定理得到1,2DE BC DE BC =∥ 1,2GF BC GF BC =∥ 得到,GF DE GF DE =∥ 即可证明四边形DEFG 为平行四边形(2)由四边形DEFG 为平行四边形得到2DG EF == 由DG BH ⊥得到90DGB ∠=︒ 由勾股定理即可得到线段BG 的长度.【详解】(1)解:∥点D E 分别为AB AC 、的中点 ∥1,2DE BC DE BC =∥ ∥点G F 分别为BH CH 的中点. ∥1,2GF BC GF BC =∥ ∥,GF DE GF DE =∥∥四边形DEFG 为平行四边形(2)∥四边形DEFG 为平行四边形∥2DG EF ==∥DG BH ⊥,∥90DGB ∠=︒∥3BD = ∥2222325BG BD DG =--【点睛】此题考查了中位线定理 平行四边形的判定和性质 勾股定理等知识 证明四边形DEFG 为平行四边形和利用勾股定理计算是解题的关键.23.(2023·浙江杭州·统考中考真题)如图,平行四边形ABCD 的对角线,AC BD 相交于点O 点,E F 在对角线BD 上 且BE EF FD == 连接,AE EC ,CF FA .(1)求证:四边形AECF 是平行四边形.(2)若ABE 的面积等于2 求CFO △的面积.【答案】(1)见解析(2)1【分析】(1)根据平行四边形对角线互相平分可得OA OC = OB OD = 结合BE FD =可得OE OF = 即可证明四边形AECF 是平行四边形(2)根据等底等高的三角形面积相等可得2AEF ABE S S == 再根据平行四边形的性质可得11121222CFO CEF AEF S S S ===⨯=. 【详解】(1)证明:四边形ABCD 是平行四边形∴OA OC = OB OD =BE FD =∴OB BE OD FD -=-∴OE OF =又OA OC =∴四边形AECF 是平行四边形.(2)解:2ABE S = BE EF = ∴2AEF ABE S S ==四边形AECF 是平行四边形∴11121222CFO CEF AEF S S S ===⨯=. 【点睛】本题考查平行四边形的判定与性质 解题的关键是掌握平行四边形的对角线互相平分. 24.(2023·山东·统考中考真题)如图,在ABCD 中 AE 平分BAD ∠ 交BC 于点E CF 平分BCD ∠ 交AD 于点F .求证:AE CF =.【答案】证明见解析【分析】由平行四边形的性质得B D ∠=∠ AB CD = AD BC ∥ 由平行线的性质和角平分线的性质得出BAE DCF ∠=∠ 可证BAE DCF ≌△△ 即可得出AE CF =.【详解】证明:∥四边形ABCD 是平行四边形∥B D ∠=∠ AB CD = BAD DCB ∠=∠ AD BC ∥∥AE 平分BAD ∠ CF 平分BCD ∠∥BAE DAE BCF DCF ∠=∠=∠=∠在BAE 和DCF 中B D AB CDBAE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∥()ASA BAE DCF ≌∥AE CF =.【点睛】本题主要考查平行四边形的性质 平行线的性质及全等三角形的判定与性质 根据题目已知条件熟练运用平行四边形的性质 平行线的性质是解答本题的关键.25.(2023·重庆·统考中考真题)学习了平行四边形后 小虹进行了拓展性研究.她发现 如果作平行四边形一条对角线的垂直平分线 那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分. 她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空: 用直尺和圆规 作AC 的垂直平分线交DC 于点E 交AB 于点F 垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形 AC 是对角线 EF 垂直平分AC 垂足为点O .求证:OE OF =.证明:∥四边形ABCD 是平行四边形∥DC AB ∥.∥ECO ∠= ∥ .∥EF 垂直平分AC∥ ∥ .又EOC ∠=___________∥ .∥()COE AOF ASA ∆≅∆.∥OE OF =.小虹再进一步研究发现 过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线 ∥ .【答案】作图:见解析 FAO ∠ AO CO = FOA ∠ 被平行四边形一组对边所截 截得的线段被对角线中点平分【分析】根据线段垂直平分线的画法作图 再推理证明即可并得到结论.【详解】解:如图,即为所求证明:∥四边形ABCD 是平行四边形∥DC AB ∥.∥ECO ∠= FAO ∠.∥EF 垂直平分AC∥AO CO =.又EOC ∠=FOA ∠.∥()COE AOF ASA ≅.∥OE OF =.故答案为:FAO ∠ AO CO = FOA ∠由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截 截得的线段被对角线中点平分故答案为:被平行四边形一组对边所截 截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质 作线段的垂直平分线 全等三角形的判定和性质 熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.26.(2023·四川南充·统考中考真题)如图,在ABCD 中 点E F 在对角线AC 上 CBE ADF ∠=∠.求证:(1)AE CF =(2)BE DF ∥.【答案】见解析【分析】(1)根据平行四边形的性质推出相应的线段和相应的角度相等 再利用已知条件求证ABE CDF ∠=∠ 最后证明()ASA ABE CDF ≌△△即可求出答案.(2)根据三角形全等证明角度相等 再利用邻补角定义推出BEF EFD ∠=∠即可证明两直线平行.【详解】(1)证明:四边形ABCD 为平行四边形AB CD ∴∥ AB CD = ABC ADC ∠=∠BAE FCD .CBE ADF ∠=∠ ABC ADC ∠=∠ABE CDF ∴∠=∠.()ASA ABE CDF ∴≌.AE CF ∴=.(2)证明:由(1)得()ASA ABE CDF ≌△△ AEB CFD ∴∠=∠.180AEB BEF ∠+∠=︒ 180CFD EFD ∠+∠=︒BEF EFD ∴∠=∠.BE DF ∴∥.【点睛】本题考查了平行四边形的性质 邻补角定义 三角形全等 平行线的判定 解题的关键在于熟练掌握平行四边形的性质.27.(2023·四川广安·统考中考真题)如图,在四边形ABCD 中 AC 与BD 交于点,O BE AC ⊥ DF AC ⊥ 垂足分别为点E F 、 且,AF CE BAC DCA =∠=∠.求证:四边形ABCD 是平行四边形.【答案】见详解【分析】先证明()≌ASA AEB CFD 再证明 ,AB CD AB CD =∥ 再由平行四边形的判定即可得出结论.【详解】证明:BE AC ⊥ DF AC ⊥90AEB CFD ∴∠=∠=︒,,,AF CE AE AF EF CF CE EF ==-=-,AE CF ∴=又BAC DCA ∠=∠(ASA)∴≌AEB CFD∴=AB CD∠=∠∥BAC ACD∴∥AB CD四边形ABCD是平行四边形.【点睛】本题考查了平行四边形的判定全等三角形的判定与性质等知识熟练掌握平行四边形的判定证明三角形全等是解题的关键.。
最新中考数学总复习:多边形与平行四边形-- 巩固练习(提高)(含答案解析)

中考总复习:多边形与平行四边形-巩固练习(提高)【巩固练习】一、选择题1.如图,四边形ABED和四边形AFCD都是平行四边形,AF和DE相交成直角,AG=3cm,DG=4cm,□ABED 的面积是,则四边形ABCD的周长为()A.49cm B.43cm C.41cm D.46cm2.如图,在△ABC中,已知AB=AC=5,BC=4,点E、F是中线AD上的两点,则图中阴影部分的面积是:( ) A. ; B.2; C.3; D.4.3. 已知点A(2,0)、点B(,0)、点C(0,1),以A、B、C三点为顶点画平行四边形,则第四个顶点不可能在( )A.第一象限B.第二象限 C.第三象限 D.第四象限4.(2011·安徽)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P在四边形ABCD的边上,若P到BD的距离为32,则点P的个数为( )A.1 B.2 C.3 D.45.如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB 相交于点G,若∠BAC=30°,下列结论:①EF⊥AC;②四边形ADFE为平行四边形;③AD=4AG;④△DBF≌△EFA.其中正确结论的是().A.①②③④B.①③④C.②③④ D.①②④6.(2014•杭州模拟)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是10+2;④四边形ACEB的面积是16.则以上结论正确的是()A.①②③B.①②④C.①③④D.②④二、填空题7. 如图,口ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为________.8.(2015春•淅川县期末)若工人师傅用正三角形、正十边形与正n边形这三种正多边形能够铺成平整的地面,则n的值为.9. 如图,平行四边形ABCD中,∠ABC=60°,AB=4,AD=8,点E、F分别是边BC、AD边的中点,点M是AE与BF的交点,点N是CF与DE的交点,则四边形ENFM的周长是__________.10.(2011•梅州)凸n边形的对角线的条数记作a n(n≥4),例如:a4=2,那么:①a5=_____;②a6-a5=____ ;③a n+1-a n=____.(n≥4,用n含的代数式表示)11.①如图(1),四边形ABCD中,AB∥E1F1∥CD,AD∥BC,则图中共有________个平行四边形;②如图(2),四边形ABCD中,AB∥E1F1∥E2F2∥CD,AD∥BC,则图中共有________个平行四边形;③如图(3),四边形ABCD中,AB∥E1F1∥E2F2∥E3F3∥CD,AD∥BC,则图中共有________个平行四边形;一般地,若四边形ABCD中,E1,E2,E3,…,都是AD上的点,F1,F2,F3,…,都是BC上的点,且AB∥E1F1∥E2F2∥E3F3∥…∥∥CD,AD∥BC,则图中共有________平行四边形.12.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为___________.三、解答题13.问题再现:现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题、今天我们把正多边形的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如图中,用正方形镶嵌平面,可以发现在一个顶点O周围围绕着4个正方形的内角.试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着3个正六边形的内角.问题提出:如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案?问题解决:猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决、从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x个正方形和y个正八边形的内角可以拼成一个周角.根据题意,可得方程:90x+(82)1808-⨯•y=360,整理得:2x+3y=8,我们可以找到惟一一组适合方程的正整数解为12 xy=⎧⎨=⎩.结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证2:_______;结论2:_______.上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广:请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想3:_______;验证3:_______;结论3:_______.14. 如图,在四边形ABCD中,∠A=90°,∠ABC与∠ADC互补.(1)求∠C的度数;(2)若BC>CD且AB=AD,请在图上画出一条线段,把四边形ABCD分成两部分,使得这两部分能够重新拼成一个正方形,并说明理由;(3)若CD=6,BC=8,S四边形ABCD=49,求AB的值.15. (2015春•苏州校级期末)如图,正方形ABCD中,点P是直线BC上一点,连接PA,将线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF、CF.(1)如图①,当点P在CB延长线上时,求证:四边形PCFE是平行四边形.(2)如图②,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由.16.(2012•广州)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k ,使得∠EFD=k ∠AEF ?若存在,求出k 的值;若不存在,请说明理由. ②连接CF ,当CE 2-CF 2取最大值时,求tan ∠DCF 的值.【答案与解析】 一.选择题 1.【答案】D. 2.【答案】A.3.【答案】C . 4.【答案】B.【解析】如图所示,作AE ⊥BD 于E ,CF ⊥BD 于F ,由题意得AE =12BD =22AB =2>32,∴在边AB 和AD上各存在一个点P 到BD 的距离为32.∵AB =AD ,∠BAD =90°,∴∠ADB =45°.又∠ADC =90°,∴∠CDF =45°.∴CF =22CD =22×2=1<32,∴在边BC 和CD 上不存在符合题意的点P .综上所述.5.【答案】A.【解析】先证 ΔADF≌ΔABC,可得DF=AC=AE.∵DF ∥AE 且DF=AE ∴四边形ADFE 为平行四边形,即①②③④是正确的. 6.【答案】D .【解析】①∵∠ACB=90°,DE ⊥BC , ∴∠ACD=∠CDE=90°, ∴AC ∥DE , ∵CE ∥AD ,∴四边形ACED是平行四边形,故①正确;②∵D是BC的中点,DE⊥BC,∴EC=EB,∴△BCE是等腰三角形,故②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=2,∵四边形ACED是平行四边形,∴CE=AD=4,∵CE=EB,∴EB=4,DB=2,∴CB=4,∴AB==2,∴四边形ACEB的周长是10+2故③正确;④四边形ACEB的面积:×2×4+×4×2=8,故④错误,故选:A.二.填空题7.【答案】7.【解析】由题意知x+y+z=8,a+(y+a)+(z+x)=22,所以a=7.8.【答案】十五.【解析】正三边形和正十边形内角分别为60°、144°,正n边形的内角应为360°﹣60°﹣144°=156°,所以正n边形为正十五边形.故答案为:十五.9.【答案】4+4.10.【答案】5;4;n-1.【解析】①五边形有5条对角线;②六边形有9条对角线,9-5=4;③n边形有(3)2n n-条对角线,n+1边形有(1)(2)2n n+-条对角线,a n+1-a n=(1)(2)2n n+--(3)2n n-=n-1.11.【答案】①3 ;②6 ;③10,.12.【答案】n(n+1).【解析】∵①正三边形“扩展”而来的多边形的边数是12=3×4,②正四边形“扩展”而来的多边形的边数是20=4×5,③正五边形“扩展”而来的多边形的边数为30=5×6,④正六边形“扩展”而来的多边形的边数为42=6×7,∴正n边形“扩展”而来的多边形的边数为n(n+1).三.综合题13.【解析】用正六边形来镶嵌平面,在一个顶点周围应该围绕着3个正六边形的内角.验证2:在镶嵌平面时,设围绕某一点有a个正三角形和b个正六边形的内角可以拼成一个周角,根据题意,可得方程:60a+120b=360.整理得:a+2b=6,可以找到两组适合方程的正整数解为22ab=⎧⎨=⎩和41ab=⎧⎨=⎩结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形和正六边形两种正多边形组合可以进行平面镶嵌.猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌?验证3:在镶嵌平面时,设围绕某一点有m个正三角形、n个正方形和c个正六边形的内角可以拼成一个周角.根据题意,可得方程:60m+90n+120c=360,整理得:2m+3n+4c=12,可以找到惟一一组适合方程的正整数解为121 mnc=⎧⎪=⎨⎪=⎩结论3:镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形、正方形和正六边形三种正多边形组合可以进行平面镶嵌.(说明:本题答案不惟一,符合要求即可.)14.【解析】(1)∵∠ABC与∠ADC互补,∴∠ABC+∠ADC=180°.∵∠A=90°,∴∠C=360°-90°-180°=90°;(2)过点A作AE⊥BC,垂足为E.则线段AE把四边形ABCD分成△ABE和四边形AECD两部分,把△ABE以A点为旋转中心,逆时针旋转90°,则被分成的两部分重新拼成一个正方形.过点A作AF∥BC交CD的延长线于F,∵∠ABC+∠ADC=180°,又∠ADF+∠ADC=180°, ∴∠ABC=∠ADF .∵AD=AB ,∠AEC=∠AFD=90°,∴△ABE ≌△ADF . ∴AE=AF .∴四边形AECF 是正方形; (3)解法1:连接BD ,∵∠C=90°,CD=6,BC=8,Rt △BCD 中,BD=2286+=10 又∵S 四边形ABCD =49,∴S △ABD =49-24=25. 过点A 作AM ⊥BD 垂足为M , ∴S △ABD =12×BD ×AM=25.∴AM=5. 又∵∠BAD=90°,∴△ABM ∽△DAM .∴AM BM =MDAM.设BM=x ,则MD=10-x , ∴5x=105x -.解得x=5.∴AB=52.解法2:连接BD ,∠A=90°.设AB=x ,AD=y ,则x 2+y 2=102,① ∵12xy=25,∴xy=50.② 由①,②得:(x-y )2=0. ∴x=y .2x 2=100.∴x=52.15.【解析】(1)证明:∵四边形ABCD 是正方形, ∴AB=BC ,∠ABC=∠PBA=90° 在△PBA 和△FBC 中,,∴△PBA ≌△FBC (SAS ),∴PA=FC ,∠PAB=∠FCB .∵PA=PE,∴PE=FC.∵∠PAB+∠APB=90°,∴∠FCB+∠APB=90°.∵∠EPA=90°,∴∠APB+∠EPA+∠FCP=180°,即∠EPC+∠PCF=180°,∴EP∥FC,∴四边形EPCF是平行四边形;(2)解:结论:四边形EPCF是平行四边形,理由是:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠CBF=90°在△PBA和△FBC中,,∴△PBA≌△FBC(SAS),∴PA=FC,∠PAB=∠FCB.∵PA=PE,∴PE=FC.∵∠FCB+∠BFC=90°,∠EPB+∠APB=90°,∴∠BPE=∠FCB,∴EP∥FC,∴四边形EPCF是平行四边形.16. 【解析】(1)∵α=60°,BC=10,∴sinα=CEBC,即sin60°=10CE=32,解得CE=53;(2)①存在k=3,使得∠EFD=k∠AEF.理由如下:连接CF并延长交BA的延长线于点G,∵F为AD的中点,∴AF=FD,在平行四边形ABCD中,AB∥CD,∴∠G=∠DCF ,在△AFG 和△CFD 中,G DCF AFG DFC AF FD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFG ≌△DFC (AAS ), ∴CF=GF ,AG=CD , ∵CE ⊥AB ,∴EF=GF (直角三角形斜边上的中线等于斜边的一半), ∴∠AEF=∠G ,∵AB=5,BC=10,点F 是AD 的中点, ∴AG=5,AF=12AD=12BC=5, ∴AG=AF ,∴∠AFG=∠G ,在△EFG 中,∠EFC=∠AEF+∠G=2∠AEF , 又∵∠CFD=∠AFG (对顶角相等), ∴∠CFD=∠AEF ,∴∠EFD=∠EFC+∠CFD=2∠AEF+∠AEF=3∠AEF , 因此,存在正整数k=3,使得∠EFD=3∠AEF ; ②设BE=x ,∵AG=CD=AB=5, ∴EG=AE+AG=5-x+5=10-x ,在Rt △BCE 中,CE 2=BC 2-BE 2=100-x 2,在Rt △CEG 中,CG 2=EG 2+CE 2=(10-x )2+100-x 2=200-20x , ∵CF=GF (①中已证),∴CF 2=(12CG )2=14CG 2=14(200-20x )=50-5x ,∴CE 2-CF 2=100-x 2-50+5x=-x 2+5x+50=-(x-52)2+50+254,∴当x=52,即点E 是AB 的中点时,CE 2-CF 2取最大值,此时,EG=10-x=10-52=152,CE=2100x -=251004-=5152, 所以,tan ∠DCF=tan ∠G=CEEG =5152152=153.。