新课改版高考数学一轮复习第三章导数及其应用3.2.2破解导数问题常用到的4种方法讲义含解析
高考数学一轮复习第三章第二节第2课时必备方法__破解导数问题常用到的4种方法讲义含解析

第2课时 必备方法——破解导数问题常用到的4种方法以抽象函数为背景、题设条件或所求结论中具有“f (x )±g (x ),f (x )g (x ),f xg x”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是近几年高考试卷中的一位“常客”,常以压轴题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.类型一 构造y =f (x )±g (x )型可导函数[例1] 设奇函数f (x )是R 上的可导函数,当x >0时有f ′(x )+cos x <0,则当x ≤0时,有( )A .f (x )+sin x ≥f (0)B .f (x )+sin x ≤f (0)C .f (x )-sin x ≥f (0)D .f (x )-sin x ≤f (0)[解析] 观察条件中“f ′(x )+cos x ”与选项中的式子“f (x )+sin x ”,发现二者之间是导函数与原函数之间的关系,于是不妨令F (x )=f (x )+sin x ,因为当x >0时,f ′(x )+cos x <0,即F ′(x )<0,所以F (x )在(0,+∞)上单调递减,又F (-x )=f (-x )+sin(-x )=-[f (x )+sin x ]=-F (x ),所以F (x )是R 上的奇函数,且F (x )在(-∞,0)上单调递减, F (0)=0,并且当x ≤0时有F (x )≥F (0),即f (x )+sin x ≥f (0)+sin 0=f (0),故选A.[答案] A [题后悟通]当题设条件中存在或通过变形出现特征式“f ′(x )±g ′(x )”时,不妨联想、逆用“f ′(x )±g ′(x )=[f (x )±g (x )]′”.构造可导函数y =f (x )±g (x ),然后利用该函数的性质巧妙地解决问题.类型二 构造f (x )·g (x )型可导函数[例2] 设函数f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (3)=0,则不等式f (x )g (x )>0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)[解析] 利用构造条件中“f ′(x )g (x )+f (x )g ′(x )”与待解不等式中“f (x )g (x )”两个代数式之间的关系,可构造函数F (x )=f (x )g (x ),由题意可知,当x <0时,F ′(x )>0,所以F (x )在(-∞,0)上单调递增.又因为f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以F (x )是定义在R 上的奇函数,从而F (x )在(0,+∞)上单调递增,而F (3)=f (3)g (3)=0,所以F (-3)=-F (3),结合图象可知不等式f (x )g (x )>0⇔F (x )>0的解集为(-3,0)∪(3,+∞),故选A.[答案] A [题后悟通]当题设条件中存在或通过变形出现特征式“f ′(x )g (x )+f (x )g ′(x )”时,可联想、逆用“f ′(x )g (x )+f (x )g ′(x )=[f (x )g (x )]′”,构造可导函数y =f (x )g (x ),然后利用该函数的性质巧妙地解决问题.类型三 构造f xg x型可导函数[例3] 已知定义在R 上函数f (x ),g (x )满足:对任意x ∈R ,都有f (x )>0,g (x )>0,且f ′(x )g (x )-f (x )g ′(x )<0.若a ,b ∈R +且a ≠b ,则有( )A .f ⎝ ⎛⎭⎪⎫a +b 2g ⎝ ⎛⎭⎪⎫a +b 2>f (ab )g (ab )B .f ⎝ ⎛⎭⎪⎫a +b 2g ⎝ ⎛⎭⎪⎫a +b 2<f (ab )g (ab )C .f ⎝ ⎛⎭⎪⎫a +b 2g (ab )>g ⎝ ⎛⎭⎪⎫a +b 2f (ab )D .f ⎝⎛⎭⎪⎫a +b 2g (ab )<g ⎝ ⎛⎭⎪⎫a +b 2f (ab )[解析] 根据条件中“f ′(x )g (x )-f (x )g ′(x )”的特征,可以构造函数F (x )=f xg x,因为f ′(x )g (x )-f (x )g ′(x )<0,所以F ′(x )=fx g x -f x gx[g x2<0,F (x )在R 上单调递减.又因为a +b 2>ab ,所以F ⎝ ⎛⎭⎪⎫a +b 2<F (ab ),即f ⎝⎛⎭⎪⎫a +b 2g ⎝ ⎛⎭⎪⎫a +b 2<f abgab,所以f ⎝⎛⎭⎪⎫a +b 2g (ab )<g ⎝ ⎛⎭⎪⎫a +b 2·f (ab ),故选D.[答案] D [题后悟通]当题设条件中存在或通过变形出现特征式“f ′(x )g (x )-f (x )g ′(x )”时,可联想、逆用“fx g x -f x gx[g x2=⎣⎢⎡⎦⎥⎤f x g x ′”,构造可导函数y =f x g x ,然后利用该函数的性质巧妙地解决问题.[方法技巧]构造函数解决导数问题常用模型(1)条件:f ′(x )>a (a ≠0):构造函数:h (x )=f (x )-ax . (2)条件:f ′(x )±g ′(x )>0:构造函数:h (x )=f (x )±g (x ).(3)条件:f ′(x )+f (x )>0:构造函数:h (x )=e xf (x ). (4)条件:f ′(x )-f (x )>0:构造函数:h (x )=f xex.(5)条件:xf ′(x )+f (x )>0:构造函数:h (x )=xf (x ). (6)条件:xf ′(x )-f (x )>0:构造函数:h (x )=f xx. [针对训练]1.已知定义域为R 的函数f (x )的图象经过点(1,1),且对于任意x ∈R ,都有f ′(x )+2>0,则不等式f (log 2|3x-1|)<3-log2|3x-1|的解集为( ) A .(-∞,0)∪(0,1) B .(0,+∞) C .(-1,0)∪(0,3)D .(-∞,1)解析:选A 根据条件中“f ′(x )+2”的特征,可以构造F (x )=f (x )+2x ,则F ′(x )=f ′(x )+2>0,故F (x )在定义域内单调递增,由f (1)=1,得F (1)=f (1)+2=3,因为由f (log 2|3x -1|)<3-log 2|3x -1|可化为f (log 2|3x -1|)+2log 2|3x -1|<3,令t =log 2|3x -1|,则f (t )+2t <3.即F (t )<F (1),所以t <1.即log 2|3x -1|<1,从而0<|3x-1|<2,解得x <1且x ≠0,故选A.2.设定义在R 上的函数f (x )满足f ′(x )+f (x )=3x 2e -x,且f (0)=0,则下列结论正确的是( )A .f (x )在R 上单调递减B .f (x )在R 上单调递增C .f (x )在R 上有最大值D .f (x )在R 上有最小值解析:选C 根据条件中“f ′(x )+f (x )”的特征,可以构造F (x )=e xf (x ),则有F ′(x )=e x[f ′(x )+f (x )]=e x·3x 2e -x=3x 2,故F (x )=x 3+c (c 为常数),所以f (x )=x 3+cex,又f (0)=0,所以c =0,f (x )=x 3e x .因为f ′(x )=3x 2-x 3e x,易知f (x )在区间(-∞,3]上单调递增,在[3, +∞)上单调递减,f (x )max =f (3)=27e3,无最小值,故选C. 3.已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x ),则不等式x 2f ⎝ ⎛⎭⎪⎫1x -f (x )<0的解集为________.解析:因为f (x )>xf ′(x ),所以xf ′(x )-f (x )<0,根据“xf ′(x )-f (x )”的特征,可以构造函数F (x )=f x x ,则F ′(x )=xfx -f xx 2<0,故F (x )在(0,+∞)上单调递减.又因为x >0,所以x 2f ⎝ ⎛⎭⎪⎫1x -f (x )<0可化为xf ⎝ ⎛⎭⎪⎫1x -f x x <0,即f ⎝ ⎛⎭⎪⎫1x 1x-f x x <0,即f ⎝ ⎛⎭⎪⎫1x 1x<f x x ,即F ⎝ ⎛⎭⎪⎫1x <F (x ),所以⎩⎪⎨⎪⎧x >0,1x >x ,解得0<x <1,故不等式x 2f ⎝ ⎛⎭⎪⎫1x-f (x )<0的解集为(0,1).答案:(0,1)结果,因而要对参数进行分类讨论.常见的有含参函数的单调性、含参函数的极值、最值等问题,解决时要分类讨论.分类讨论的原则是不重复、不遗漏,讨论的方法是逐类进行,还必须要注意综合讨论的结果,使解题步骤完整.[例1] 已知函数f (x )=x 3+ax 2+x +1. (1)讨论函数f (x )的单调区间;(2)设函数f (x )在区间⎝ ⎛⎭⎪⎫-23,-13内是减函数,求a 的取值范围.[解] (1)因为f ′(x )=3x 2+2ax +1.①当Δ≤0⇒-3≤a ≤3,f ′(x )≥0,且在R 的任给一子区间上,f ′(x )不恒为0,所以f (x )在R 上递增;②当Δ>0⇒a <-3或a > 3.由f ′(x )=0⇒x 1=-a -a 2-33,x 2=-a +a 2-33.所以f (x 121,x 2). (2)因为f (x )在⎝ ⎛⎭⎪⎫-23,-13内是减函数,所以⎝ ⎛⎭⎪⎫-23,-13⊆(x 1,x 2).所以f ′(x )=3x 2+2ax +1≤0在⎝ ⎛⎭⎪⎫-23,-13上恒成立.所以2a ≥-3x -1x 在⎝ ⎛⎭⎪⎫-23,-13上恒成立,所以a ≥2.[题后悟通]本题求导后,转化为一个二次型函数的含参问题,首先考虑二次三项式是否存在零点,即对判别式Δ进行Δ≤0和Δ>0两类讨论,可归纳为“有无实根判别式,两种情形需知晓”.[例2] 函数f (x )=2ax -a 2+1x 2+1,当a ≠0时,求f (x )的单调区间与极值.[解] 因为f ′(x )=-2ax 2+a 2-x +2ax 2+2=-2a x 2+2·(x -a )⎝⎛⎭⎪⎫x +1a .(1)a >0时f (x )(2)当a <0时,f (x )综上,当a >0时,f (x )的递增区间是(-a -1,a ),递减区间是(-∞,-a -1),(a ,+∞),f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1.当a <0时,f (x )的递增区间是(-∞,a ), (-a -1,+∞),递减区间是(a ,-a -1),f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1.[题后悟通]求导后,若导函数中的二次三项式能因式分解需考虑首项系数是否含有参数.若首项系数有参数,就按首项系数为零、为正、为负进行讨论.可归纳为“首项系数含参数,先证系数零正负”.[例3] 已知函数f (x )=ln(x +1)-axx +a(a >1),讨论f (x )的单调性.[解] f ′(x )=x x -a 2-2ax +x +a2.①当a 2-2a <0时,即1<a <2,又a 2-2a =(a -1)2-1>-1.②当a =2时,f ′(x )=x +x +2≥0,f (x )在(-1,+∞)上递增.③当a 2-2a >0时,即a >2时,2-2a,0);当a >2时,f (x )的递增区间是(-1,0),(a 2-2a ,+∞),递减区间是(0,a 2-2a );当a =2时,f (x )在(-1,+∞)上递增.[题后悟通]求导后且导函数可分解且首项系数无参数可求出f ′(x )的根后比较两根大小,注意两根是否在定义域内,可归纳为“首项系数无参数,根的大小定胜负.定义域,紧跟踪,两根是否在其中”.[方法技巧]利用分类讨论解决含参函数的单调性、极值、最值问题的思维流程[口诀记忆] 导数取零把根找,先定有无后大小; 有无实根判别式,两种情形需知晓. 因式分解见两根,逻辑分类有区分; 首项系数含参数,先论系数零正负. 首项系数无参数,根的大小定胜负; 定义域,紧跟踪,两根是否在其中.[针对训练]4.已知函数f (x )=e x(e x-a )-a 2x ,讨论f (x )的单调性. 解:函数f (x )的定义域为(-∞,+∞),f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x在(-∞,+∞)上单调递增. ②若a >0,则由f ′(x )=0,得x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增. ③若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0. 故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减,在⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增.[典例(x )>0,求b 的最大值.[解题观摩] 因为g (x )=e 2x-e-2x-4x -4b e x +4b e -x+8bx ,所以g ′(x )=2(e x+e -x-2)(e x+e -x-2b +2). 因为e x +e -x ≥2e x ·e -x=2.①当b ≤2时,g ′(x )≥0,所以g (x )在R 上递增. 所以当x >0时,g (x )>g (0)=0.②当b >2时,由e x+e -x-2b +2=0⇒x 1=ln(b -1+b 2-2b )>0,x 2=ln(b -1-b 2-2b )<0.所以当0<x <ln(b -1+b 2-2b )时,g ′(x )<0. 所以g (ln(b -1+b 2-2b ))<g (0)=0,不合题意. 综上,b ≤2,∴b max =2. [题后悟通]在一些不等式证明或恒成立的问题中,通常需要判定函数极值或最值的正负.有时直接计算函数的极值涉及复杂的运算,甚至无法算出一个显性的数值.这时可以考虑不直接计算函数极值,通过计算另一个特殊点的函数值来确定函数极值或最值的正负,这个特殊点通常在解题过程中已出现过.如在本题②中要直接算出g (ln(b -1+b 2-2b ))很难,转移到计算g (0)就很简单,而且g (0)在解题过程中已出现过,这就是转移法.[口诀记忆] 最值运算入逆境,位置挪移绕道行; 挪动位置到何处,解题过程曾途经.[针对训练]5.函数f (x )=1+x 1-x e -ax,对任意x ∈(0,1)恒有f (x )>1,求a 的取值范围.解:①当a ≤0时,因为x ∈(0,1), 所以1+x 1-x>1且e -ax>1,所以f (x )>1.因为f ′(x )=a e -ax -x2⎝ ⎛⎭⎪⎫x 2-1+2a =0⇒x 2=1-2a . ②当0<a ≤2时,f ′(x )≥0,所以f (x )在(0,1)上递增, 所以f (x )>f (0)=1. ③当a >2时,f (x )在⎝⎛⎭⎪⎫-1-2a,1-2a 上递减.所以当x ∈⎣⎢⎡⎭⎪⎫0, 1-2a 时,f (x )<f (0)=1,不合题意.综上a ≤2.[例1] 若函数f (x )=x,0<x 1<x 2<π.设a =f (x 1),b =f (x 2),试比较a ,b 的大小.[解题观摩] 由f (x )=sin x x ,得f ′(x )=x cos x -sin x x2, 设g (x )=x cos x -sin x ,则g ′(x )=-x sin x +cos x -cos x =-x sin x .∵0<x <π,∴g ′(x )<0,即函数g (x )在(0,π)上是减函数. ∴g (x )<g (0)=0,因此f ′(x )<0,故函数f (x )在(0,π)是减函数, ∴当0<x 1<x 2<π,有f (x 1)>f (x 2),即a >b . [题后悟通]从本题解答来看,为了得到f (x )的单调性,须判断f ′(x )的符号,而f ′(x )=x cos x -sin xx 2的分母为正,只需判断分子x cos x -sin x 的符号,但很难直接判断,故可通过二次求导,判断出一次导函数的符号,并最终解决问题.[例2] 已知函数f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,其中e 为自然对数的底数.(1)求函数f (x )的图象在点(1,f (1))处的切线方程;(2)若g (x )≥f (x )对任意的x ∈(0,+∞)恒成立,求t 的取值范围. [解题观摩] (1)由f (x )=e x -x ln x ,知f ′(x )=e -ln x -1, 则f ′(1)=e -1,而f (1)=e ,则所求切线方程为y -e =(e -1)(x -1), 即y =(e -1)x +1.(2)∵f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,∴g (x )≥f (x )对任意的x ∈(0,+∞)恒成立等价于e x-tx 2+x -e x +x ln x ≥0对任意的x ∈(0,+∞)恒成立,即t ≤e x+x -e x +x ln x x2对任意的x ∈(0,+∞)恒成立. 令F (x )=e x+x -e x +x ln x x2, 则F ′(x )=x e x +e x -2e x -x ln x x 3=1x 2⎝ ⎛⎭⎪⎫e x +e -2e xx -ln x , 令G (x )=e x+e -2exx-ln x ,则G ′(x )=e x-x e x -e x x 2-1x =e x x -12+e x-xx 2>0,对任意的x ∈(0,+∞)恒成立.∴G (x )=e x+e -2exx-ln x 在(0,+∞)上单调递增,且G (1)=0,∴当x ∈(0,1)时,G (x )<0,当x ∈(1,+∞)时,G (x )>0,即当x ∈(0,1)时,F ′(x )<0,当x ∈(1,+∞)时,F ′(x )>0,∴F (x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴F (x )≥F (1)=1,∴t ≤1,即t 的取值范围是(-∞,1]. [题后悟通]本题从题目形式来看,是极其常规的一道导数考题,第(2)问要求参数t 的范围问题,实际上是求F (x )=e x+x -e x +x ln x x 2极值问题,问题是F ′(x )=1x 2( e x+e -2e xx-ln x )这个方程求解不易,这时我们可以尝试对G (x )=x 2·F ′(x )再一次求导并解决问题.所以当导数值等于0这个方程求解有困难,考虑用二次求导尝试不失为一种妙法.[方法技巧]判定函数的单调性和求函数极值,都需要判定导函数的正负.有些导函数形式很复杂,它的正负很难直接判定,常常需要建立新函数再次求导,通过探求新函数的最值,以此确定导函数的正负.[针对训练]6.讨论函数f (x )=(x +1)ln x -x +1的单调性.解:由f (x )=(x +1)ln x -x +1,可知函数f (x )的定义域为(0,+∞).易得f ′(x )=ln x +x +1x -1=ln x +1x,用f ′(x )去分析f (x )的单调性受阻.因此再对f ′(x )=ln x +1x求导,得f ″(x )=1x -1x2=x -1x2.令f ″(x )=x -1x2=0,得x =1.当0<x ≤1时,f ″(x )≤0,即f ′(x )=ln x +1x 在区间(0,1)上为减函数;当x >1时,f ″(x )>0,即f ′(x )=ln x +1x在区间(1,+∞)上为增函数.因此f′(x)min=f′(1)=1>0,所以函数f(x)在(0,+∞)上单调递增.。
2021版高考数学一轮复习 第三章 导数及其应用 3.2 利用导数解决函数的单调性问题教学案 苏教版

第二节利用导数解决函数的单调性问题[最新考纲] 1.了解函数的单调性和导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不会超过三次)函数的单调性与导数的关系条件结论函数y=f(x)在区间(a,b)上可导f′(x)>0f(x)在(a,b)内单调递增f′(x)<0f(x)在(a,b)内单调递减f′(x)=0f(x)在(a,b)内是常数函数[常用结论]1.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.2.可导函数f(x)在(a,b)上是增(减)函数的充要条件是对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子区间内都不恒为零.一、思考辨析(正确的打“√”,错误的打“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0. ()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性. ()(3)在(a,b)内f′(x)≤0且f′(x)=0的根有有限个,则f(x)在(a,b)内是减函数. ()[答案](1)×(2)√(3)√二、教材改编1.如图是函数y=f(x)的导函数y=f′(x)的图象,则下面判断正确的是()A.在区间(-3,1)上f(x)是增函数B.在区间(1,3)上f(x)是减函数C.在区间(4,5)上f(x)是增函数D.在区间(3,5)上f (x )是增函数C [由图象可知,当x ∈(4,5)时,f ′(x )>0,故f (x )在(4,5)上是增函数.] 2.函数f (x )=cos x -x 在(0,π)上的单调性是( ) A.先增后减 B.先减后增 C.增函数D.减函数D [因为f ′(x )=-sin x -1<0在(0,π)上恒成立, 所以f (x )在(0,π)上是减函数,故选D.] 3.函数f (x )=x -ln x 的单调递减区间为 .(0,1] [函数f (x )的定义域为{x |x >0},由f ′(x )=1-1x≤0,得0<x ≤1,所以函数f (x )的单调递减区间为(0,1].]4.已知f (x )=x 3-ax 在[1,+∞)上是增函数,则实数a 的最大值是 . 3 [f ′(x )=3x 2-a ≥0,即a ≤3x 2,又因为x ∈[1,+∞ ),所以a ≤3,即a 的最大值是3.]考点1 不含参数函数的单调性 求函数单调区间的步骤(1)确定函数f (x )的定义域. (2)求f ′(x ).(3)在定义域内解不等式f ′(x )>0,得单调递增区间. (4)在定义域内解不等式f ′(x )<0,得单调递减区间.1.函数f (x )=1+x -sin x 在(0,2π)上是( )A.单调递增B.单调递减C.在(0,π)上增,在(π,2π)上减D.在(0,π)上减,在(π,2π)上增A [f ′(x )=1-cos x >0在(0,2π)上恒成立,所以在(0,2π)上单调递增.] 2.函数y =12x 2-ln x 的单调递减区间为( )A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)B [∵y =12x 2-ln x ,∴x ∈(0,+∞),y ′=x -1x =(x -1)(x +1)x.由y ′≤0可解得0<x ≤1,∴y =12x 2-ln x 的单调递减区间为(0,1],故选B.]3.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是 .⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2 [f ′(x )=sin x +x cos x -sin x =x cos x , 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2.]求函数的单调区间时,一定要先确定函数的定义域,否则极易出错.如T 2. 考点2 含参数函数的单调性研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. 已知函数f (x )=12x 2-2a ln x +(a -2)x ,当a <0时,讨论函数f (x )的单调性.[解] 函数的定义域为(0,+∞),f ′(x )=x -2a x +a -2=(x -2)(x +a )x.①当-a =2,即a =-2时,f ′(x )=(x -2)2x≥0,f (x )在(0,+∞)上单调递增.②当0<-a <2,即-2<a <0时,∵0<x <-a 或x >2时,f ′(x )>0;-a <x <2时,f ′(x )<0,∴f (x )在(0,-a ),(2,+∞)上单调递增,在(-a,2)上单调递减. ③当-a >2,即a <-2时,∵0<x <2或x >-a 时,f ′(x )>0;2<x <-a 时,f ′(x )<0, ∴f (x )在(0,2),(-a ,+∞)上单调递增,在(2,-a )上单调递减.综上所述,当a =-2时,f (x )在(0,+∞)上单调递增;当-2<a <0时,f (x )在(0,-a ),(2,+∞)上单调递增,在(-a,2)上单调递减;当a <-2时,f (x )在(0,2),(-a ,+∞)上单调递增,在(2,-a )上单调递减.含参数的问题,应就参数范围讨论导数大于(或小于)零的不等式的解,在划分函数的单调区间时,要在函数定义域内确定导数为零的点和函数的间断点.已知函数f (x )=ln (e x +1)-ax (a >0),讨论函数y =f (x )的单调区间.[解] f ′(x )=e xe x +1-a =1-1e x +1-a .①当a ≥1时,f ′(x )<0恒成立, ∴当a ∈[1,+∞)时, 函数y =f (x )在R 上单调递减. ②当0<a <1时,由f ′(x )>0,得(1-a )(e x+1)>1, 即e x>-1+11-a ,解得x >ln a 1-a ,由f ′(x )<0,得(1-a )(e x +1)<1, 即e x<-1+11-a ,解得x <ln a 1-a .∴当a ∈(0,1)时,函数y =f (x )在⎝ ⎛⎭⎪⎫ln a1-a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫-∞,ln a 1-a 上单调递减. 综上,当a ∈[1,+∞)时,f (x )在R 上单调递减;当a ∈(0,1)时,f (x )在⎝ ⎛⎭⎪⎫ln a1-a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫-∞,ln a 1-a 上单调递减.考点3 已知函数的单调性求参数 根据函数单调性求参数的一般方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. [解] (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x-ax -2,由于h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x-ax -2<0有解,即a >1x 2-2x有解.设G (x )=1x 2-2x,所以只要a >G (x )min 即可.而G (x )=⎝ ⎛⎭⎪⎫1x-12-1,所以G (x )min =-1.所以a >-1且a ≠0,即a 的取值范围是(-1,0)∪(0,+∞). (2)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立.所以a ≥G (x )max ,而G (x )=⎝ ⎛⎭⎪⎫1x-12-1,因为x ∈[1,4],所以1x ∈,所以G (x )max =-716(此时x =4),所以a ≥-716且a ≠0,即a 的取值范围是∪(0,+∞).[母题探究]1.(变问法)若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围. [解] 由h (x )在[1,4]上单调递增得,当x ∈[1,4]时,h ′(x )≥0恒成立, 所以当x ∈[1,4]时,a ≤1x 2-2x恒成立,又当x ∈[1,4]时,⎝⎛⎭⎪⎫1x 2-2xmin =-1(此时x =1), 所以a ≤-1且a ≠0,即a 的取值范围是(-∞,-1].2.(变问法)若函数h (x )=f (x )-g (x )在[1,4]上存在单调递减区间,求a 的取值范围.[解] h (x )在[1,4]上存在单调递减区间, 则h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x有解,又当x ∈[1,4]时,⎝ ⎛⎭⎪⎫1x2-2x min =-1,所以a >-1,且a ≠0.即a 的取值范围是(-1,0)∪(0,+∞).3.(变条件)若函数h (x )=f (x )-g (x )在[1,4]上不单调,求a 的取值范围. [解] 因为h (x )在[1,4]上不单调, 所以h ′(x )=0在(1,4)上有解, 即a =1x 2-2x有解,令m (x )=1x 2-2x,x ∈(1,4),则-1<m (x )<-716,所以实数a 的取值范围为⎝⎛⎭⎪⎫-1,-716. (1)f (x )在D 上单调递增(减),只要满足f ′(x )≥0(≤0)在D 上恒成立即可.如果能够分离参数,则可分离参数后转化为参数值与函数最值之间的关系.(2)二次函数在区间D 上大于零恒成立,讨论的标准是二次函数的图象的对称轴与区间D 的相对位置,一般分对称轴在区间左侧、内部、右侧进行讨论.已知函数f (x )=3xa -2x 2+ln x 在区间[1,2]上为单调函数,求a 的取值范围.[解] f ′(x )=3a -4x +1x,若函数f (x )在区间[1,2]上为单调函数,即在[1,2]上,f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x≤0,即3a -4x +1x ≥0或3a -4x +1x≤0在[1,2]上恒成立,即3a≥4x -1x 或3a ≤4x -1x.令h (x )=4x -1x,因为函数h (x )在[1,2]上单调递增,所以3a ≥h (2)或3a ≤h (1),即3a ≥152或3a≤3,解得a <0或0<a ≤25或a ≥1.考点4 利用导数比较大小或解不等式用导数比较大小或解不等式,常常要构造新函数,把比较大小或求解不等式的问题转化为利用导数研究函数单调性的问题,再由单调性比较大小或解不等式.常见构造的辅助函数形式有:(1)已知函数f (x )是定义在R 上的偶函数,设函数f (x )的导函数为f ′(x ),若对任意x >0都有2f (x )+xf ′(x )>0成立,则( )A.4f (-2)<9f (3)B.4f (-2)>9f (3)C.2f (3)>3f (-2)D.3f (-3)<2f (-2)(2)设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是 .(1)A (2)(-∞,-2)∪(0,2) [(1)根据题意,令g (x )=x 2f (x ),其导数g ′(x )=2xf (x )+x 2f ′(x ),又对任意x >0都有2f (x )+xf ′(x )>0成立,则当x>0时,有g ′(x )=x (2f (x )+xf ′(x ))>0恒成立,即函数g (x )在(0,+∞)上为增函数,又由函数f (x )是定义在R 上的偶函数,则f (-x )=f (x ),则有g (-x )=(-x )2f (-x )=x 2f (x )=g (x ),即函数g (x )也为偶函数,则有g (-2)=g (2),且g (2)<g (3),则有g (-2)<g (3),即有4f (-2)<9f (3).故选A.(2)令φ(x )=f (x )x,∵当x >0时,∴φ(x )=f (x )x在(0,+∞)上为减函数,又φ(2)=0, ∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0, 此时x 2f (x )>0.又f (x )为奇函数,∴h (x )=x 2f (x )也为奇函数. 故x 2f (x )>0的解集为(-∞,-2)∪(0,2).]如本例(1)已知条件“2f (x )+xf ′(x )>0”,需构造函数g (x )=x 2f(x ),求导后得x >0时,g ′(x )>0,即函数g (x )在(0,+∞)上为增函数,从而问题得以解决.而本例(2)则需构造函数φ(x )=f (x )x 解决.2.已知函数f (x )(x ∈R )满足f (1)=1,且f (x )的导函数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为 .(-∞,-1)∪(1,+∞) [由题意构造函数F (x )=f (x )-12x ,则F ′(x )=f ′(x )-12.因为f ′(x )<12,所以F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.因为f (x 2)<x 22+12,f (1)=1,所以f (x 2)-x 22<f (1)-12,所以F (x 2)<F (1),又函数F (x )在R 上单调递减,所以x 2>1,即x ∈(-∞,-1)∪(1,+∞).]。
新教材高考数学一轮复习第3章导数及其应用新高考新题型微课堂2多选题命题热点之导数课件新人教A版

利用导数研究函数零点、方程根问题
(多选题)(2020·山东模拟)已知 f (x)=2mxe2x+1-1,g(x)=(m
+2)(x2+1)2.若 φ(x)=ex·f (x)-gexx 有唯一的零点,则 m 的值可能为(
)
A.2 B.3 C.-3 D.-4
利用导数研究函数零点、方程根问题
(多选题)(2020·山东模拟)已知 f (x)=2mxe2x+1-1,g(x)=(m
当 x→+∞时,f (x)→0,根据 B 选项可知,函数的最小值是 f (- 1)=-e.
再根据单调性可知,当-e<k<0 时,方程 f (x)=k, 有且只有两个实根,所以 C 项正确.
B.函数 f (x)既存在极大值又存在极小值
C.当-e<k<0 时,方程 f (x)=k 有且只有两个实根
D.若 x∈[t,+∞)时,f (x)max=e52,则 t 的最小值为 2
ABC 解析:f (x)=0⇒x2+x-1=0,解得 x=-12± 5,所以 A 项正确.
f ′(x)=-x2-exx-2=-x+1exx-2, 当 f ′(x)>0 时,-1<x<2,当 f ′(x)<0 时,x<-1 或 x>2, 所以(-∞,-1),(2,+∞)是函数 f (x)的单调递减区间,(-1,2) 是函数 f (x)的单调递增区间,所以 f (-1)是函数的极小值,f (2)是函 数的极大值,所以 B 项正确.
利用导数研究函数的单调性、极值和最值 (多选题)(2020·山东模拟)已知函数 f (x)=x3+ax2+bx+c, 在定义域[-2,2]上表示的曲线过原点,且在 x=±1 处的切线斜率均 为-1.下列说法正确的是( ) A.f (x)是奇函数 B.若 f (x)在[s,t]内递减,则|t-s|的最大值为 4 C.若 f (x)的最大值为 M,则最小值为-M D.若对∀x∈[-2,2],k≤f ′(x)恒成立,则 k 的最大值为 2
新课标高考数学一轮复习第三章导数及其应用3.2导数的应用一课件理

第二十五页,共27页。
(2)已知函数 f(x)=x3+(1-a)x2-a(a+2)x+b (a,b∈R), 若函数 f(x)在区间(-1,1)上不单调,则 a 的取值范围是 ________.
解:易知 f′(x)=(x-a)(3x+a+2)=0 的根 x1=a,x2= -a+3 2.只要-1<x1<1 或-1<x2<1,x1≠x2 即可满足要求, 则-1<a<1 或-5<a<1 且 a≠-12,所以所求 a 的取值范围
第十九页,共27页。
(2017·临沂调研)设函数 f(x)= alnx+xx-+11,其中 a 为常数.
(1)若 a=0,求曲线 y=f(x)在点(1,f(1))处 的切线方程;
(2)讨论函数 g(x)=f(x)-ax+1x+-1x(a≠0)的 单调性.
第二十页,共27页。
解:(1)由题意知 a=0 时,f(x)=xx- +11,x∈(0,+∞). 此时 f′(x)=(x+21)2.可得 f′(1)=12,又 f(1)=0,所以 曲线 y=f(x)在(1,f(1))处的切线方程为 x-2y-1=0. (2)g(x)=alnx-ax,g′(x)=ax-a=a(1x-x). 由于 x>0,且 a≠0,故当 a>0 时,g(x)在(0,1)上单 调递增,在(1,+∞)上单调递减; 当 a<0 时,g(x)在(0,1)上单调递减,在(1,+∞)上单 调递增.
第第三一章章
导集数合(d与ǎo常sh用ù)逻及辑其(l应uó用jí)用语
3.2 导数(dǎo shù)的应用(一)
第一页,共27页。
函数的单调性与导数 ①在某个区间(a,b)内,如果 f′(x)>0,那么函数 y=f(x) 在这个区间内________;如果 f′(x)<0,那么函数 y=f(x)在 这个区间内________; ②如果在某个区间内恒有 f′(x)=0,那么函数 f(x)在 这个区间上是________.
高考数学一轮复习 第三章 导数及其应用 3.3 导数的应用(二)课件 理

已知 x=3 是函数 f(x)=alnx+x2-10x 的一 个极值点,则实数 a=________.
解:f′(x)=ax+2x-10,由 f′(3)=a3+6-10=0 得 a =12,经检验满足题设条件.故填 12.
函数 f(x)=x+2cosxx∈0,π2 的最大值是________.
解:f′(x)=1-2sinx,令
f′(x)=0
得
sinx=12,从而
π x= 6 ,
当 x∈0,π6 时,f′(x)>0,f(x)单调递增;当 x∈π6 ,π2 时,
f′(x)<0,f(x)单调递减,所以 f(x)在 x=π6 处取得极大值,即最大
π
π
值 6 + 3.故填 6 + 3.
类型一 利用导数解决函数的极值问题
(1)已知函数 f(x)=4x+ax-lnx-32,其中 a∈R,且曲 线 y=f(x)在点(1,f(1))处的切线垂直于直线 y=12x.
(Ⅰ)求 a 的值; (Ⅱ)求函数 f(x)的单调区间与极值.
解:(Ⅰ)对 f(x)求导得 f′(x)=14-xa2-1x,由 f(x)在点(1,f(1))处的 切线垂直于直线 y=12x 知 f′(1)=-34-a=-2,解得 a=54.
①求 f(x)在(a,b)内的极值;
②将 f(x)的各极值与端点处的函数值______,______进行比较,其中最大的一个是________,最
小的一个是________.
3.实际问题中的导数,常见的有以下几种情形:
(1)加速度是速度关于________的导数;
(2)线密度是质量关于________的导数;
(3)功率是功关于________的导数;
(4)瞬时电流是电荷量关于________的导数;
高考数学一轮复习 第三章 导数及其应用 3.1 导数的概念及运算课件(理)

(2015·天津)已知函数 f(x)=axlnx,x∈(0,+∞),其中
a 为实数,f′(x)为 f(x)的导函数.若 f′(1)=3,则 a 的值为( )
A.1
B.2
C.3
D.4
解:f′(x)=alnx+x·1x=a(lnx+1),∴f′(1)=a=3.故选 C.
(2015·陕西)函数 y=xex 在其极值点处的切线方
(logax)′=____________; (ax)′=____________.
4.导数运算法则
(1)[f(x)±g(x)]′=__________________.
(2)[f(x)g(x)]′=____________________;
当 g(x)=c(c 为常数)时,即[cf(x)]′=____________.
②常用的导数运算法则:
法则 1:[u(x)±v(x)]′=u′(x)±v′(x). 法则 2:[u(x)v(x)]′=u′(x)v(x)+u(x)v′(x).
法则 3:uv( (xx) )′=u′(x)v(vx2)(-x)u(x)v′(x)(v(x)≠0).
5.了解函数的单调性与导数的关系;能利用导数研究函数的 单调性,会求函数的单调区间(其中多项式函数不超过三次).
6.了解函数在某点取得极值的必要条件和充分条件;会用导 数求函数的极大值、极小值(其中多项式函数不超过三次);会求 闭区间上函数的最大值、最小值(其中多项式函数不超过三次).
7.会用导数解决实际问题. 8.了解定积分的实际背景,了解定积分的基本思想,了解定 积分的概念. 9.了解微积分基本定理的含义.
处的切线的斜率.也就是说,曲线 y=f(x)在点 P(x0,f(x0))处的切线的斜率是 .相
高考数学一轮复习 第三章 导数及其应用 3.2 导数的应用(一)课件 文

导数及其应用
• 3.2 导数的应用(一)
1.函数的单调性与导数
在某个区间(a,b)内,如果 f′(x)>0,那么函数 y=f(x)在这个区间内 ____________ ; 如 果 f′(x)<0 , 那 么 函 数 y = f(x) 在 这 个 区 间 内
____________;如果在某个区间内恒有 f′(x)=0,那么函数 f(x)在这个区
解:求导得 f′(x)=2ex+2xex=2ex(x+1),令 f′(x) =2ex(x+1)=0,解得 x=-1,易知 x=-1 是函数 f(x)
的极小值点.故选 D.
函数 f(x)=13x3-4x+4 在[0,3]上的最大值为________,
在[0,3]上的最小值为________.
解:f′(x)=x2-4=(x-2)(x+2), 令 f′(x)>0,得 x>2 或 x<-2; 令 f′(x)<0,得-2<x<2. 所以 f(x)在(-∞,-2),(2,+∞)上单调递增;在(-2, 2)上单调递减,而 f(2)=-43,f(0)=4,f(3)=1,故 f(x)在[0, 3]上的最大值是 4,最小值是-43.故填 4;-43.
间上是________. 2.函数的极值与导数
(1)判断 f(x0)是极大值,还是极小值的方法: 一般地,当 f′(x0)=0 时, ①如果在 x0 附近的左侧 f′(x)>0,右侧 f′(x)<0,那么 f(x0)是极大值; ②如果在 x0 附近的左侧____________,右侧____________,那么 f(x0)
解:导数为 0 的点不一定是极值点(如 y=x3,在 x=0 处), 而极值点的导数一定为 0.极值是局部概念,因此极小值可能有
2025版高考数学一轮总复习考点突破第3章导数及其应用第1讲导数的概念及运算考点2导数的几何意义

导数的几何意义角度1 求切线方程1.已知f (x )=(x +1)e x,函数f (x )的图象在x =0处的切线方程为_2x -y +1=0__. [解析] 由f (x )=(x +1)e x 得f ′(x )=e x +(x +1)e x ,所以在x =0处的切线的斜率为f ′(0)=e 0+(0+1)e 0=2,又f (0)=1,故切点坐标为(0,1),所以所求的切线方程为y -1=2x ,即2x -y +1=0.2.(2024·新高考Ⅱ卷)曲线y =ln|x |过坐标原点的两条切线的方程为 y =1e x y =-1ex .[解析] 先求当x >0时,曲线y =ln x 过原点的切线方程,设切点坐标为(x 0,y 0),则由y ′=1x ,得切线斜率为1x 0,又切线的斜率为y 0x 0, 所以1x 0=y 0x 0,解得y 0=1, 代入y =ln x ,得x 0=e ,所以切线斜率为1e ,切线方程为y =1ex . 同理可求得当x <0时的切线方程为y =-1ex . 综上可知,两条切线方程为y =1e x ,y =-1ex . 名师点拨:求曲线的切线方程的两种类型1.在求曲线的切线方程时,留意两个“说法”:求曲线在点P (x 0,y 0)处的切线方程和求曲线过点P (x 0,y 0)的切线方程,在点P 处的切线,确定是以点P 为切点,过点P 的切线,不论点P 在不在曲线上,点P 不愿定是切点.2.在点P 处的切线方程为y -f (x 0)=f ′(x 0)(x -x 0).3.求过点P 的曲线的切线方程的步骤为:第一步:设出切点坐标P ′(x 1,f (x 1));其次步:写出过P ′(x 1,f (x 1))的切线方程为y -f (x 1)=f ′(x 1)(x -x 1);第三步:将点P 的坐标(x 0,y 0)代入切线方程,求出x 1;第四步:将x 1的值代入方程y -f (x 1)=f ′(x 1)(x -x 1)可得过点P (x 0,y 0)的切线方程. 注:也可利用f ′(x 1)=f x 1-f x 0x 1-x 0=k 切求切点坐标(x 1,y 1),有几组解就有几条切线.角度2 求切点坐标已知曲线y =x 22-3ln x 的一条切线的斜率为2,则切点的横坐标为( A ) A .3B .2C .1D .12 [解析] 设切点坐标为(x 0,y 0),且x 0>0,由y ′=x -3x ,得切线斜率k =x 0-3x 0=2,∴x 0=3.故选A .名师点拨:求切点坐标的方法已知切线方程(或斜率)求切点的一般思路是先求函数的导数,然后让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.角度3 导数的几何意义如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)-3f ′(3)=( A )A .1B .0C .2D .4[解析] 将点(3,1)代入直线y =kx +2的方程得3k +2=1,得k =-13,所以f ′(3)=k =-13,由于点(3,1)在函数y =f (x )的图象上,则f (3)=1,对函数g (x )=xf (x )求导得g ′(x )=f (x )+xf ′(x ),∴g ′(3)-3f ′(3)=f (3)=1,故选A .角度4 求参数的值(或范围)(2024·全国新高考卷Ⅰ)若曲线y =(x +a )e x 有两条过坐标原点的切线,则a 的取值范围是 (-∞,-4)∪(0,+∞) .[解析] 导数的几何意义(理性思维、数学探究)因为y =(x +a )e x ,所以y ′=(x +a +1)e x .设切点为A (x 0,(x 0+a )e x 0),O 为坐标原点,依题意得,切线斜率k OA =y ′|x =x 0=(x 0+a +1)e x 0=x 0+a e x 0x 0化简,得x 20+ax 0-a =0.因为曲线y =(x +a )e x 有两条过坐标原点的切线,所以关于x 0的方程x 20+ax 0-a =0有两个不同的根,所以Δ=a 2+4a >0,解得a <-4或a >0,所以a 的取值范围是(-∞,-4)∪(0,+∞).【变式训练】1.(角度1)(2024·全国卷Ⅱ,5分)曲线y=2sin x+cos x在点(π,-1)处的切线方程为( C )A.x-y-π-1=0 B.2x-y-2π-1=0C.2x+y-2π+1=0 D.x+y-π+1=0[解析]依题意得y′=2cos x-sin x,y′|x=π=(2cos x-sin x)|x=π=2cos π-sin π=-2,因此所求的切线方程为y+1=-2(x-π),即2x+y-2π+1=0,故选C.2. (角度2)曲线y=f(x)在点P(-1,f(-1))处的切线l如图所示,则f′(-1)+f(-1)=( C )A.2 B.1C.-2 D.-1[解析]因为切线l过点(-2,0)和(0,-2),所以f′(-1)=0+2-2-0=-1,所以切线l的方程为y=-x-2,令x=-1,则y=-1,即f(-1)=-1,所以f′(-1)+f(-1)=-1-1=-2,故选C.3.(角度3)(2024·贵阳模拟)设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,且曲线y=f(x)在点P(x0,f(x0))处的切线与直线x+y=0垂直,则切点P(x0,f(x0))的坐标为( A )A.(0,0) B.(a,1)C.(1,1) D.(-1,2)[解析]∵f(x)=x3+(a-1)x2+ax,∴f′(x)=3x2+2(a-1)x+a.又f(x)为奇函数,∴f(-x)=-f(x)恒成立,即-x3+(a-1)x2-ax=-x3-(a-1)x2-ax恒成立,∴a=1,f′(x)=3x2+1,令3x20+1=1,得x0=0,f(x0)=0,∴切点P(x0,f(x0))的坐标为(0,0).选A.4.(角度4)(2024·开封市第一次模拟考试)函数f(x)=ln x+ax的图象存在与直线2x -y=0平行的切线,则实数a的取值范围是( B )A.(-∞,-2] B.(-∞,2)C.(2,+∞) D.(0,+∞)[解析]函数f(x)=ln x+ax的图象存在与直线2x-y=0平行的切线,即f′(x)=2在(0,+∞)上有解.所以f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x. 因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课改版高考数学一轮复习第2节 破解导数问题常用到的4种方法以抽象函数为背景、题设条件或所求结论中具有“f (x )±g (x ),f (x )g (x ),f xg x”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是近几年高考试卷中的一位“常客”,常以压轴题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.类型一 构造y =f (x )±g (x )型可导函数[例1] 设奇函数f (x )是R 上的可导函数,当x >0时有f ′(x )+cos x <0,则当x ≤0时,有( )A .f (x )+sin x ≥f (0)B .f (x )+sin x ≤f (0)C .f (x )-sin x ≥f (0)D .f (x )-sin x ≤f (0)[解析] 观察条件中“f ′(x )+cos x ”与选项中的式子“f (x )+sin x ”,发现二者之间是导函数与原函数之间的关系,于是不妨令F (x )=f (x )+sin x ,因为当x >0时,f ′(x )+cos x <0,即F ′(x )<0,所以F (x )在(0,+∞)上单调递减,又F (-x )=f (-x )+sin(-x )=-[f (x )+sin x ]=-F (x ),所以F (x )是R 上的奇函数,且F (x )在(-∞,0)上单调递减, F (0)=0,并且当x ≤0时有F (x )≥F (0),即f (x )+sin x ≥f (0)+sin 0=f (0),故选A.[答案] A [题后悟通]当题设条件中存在或通过变形出现特征式“f ′(x )±g ′(x )”时,不妨联想、逆用“f ′(x )±g ′(x )=[f (x )±g (x )]′”.构造可导函数y =f (x )±g (x ),然后利用该函数的性质巧妙地解决问题.类型二 构造f (x )·g (x )型可导函数[例2] 设函数f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (3)=0,则不等式f (x )g (x )>0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)[解析] 利用构造条件中“f ′(x )g (x )+f (x )g ′(x )”与待解不等式中“f (x )g (x )”两个代数式之间的关系,可构造函数F (x )=f (x )g (x ),由题意可知,当x <0时,F ′(x )>0,所以F (x )在(-∞,0)上单调递增.又因为f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以F (x )是定义在R 上的奇函数,从而F (x )在(0,+∞)上单调递增,而F (3)=f (3)g (3)=0,所以F (-3)=-F (3),结合图象可知不等式f (x )g (x )>0⇔F (x )>0的解集为(-3,0)∪(3,+∞),故选A.[答案] A [题后悟通]当题设条件中存在或通过变形出现特征式“f ′(x )g (x )+f (x )g ′(x )”时,可联想、逆用“f ′(x )g (x )+f (x )g ′(x )=[f (x )g (x )]′”,构造可导函数y =f (x )g (x ),然后利用该函数的性质巧妙地解决问题.类型三 构造f xg x型可导函数[例3] 已知定义在R 上函数f (x ),g (x )满足:对任意x ∈R ,都有f (x )>0,g (x )>0,且f ′(x )g (x )-f (x )g ′(x )<0.若a ,b ∈R +且a ≠b ,则有( )A .f ⎝ ⎛⎭⎪⎫a +b 2g ⎝ ⎛⎭⎪⎫a +b 2>f (ab )g (ab )B .f ⎝ ⎛⎭⎪⎫a +b 2g ⎝ ⎛⎭⎪⎫a +b 2<f (ab )g (ab )C .f ⎝ ⎛⎭⎪⎫a +b 2g (ab )>g ⎝ ⎛⎭⎪⎫a +b 2f (ab )D .f ⎝⎛⎭⎪⎫a +b 2g (ab )<g ⎝ ⎛⎭⎪⎫a +b 2f (ab )[解析] 根据条件中“f ′(x )g (x )-f (x )g ′(x )”的特征,可以构造函数F (x )=f xg x,因为f ′(x )g (x )-f (x )g ′(x )<0,所以F ′(x )=fx g x -f x gx[g x2<0,F (x )在R 上单调递减.又因为a +b 2>ab ,所以F ⎝ ⎛⎭⎪⎫a +b 2<F (ab ),即f ⎝⎛⎭⎪⎫a +b 2g ⎝ ⎛⎭⎪⎫a +b 2<f abgab,所以f ⎝⎛⎭⎪⎫a +b 2g (ab )<g ⎝ ⎛⎭⎪⎫a +b 2·f (ab ),故选D.[答案] D [题后悟通]当题设条件中存在或通过变形出现特征式“f ′(x )g (x )-f (x )g ′(x )”时,可联想、逆用“fx g x -f x gx[g x2=⎣⎢⎡⎦⎥⎤f x g x ′”,构造可导函数y =f x g x ,然后利用该函数的性质巧妙地解决问题.[方法技巧]构造函数解决导数问题常用模型(1)条件:f ′(x )>a (a ≠0):构造函数:h (x )=f (x )-ax .(2)条件:f ′(x )±g ′(x )>0:构造函数:h (x )=f (x )±g (x ). (3)条件:f ′(x )+f (x )>0:构造函数:h (x )=e xf (x ). (4)条件:f ′(x )-f (x )>0:构造函数:h (x )=f xex.(5)条件:xf ′(x )+f (x )>0:构造函数:h (x )=xf (x ). (6)条件:xf ′(x )-f (x )>0:构造函数:h (x )=f xx. [针对训练]1.已知定义域为R 的函数f (x )的图象经过点(1,1),且对于任意x ∈R ,都有f ′(x )+2>0,则不等式f (log 2|3x-1|)<3-log2|3x-1|的解集为( ) A .(-∞,0)∪(0,1) B .(0,+∞) C .(-1,0)∪(0,3)D .(-∞,1)解析:选A 根据条件中“f ′(x )+2”的特征,可以构造F (x )=f (x )+2x ,则F ′(x )=f ′(x )+2>0,故F (x )在定义域内单调递增,由f (1)=1,得F (1)=f (1)+2=3,因为由f (log 2|3x -1|)<3-log 2|3x -1|可化为f (log 2|3x -1|)+2log 2|3x -1|<3,令t =log 2|3x -1|,则f (t )+2t <3.即F (t )<F (1),所以t <1.即log 2|3x -1|<1,从而0<|3x-1|<2,解得x <1且x ≠0,故选A.2.设定义在R 上的函数f (x )满足f ′(x )+f (x )=3x 2e -x,且f (0)=0,则下列结论正确的是( )A .f (x )在R 上单调递减B .f (x )在R 上单调递增C .f (x )在R 上有最大值D .f (x )在R 上有最小值解析:选C 根据条件中“f ′(x )+f (x )”的特征,可以构造F (x )=e xf (x ),则有F ′(x )=e x[f ′(x )+f (x )]=e x·3x 2e -x=3x 2,故F (x )=x 3+c (c 为常数),所以f (x )=x 3+cex,又f (0)=0,所以c =0,f (x )=x 3e x .因为f ′(x )=3x 2-x 3e x,易知f (x )在区间(-∞,3]上单调递增,在[3, +∞)上单调递减,f (x )max =f (3)=27e3,无最小值,故选C. 3.已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x ),则不等式x 2f ⎝ ⎛⎭⎪⎫1x-f (x )<0的解集为________.解析:因为f (x )>xf ′(x ),所以xf ′(x )-f (x )<0,根据“xf ′(x )-f (x )”的特征,可以构造函数F (x )=f x x ,则F ′(x )=xfx -f xx 2<0,故F (x )在(0,+∞)上单调递减.又因为x >0,所以x 2f ⎝ ⎛⎭⎪⎫1x -f (x )<0可化为xf ⎝ ⎛⎭⎪⎫1x -f x x <0,即f ⎝ ⎛⎭⎪⎫1x 1x-f x x <0,即f ⎝ ⎛⎭⎪⎫1x 1x<f x x ,即F ⎝ ⎛⎭⎪⎫1x <F (x ),所以⎩⎪⎨⎪⎧x >0,1x >x ,解得0<x <1,故不等式x 2f ⎝ ⎛⎭⎪⎫1x-f (x )<0的解集为(0,1).答案:(0,1)结果,因而要对参数进行分类讨论.常见的有含参函数的单调性、含参函数的极值、最值等问题,解决时要分类讨论.分类讨论的原则是不重复、不遗漏,讨论的方法是逐类进行,还必须要注意综合讨论的结果,使解题步骤完整.[例1] 已知函数f (x )=x 3+ax 2+x +1. (1)讨论函数f (x )的单调区间;(2)设函数f (x )在区间⎝ ⎛⎭⎪⎫-23,-13内是减函数,求a 的取值范围.[解] (1)因为f ′(x )=3x 2+2ax +1.①当Δ≤0⇒-3≤a ≤3,f ′(x )≥0,且在R 的任给一子区间上,f ′(x )不恒为0,所以f (x )在R 上递增;②当Δ>0⇒a <-3或a > 3.由f ′(x )=0⇒x 1=-a -a 2-33,x 2=-a +a 2-33.所以f (x 121,x 2). (2)因为f (x )在⎝ ⎛⎭⎪⎫-23,-13内是减函数,所以⎝ ⎛⎭⎪⎫-23,-13⊆(x 1,x 2).所以f ′(x )=3x 2+2ax +1≤0在⎝ ⎛⎭⎪⎫-23,-13上恒成立.所以2a ≥-3x -1x 在⎝ ⎛⎭⎪⎫-23,-13上恒成立,所以a ≥2.[题后悟通]本题求导后,转化为一个二次型函数的含参问题,首先考虑二次三项式是否存在零点,即对判别式Δ进行Δ≤0和Δ>0两类讨论,可归纳为“有无实根判别式,两种情形需知晓”.[例2] 函数f (x )=2ax -a 2+1x 2+1,当a ≠0时,求f (x )的单调区间与极值.[解] 因为f ′(x )=-2ax 2+a 2-x +2ax 2+2=-2a x 2+2·(x -a )⎝⎛⎭⎪⎫x +1a .(1)a >0时f (x )(2)当a <0时,f (x )综上,当a >0时,f (x )的递增区间是(-a -1,a ),递减区间是(-∞,-a -1),(a ,+∞),f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1.当a <0时,f (x )的递增区间是(-∞,a ), (-a -1,+∞),递减区间是(a ,-a -1),f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1.[题后悟通]求导后,若导函数中的二次三项式能因式分解需考虑首项系数是否含有参数.若首项系数有参数,就按首项系数为零、为正、为负进行讨论.可归纳为“首项系数含参数,先证系数零正负”.[例3] 已知函数f (x )=ln(x +1)-axx +a(a >1),讨论f (x )的单调性.[解] f ′(x )=x x -a 2-2ax +x +a2.①当a 2-2a <0时,即1<a <2,又a 2-2a =(a -1)2-1>-1.②当a =2时,f ′(x )=x +x +2≥0,f (x )在(-1,+∞)上递增.③当a 2-2a >0时,即a >2时,2-2a,0);当a >2时,f (x )的递增区间是(-1,0),(a 2-2a ,+∞),递减区间是(0,a 2-2a );当a =2时,f (x )在(-1,+∞)上递增.[题后悟通]求导后且导函数可分解且首项系数无参数可求出f ′(x )的根后比较两根大小,注意两根是否在定义域内,可归纳为“首项系数无参数,根的大小定胜负.定义域,紧跟踪,两根是否在其中”.[方法技巧]利用分类讨论解决含参函数的单调性、极值、最值问题的思维流程[口诀记忆] 导数取零把根找,先定有无后大小; 有无实根判别式,两种情形需知晓. 因式分解见两根,逻辑分类有区分; 首项系数含参数,先论系数零正负. 首项系数无参数,根的大小定胜负; 定义域,紧跟踪,两根是否在其中.[针对训练]4.已知函数f (x )=e x(e x-a )-a 2x ,讨论f (x )的单调性. 解:函数f (x )的定义域为(-∞,+∞),f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x在(-∞,+∞)上单调递增. ②若a >0,则由f ′(x )=0,得x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增. ③若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0. 故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减,在⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增.[典例(x )>0,求b 的最大值.[解题观摩] 因为g (x )=e 2x-e-2x-4x -4b e x +4b e -x+8bx ,所以g ′(x )=2(e x+e -x-2)(e x+e -x-2b +2). 因为e x +e -x ≥2e x ·e -x=2.①当b ≤2时,g ′(x )≥0,所以g (x )在R 上递增. 所以当x >0时,g (x )>g (0)=0.②当b >2时,由e x+e -x-2b +2=0⇒x 1=ln(b -1+b 2-2b )>0,x 2=ln(b -1-b 2-2b )<0.所以当0<x <ln(b -1+b 2-2b )时,g ′(x )<0. 所以g (ln(b -1+b 2-2b ))<g (0)=0,不合题意. 综上,b ≤2,∴b max =2. [题后悟通]在一些不等式证明或恒成立的问题中,通常需要判定函数极值或最值的正负.有时直接计算函数的极值涉及复杂的运算,甚至无法算出一个显性的数值.这时可以考虑不直接计算函数极值,通过计算另一个特殊点的函数值来确定函数极值或最值的正负,这个特殊点通常在解题过程中已出现过.如在本题②中要直接算出g (ln(b -1+b 2-2b ))很难,转移到计算g (0)就很简单,而且g (0)在解题过程中已出现过,这就是转移法.[口诀记忆] 最值运算入逆境,位置挪移绕道行; 挪动位置到何处,解题过程曾途经.[针对训练]5.函数f (x )=1+x 1-x e -ax,对任意x ∈(0,1)恒有f (x )>1,求a 的取值范围.解:①当a ≤0时,因为x ∈(0,1), 所以1+x 1-x>1且e -ax>1,所以f (x )>1.因为f ′(x )=a e -ax -x2⎝ ⎛⎭⎪⎫x 2-1+2a =0⇒x 2=1-2a . ②当0<a ≤2时,f ′(x )≥0,所以f (x )在(0,1)上递增, 所以f (x )>f (0)=1. ③当a >2时,f (x )在⎝⎛⎭⎪⎫-1-2a,1-2a 上递减.所以当x ∈⎣⎢⎡⎭⎪⎫0, 1-2a 时,f (x )<f (0)=1,不合题意.综上a ≤2.[例1] 若函数f (x )=x,0<x 1<x 2<π.设a =f (x 1),b =f (x 2),试比较a ,b 的大小.[解题观摩] 由f (x )=sin x x ,得f ′(x )=x cos x -sin x x2, 设g (x )=x cos x -sin x ,则g ′(x )=-x sin x +cos x -cos x =-x sin x .∵0<x <π,∴g ′(x )<0,即函数g (x )在(0,π)上是减函数. ∴g (x )<g (0)=0,因此f ′(x )<0,故函数f (x )在(0,π)是减函数, ∴当0<x 1<x 2<π,有f (x 1)>f (x 2),即a >b . [题后悟通]从本题解答来看,为了得到f (x )的单调性,须判断f ′(x )的符号,而f ′(x )=x cos x -sin xx 2的分母为正,只需判断分子x cos x -sin x 的符号,但很难直接判断,故可通过二次求导,判断出一次导函数的符号,并最终解决问题.[例2] 已知函数f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,其中e 为自然对数的底数.(1)求函数f (x )的图象在点(1,f (1))处的切线方程;(2)若g (x )≥f (x )对任意的x ∈(0,+∞)恒成立,求t 的取值范围. [解题观摩] (1)由f (x )=e x -x ln x ,知f ′(x )=e -ln x -1, 则f ′(1)=e -1,而f (1)=e ,则所求切线方程为y -e =(e -1)(x -1), 即y =(e -1)x +1.(2)∵f (x )=e x -x ln x ,g (x )=e x -tx 2+x ,t ∈R ,∴g (x )≥f (x )对任意的x ∈(0,+∞)恒成立等价于e x-tx 2+x -e x +x ln x ≥0对任意的x ∈(0,+∞)恒成立,即t ≤e x+x -e x +x ln x x2对任意的x ∈(0,+∞)恒成立. 令F (x )=e x+x -e x +x ln x x2, 则F ′(x )=x e x +e x -2e x -x ln x x 3=1x 2⎝ ⎛⎭⎪⎫e x +e -2e xx -ln x , 令G (x )=e x+e -2exx-ln x ,则G ′(x )=e x-x e x -e x x 2-1x =e x x -2+e x-xx 2>0,对任意的x ∈(0,+∞)恒成立.∴G (x )=e x+e -2exx-ln x 在(0,+∞)上单调递增,且G (1)=0,∴当x ∈(0,1)时,G (x )<0,当x ∈(1,+∞)时,G (x )>0,即当x ∈(0,1)时,F ′(x )<0,当x ∈(1,+∞)时,F ′(x )>0,∴F (x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴F (x )≥F (1)=1,∴t ≤1,即t 的取值范围是(-∞,1]. [题后悟通]本题从题目形式来看,是极其常规的一道导数考题,第(2)问要求参数t 的范围问题,实际上是求F (x )=e x+x -e x +x ln x x 2极值问题,问题是F ′(x )=1x 2( e x+e -2e xx-ln x )这个方程求解不易,这时我们可以尝试对G (x )=x 2·F ′(x )再一次求导并解决问题.所以当导数值等于0这个方程求解有困难,考虑用二次求导尝试不失为一种妙法.[方法技巧]判定函数的单调性和求函数极值,都需要判定导函数的正负.有些导函数形式很复杂,它的正负很难直接判定,常常需要建立新函数再次求导,通过探求新函数的最值,以此确定导函数的正负.[针对训练]6.讨论函数f (x )=(x +1)ln x -x +1的单调性.解:由f (x )=(x +1)ln x -x +1,可知函数f (x )的定义域为(0,+∞).易得f ′(x )=ln x +x +1x -1=ln x +1x,用f ′(x )去分析f (x )的单调性受阻.因此再对f ′(x )=ln x +1x求导,得f ″(x )=1x -1x2=x -1x2.令f ″(x )=x -1x2=0,得x =1.当0<x ≤1时,f ″(x )≤0,即f ′(x )=ln x +1x 在区间(0,1)上为减函数;当x >1时,f ″(x )>0,即f ′(x )=ln x +1x在区间(1,+∞)上为增函数.因此f′(x)min=f′(1)=1>0,所以函数f(x)在(0,+∞)上单调递增.。