某型号直升机发参系统雷电间接效应防护研究
民用飞机闪电间接效应防护适航符合性方法研究

民用飞机闪电间接效应防护适航符合性方法研究摘要:闪电间接效应防护设计是民用飞机适航取证的重要组成部分,满足FAR25.1316条款要求是民用飞机闪电间接效应防护设计的最低目标。
制定合理的闪电间接效应防护措施,并在整个设计过程中有效的贯彻执行,同时,建立一套完整可行的符合性验证流程和符合性方法,是表明FAR25.1316条款符合性的前提。
本文简要介绍了该条款的验证流程和符合性方法,可应用于民用飞机的研制和适航验证工作。
关键词:闪电间接效应适航符合性闪电对飞机的影响是不可避免的,减少闪电对飞机的威胁一直都是摆在飞机设计者面前的一个重要的课题。
为提高飞机的操作性能和减轻飞机重量,大量精密的航空电子设备和复合材料结构的应用,使得飞机对闪电更加敏感,飞机遭受闪电后的损失也会更大。
目前,民用飞机的闪电防护设计已经成为适航认证的一个重要的组成部分,美国联邦航空管理局(FAA)颁布的联邦航空规章也增加了相应的条款,明确了运输类飞机的闪电防护设计要求。
闪电对飞机的影响包括闪电直接效应和闪电间接效应两部分,即闪电对飞机结构的物理损坏和对飞机电子电气设备产生干扰造成系统功能的暂时或永久失效,本文仅对闪电间接效应的适航符合性方法进行阐述。
1 适航要求美国联邦航空管理局颁布的FAR25.1316条款“系统闪电防护”明确了运输类飞机的闪电间接效应防护设计要求。
其中FAR25.1316a)条款针对的是经闪电特定风险分析确定的执行A级功能的系统,这些系统包括但不限于航电系统、飞控系统、电源系统、起落架系统和发动机控制系统,这些系统在遭遇闪电环境时,需保证其A级功能不受不利影响。
FAR25.1316b)条款针对的是经闪电特定风险分析确定的执行B、C级功能的系统,这些系统需保证在飞机遭遇闪电环境之后能及时恢复这些功能[1]。
FAR25.1316c)条款明确了表明上述两条条款符合性的设计和验证流程,包括:确定飞机的闪电分区、建立飞机的外部和内部闪电环境、确定系统和设备在飞机上的安装位置、确定系统和设备对闪电环境的敏感度、确定闪电防护设计措施,以及验证防护措施的充分性。
通勤类飞机闪电间接影响防护适航验证方法研究

通勤类飞机闪电间接影响防护适航验证方法研究【摘要】本文研究了闪电对通勤类飞机的影响及相应的防护措施研究。
通过探讨适航验证方法,结合闪电对通勤类飞机适航验证的影响和防护措施的有效性研究,提出了一种综合的防护措施方案。
研究表明,闪电对通勤类飞机的影响具有一定的危害性,但有效的防护措施可以降低事故发生的可能性。
未来的研究可以进一步完善防护措施,提高通勤类飞机的安全性,同时也需要注意研究的局限性。
本研究为通勤类飞机的安全提供了重要的参考依据,对于飞机行业具有积极的意义。
【关键词】通勤类飞机、闪电影响、防护措施、适航验证、研究、结论、展望、局限性1. 引言1.1 研究背景通勤类飞机在现代社会中扮演着越来越重要的角色,它们通常用于短距离航班和城市间通勤,为人们提供了便捷快速的交通工具。
由于通勤类飞机在飞行过程中往往会受到闪电的影响,因此飞机在适航验证过程中需要对闪电的影响进行充分考虑和防护。
闪电是大气中的放电现象,具有极高的能量,一次闪电击中飞机可能导致飞机系统损坏甚至飞行员和乘客的生命安全受到威胁。
研究如何有效地防护通勤类飞机免受闪电影响,成为了航空领域的重要课题。
针对通勤类飞机在闪电影响下的适航验证问题,研究人员需要探讨闪电如何对飞机产生影响,以及如何制定有效的防护措施。
通过深入研究闪电对通勤类飞机的影响机理,提出针对性的防护措施,并探讨有效的适航验证方法,可以为通勤类飞机的安全飞行提供重要的理论支持和技术指导。
1.2 研究目的本研究的目的是探讨通勤类飞机在闪电影响下的安全性及适航性验证方法,旨在提供有效的防护措施和保障飞行安全。
通过深入分析闪电对通勤类飞机的影响,以及当前防护措施的研究情况,旨在为制定更加科学的防护策略提供依据。
我们还将探讨适航验证方法在闪电影响下的适用性,为飞机的适航认证提供更为全面和准确的评估。
通过本研究的实施,可以深入了解闪电对通勤类飞机的潜在危害,进一步完善防护措施,提高通勤类飞机的飞行安全性。
飞机雷电直接效应防护试验标准与试验项目

飞机雷电直接效应防护试验标准与试验项目
一、介绍
飞机雷电直接效应(LPD)防护是在飞机设计过程中非常重要的一环,它能够给飞机
构型与构件提供关键的保护层,防止雷电直接效应对飞机构型及其组件造成的损伤。
为了
确保飞机LPD防护层的有效性,国际机场协会提出了《飞机雷电直接效应防护试验标准》,其中包含了具体的试验项目,以便确保飞机雷电直接效应防护层的有效性。
1、试验样品
本标准要求试验样品必须符合飞机各先进性能特性的设计标准,在结构和材料上都必
须和最终产品一致。
2、试验项目
(1)电弧灼烧试验:本试验用于测量电弧火花、热释电、跳火花和通过故障电路时
的回路中的绝缘材料的损伤程度;
(2)电弧火焰延伸测试:本试验用于测试电弧火花是否能够延伸到类似绞缆的复杂
配置形状中;
(3)电磁波效应测试:本试验可用于评估电磁波对介电材料以及涉及截面和构造的
安全性能,以确保电磁波不会传播到复杂的绞缆中;
(4)电磁脉冲试验:本试验主要是为了测量电磁脉冲对电子设备的损伤程度;
(5)传导效应测试:本试验主要是为了测量传导阻碍物件,例如电线缆、屏蔽罩、
接插件对电磁波传播效果的影响。
三、结论
通过依据国际机场协会提出的《飞机雷电直接效应防护试验标准》,可以明确地知道
飞机结构以及雷电直接效应防护层所需要满足的试验项目。
通过这些试验项目的测试,可
以更好的保护飞机的安全和结构的稳定性,对飞机的运行起到积极的作用。
设备闪电间接效应试验指标研究

研究报告科技创新导报 Science and Technology Innovation Herald8民用飞机在飞行过程中遭遇闪电的事件时有报到。
据有关资料介绍,每架客机平均每年大约遭遇4~5次不同程度雷击现象。
根据作用机制和产生的后果,闪电效应可分为两类:闪电直接效应和闪电间接效应。
闪电间接效应是指当飞机遭到闪电后,外部闪电通过电磁耦合在设备接口上的产生的感应电流和电压,当其超过设备的敏感电平时就可能造成设备损坏或功能受扰,甚至于危及飞机的持续安全飞行和着陆。
闪电间接效应防护设计的基础之一是设备闪电防护指标的确定。
指标制定的准确与否决定了飞机设计后期更少的设计更改和更好的经济性。
1 设计需求闪电间接效应防护设计需求来自于适航条款和客户的需求。
需求的正确、完整与否是机载电子、电气设备防护指标准确确定的前提;不同安全性等级功能的系统/设备所对应防护设计要求不同,指标也不同。
基于适航要求,飞机闪电防护需求如下:a )飞机应被保护免受S A E A R P 5412A [1]所述闪电环境而引起灾难性影响;b )机载关键、重要系统、设备应符合FAR25.1316[2]要求,免受闪电间接效应影响。
上述需求分解到系统/设备,分析FAR25.1316Amendment25-134[3]可知,O EM应通过合理的系统、线缆设计和安装确保关键(LevelA)系统中的关键功能在飞机遭遇闪电期间和之后不受到任何不利影响,重要/主要的功能可以受到不利影响,但应在闪电环境过后能够及时的自动恢复;重要/主要(Leve lB/Lev elC)系统的重要/主要功能可以受到不利影响,但应在闪电环境过后及时恢复;D、E级功能无适航要求。
结合AC20-136B [4],适航需求分解到设备:A级设备瞬态设计电平(E TDL)应比实际瞬态电平(ATL)大一倍,即至少6dB安全余量;B、C级设备的ETDL应不小于ATL。
2 指标制定根据DO-160G [5],设备闪电间接效应防护指标包含两类3个试验,每个试验要求由1位字母和数字组成。
航空机载电子设备雷电间接效应防护设计及验证

航空航天科学技术科技创新导报 Science and Technology Innovation Herald1DOI:10.16660/ki.1674-098X.2019.25.001航空机载电子设备雷电间接效应防护设计及验证于文刚 李云丰 毕筱曼(沈阳航盛科技有限责任公司 辽宁沈阳 110035)摘 要:随着航空技术的发展,一些普遍采用的复合材料技术以及微计算机、微电子技术对雷电环境变化的敏感程度大大提高,这对现代航空技术的发展提出了更高的要求。
本文首先通过分析目前航空技术面临的挑战,对航空机载电子间接设备的雷电防护原理和常用器件进行了描述;其次,详细介绍了电压箝位型瞬态抑制二极管(TVS )的原理和功能,并对雷电间接效应防护设计进行试验,论述了对航空电子设备的具体防护措施;最后,通过试验证明:本文给出的航空机载电子设备雷电防护措施的效果非常明显,可以将其运用于同类电子产品电路的防护。
关键词:雷电防护设计 TVS 雷电间接效应中图分类号:TN409 文献标识码:A 文章编号:1674-098X(2019)09(a)-0001-03据统计,全国各地大约每天会发生数万次的雷电现象,各种各样的飞机都无法避免的会遇到危险的雷电天气,这种自然现象会对飞行器的安全构成严重的威胁,其产生的危害是难以估量的,会造成处于飞行过程中的飞行器发生雷电效应。
我国飞机技术的发展非常迅速,这也带来了一些问题,使得我国对机载设备的雷电防护有了更严格的要求,因此也就有了这样一项规定:我国的航空产品在确认交付使用之前,都要进行严密的雷电防护测试。
基于此,本文针对机载电子设备在雷电天气会产生的雷电间接效应设计了防护电路,并针对模拟量及ARINC429信号电路提出了具体可行的防护手段,最终,经过严谨的试验过程,证明了这些防护措施能够对电子设备的雷电防护起到非常有益的效果,值得推行。
1 雷电防护原理及常用器件1.1 雷电防护原理由于飞行器不能将大量的能量释放到地面,那么均衡的原理就发挥了作用,这就需要在飞行器的内部建立起一定的等电位差,而其中运用的均衡原理是必须要由电位补偿系统来实现的。
通勤类飞机闪电间接影响防护适航验证方法研究

通勤类飞机闪电间接影响防护适航验证方法研究1. 引言1.1 研究背景过去的研究中发现,通勤类飞机遭遇闪电的情况并不罕见,而闪电会给飞机的航空电子设备、机体结构和系统带来严重的损坏,甚至会导致飞机的失事。
研究如何有效地预防闪电对通勤类飞机的影响,提高飞机的安全性和适航性显得至关重要。
通过对通勤类飞机闪电防护的研究,我们可以开发出有效的防护措施,并建立起相应的适航验证方法。
这将为通勤类飞机的安全运行提供更加可靠的保障,为航空业的发展做出重要贡献。
开展通勤类飞机闪电间接影响防护适航验证方法的研究具有重要的意义和价值。
1.2 研究目的通勤类飞机闪电间接影响防护适航验证方法的研究旨在探讨如何有效应对通勤类飞机在飞行过程中可能遭遇的闪电攻击,从而保障飞机的飞行安全和乘客的生命财产安全。
具体研究目的包括:1. 分析通勤类飞机闪电对防护的重要性,揭示闪电对飞机造成的潜在危害和飞行安全的重要性;2. 探讨闪电影响的适航验证方法,研究如何利用先进的技术手段对通勤类飞机进行闪电影响的适航验证,确保飞机符合适航标准;3. 研究通勤类飞机闪电防护的挑战,分析当前存在的防护技术和手段的不足之处,探讨如何解决通勤类飞机闪电防护面临的挑战;4. 探讨适航验证方法的关键技术研究,研究如何借助先进的技术手段对通勤类飞机进行适航验证,确保飞机安全可靠。
综合以上研究目的,旨在为通勤类飞机闪电防护和适航验证提供科学依据和技术支持,提高通勤类飞机的飞行安全性和适航性。
1.3 研究意义通勤类飞机是一种普遍用于城市间短距离航班的飞行工具,随着航空业的不断发展,通勤类飞机的使用量也在逐渐增加。
随着天气变化、气候异常等因素的影响,闪电对通勤类飞机的安全造成了潜在威胁。
研究如何有效防护通勤类飞机免受闪电侵害,对提升飞机的飞行安全性和可靠性具有非常重要的意义。
在现代航空工业中,通勤类飞机的飞行安全一直是航空公司和制造商关注的重点之一。
闪电不仅会对飞机的电子设备和通讯系统造成损坏,还有可能引发飞机失事,造成严重的人员伤亡和财产损失。
通勤类飞机闪电间接影响防护适航验证方法研究

通勤类飞机闪电间接影响防护适航验证方法研究近年来,随着通勤类飞机数量的增加,对于其安全性能的要求也越来越高。
其中,闪电间接影响对于通勤类飞机的安全具有极大的威胁,因此防护措施必不可少。
本文旨在研究通勤类飞机闪电间接影响防护适航验证方法,以提升其安全性能。
在研究通勤类飞机闪电间接影响防护适航验证方法前,首先需要了解闪电间接影响的危害。
闪电间接影响是指飞机在飞行过程中受到周边雷电场的影响而产生的感应电流、感应电压、辐射场等现象。
这些现象会直接影响到飞机的系统和设备,可能导致系统故障、设备失灵等严重后果。
为了有效防护通勤类飞机免受闪电间接影响的危害,需要进行适航验证。
适航验证是指通过一系列试验和测试,验证飞机在各种情况下的飞行安全性能是否符合标准要求,以确保飞机具有良好的安全性能。
通勤类飞机闪电间接影响防护适航验证方法主要有以下几种:1. 传统试验法。
传统试验法是指通过对飞机进行实际试飞和实验室测试的方法,验证其在闪电影响下的安全性能。
该方法具有准确性高、可靠性强的优点,但是成本较高、时间较长,并且存在一定安全风险。
2. 数值模拟法。
数值模拟法是指使用电磁场数值计算软件对飞机的结构和系统进行分析和计算,验证其在闪电影响下的安全性能。
该方法具有成本低、效率高的优点,但是需要准确的电磁场参数,且计算结果与实际情况可能存在一定偏差。
3. 统计分析法。
统计分析法是指根据历史数据和经验,对通勤类飞机受到闪电间接影响的概率和影响程度进行评估,为其防护措施提供依据。
该方法具有便捷、快速的优点,但是需要足够的历史数据和经验支撑,且与实际情况可能存在一定差异。
针对以上三种通勤类飞机闪电间接影响防护适航验证方法,应根据具体情况进行选择和组合,以取得最佳的结果。
同时,将来随着技术的不断发展,可能会出现更为先进和有效的通勤类飞机闪电间接影响防护适航验证方法。
关于DO160中雷电间接效应试验的探讨

标准与应用352021年第2期 安全与电磁兼容引言RTCA-DO160《民用机载电子设备环境条件和试验方法》[1]第22部分规定的雷电间接效应试验的瞬态电压/电流的波形及其电平,不能覆盖雷电实际电磁环境,下面就此展开分析,以期改善试验应力对实际环境的逼真度。
1 飞机雷电间接效应飞机雷电间接效应指对飞机外直击雷电瞬态的响应在机内产生的效应。
飞机被雷电击中附着后成为雷电通道一部分,流过的大雷电流及其伴随时变电磁场(主要是磁场)与平台界面作用,通过孔缝、电阻/透射耦合机制,穿过飞机外壳形成内部电磁环境,并产生间接效应——在内部导体(如非屏蔽导线、屏蔽芯线、屏蔽层、金属构件)上产生感应电压(高阻)或电流(低阻),它们相对机身结构参考地而言或呈现在与其构成的环 路中。
1.1 飞机电磁耦合机制(1)孔缝耦合实质为磁场耦合,机理是附着机身的直击雷电流或附近雷电通道里的雷电流(效果弱许多)的伴随磁场穿透机身孔缝后,有以下三种情况:(a)在导体回路中感应瞬态电流,因过程为电流→磁场→电流,故波形WF1与驱动源(直接雷电流分量A)相同;(b)在导体/电缆束/飞机结构上/间接感应瞬态电压,因过程为电流变化→变化磁场→电压(源电流时变),其波形WF2是驱动源(直接雷电流)的时间导数(E =d Φ/d t =L d I /d t );(c)穿透孔缝的电场/磁场,在导体上激励瞬态谐振电压/电流(正弦衰减),其波形为WF3,导体长度约为λ/2、λ/4或其整倍数时最强,谐振频率多在1~ 10 MHz,常另称为谐振耦合。
孔缝耦合实际适用于小孔缝/大开口/部分或无遮挡等所有场景。
电小导体上受迫响应电流WF1与激励雷电流分量A 同波形,受迫响应电压波形WF2是激励电流的时间导数;电大导体上的自由响应则是正弦衰减振荡电压/电流WF3,所谓谐振耦合。
(2)结构电阻耦合由直击雷电流或磁场感应电流在复材蒙皮/构件的摘要讨论了RTCA-DO160第22部分“雷电感应瞬变敏感度”中雷电间接效应试验应力未覆盖实际电磁环境的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1 发参显示器外观
2 发参系统间接效应防护验证试验
试验要求
RTCA/DO160C《机载设备环境条件和试验方法》标准的要求,某型号直升机发参系统为L类设备,其试验电
图2 阻尼正弦波试验电路布局
试验内容及步骤为:
(1)去掉互连导线束,在注入变压器上连接一单匝次的绕线,然后调整元件值,以建立相应类别的开路电压波形;
(2)降低电源值到最小值,将环形变压器套在互连线束上;
(3)增大电源值至预定电源值,或监控电流互感器的峰值电流,无论两者哪个先达到;
(4)对1MHz阻尼正弦波正、负极性各施加十次冲击试验。
阻尼正弦波1MHz试验波形如图3、图4所示。
图3 1MHz阻尼正弦波电压波形
图4 1MHz阻尼正弦波电压和电流波形
短波试验
短波试验是反映具有长波(双指数)波形的磁场所对应
图5 短波试验电路布局
图6 短波电压波形Vp
图7 短波试验电流(CH2)和电压(CH1)波形
3 结 语
某型号直升机发参系统雷电间接效应试验,按
第22节进行。
在雷电间接效应试验中,未出现影响设备的损伤,通过了雷电间接效应试验。
通过完成的几组阻尼正弦波试验、短波试验证明,所提供的发参显示设备的雷电间接效应防护设计,符合雷电安全性指标要求。