2013北京市年丰台区初三数学二模试题和答案(word版)

合集下载

北京市丰台区初三二模数学试卷及答案

北京市丰台区初三二模数学试卷及答案

丰台区2012年初三统一练习(二)数学试卷学校姓名准考证号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2-的绝对值是A .12-B .12 C .2 D .2-2.PM2.5是指大气中直径小于或等于2.5微M 的颗粒物,2.5微M 等于0.000 002 5M ,把0.000 002 5用科学记数法表示为A .62.510⨯ B .50.2510-⨯ C .62.510-⨯ D .72510-⨯3.如图,在△ABC 中, DE ∥BC ,如果AD =1,BD =2,那么DEBC的值为A .12B .13C .14D .194.在4张完全相同的卡片上分别画有等边三角形、矩形、菱形和圆,在看不见图形的情况下随机抽取1张,卡片上的图形是中心对称图形的概率是 A .14B .12C .34D .1 5.若230x y ++-=则y x 的值为A .-8B .-6C .6D .8 6.下列运算正确的是 A .222()a b a b +=+B .235a b ab +=C .632a a a ÷=D .325a a a ⋅=7.小张每天骑自行车或步行上学,他上学的路程为2 800M ,骑自行车的平均速度是步行的平均速度的4倍,骑自行车上学比步行上学少用30分钟.设步行的平均速度为x M/分.根据题意,下面列出的方程正确的是A .30428002800=-xx B .30280042800=-x x C .30528002800=-x x D .30280052800=-x x8.如图1是一个小正方体的侧面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上..一面的字是 A .北 B .京C .精D .神ED CBA二、填空题(本题共16分,每小题4分)9.如果二次根式1x -有意义,则x 的取值范围是. 10.分解因式:=+-b ab b a 25102.11.如图, ⊙O 的半径为2,点A 为⊙O 上一点,OD ⊥弦BC 于点D ,如果1OD =,那么BAC ∠=________︒. 12.符号“f ”表示一种运算,它对一些数的运算如下:2(1)11f =+,2(2)12f =+,2(3)13f =+,2(4)14f =+,…, 利用以上运算的规律写出()f n =(n 为正整数) ;(1)(2)(3)(100)f f f f ⋅⋅⋅=. 三、解答题(本题共30分,每小题5分)13.计算:()︒⎪⎭⎫⎝⎛+45sin 4-211-3-272-03 .14.已知2230a a --=,求代数式2(1)(2)(2)a a a a --+-的值. 15.解分式方程:21124x x x -=--. 16.如图,在△ABC 与△ABD 中,BC 与AD 相交于点O ,∠1=∠2,CO = DO .求证:∠C =∠D .17.已知:如图,在平面直角坐标系xOy 中,一次函数y =-x 的图象与反比例函数ky x=的图象交于A 、B 两点. (1)求k 的值;(2)如果点P 在y 轴上,且满足以点A 、B 、P 为顶点的三角形是直角三角形,直接写出点P 的坐标.18.为了增强居民的节约用电意识,某市拟出台居民阶梯电价政策:每户每月用电量不超过230千瓦时的部分为第一档,按每千瓦时0.49元收费;超过230千瓦时且不超过400千瓦时的部分为第二档,超过的部分按每千瓦时0.54元收费;超过400千瓦时的部分为第三档,超过部分按每千瓦时0.79元收费. (1)将按阶梯电价计算得以下各家4月份应交的电费填入下表:4月份总用电量/千瓦时 电费/元小刚 200 小丽300(2)设一户家庭某月用电量为x 千瓦时,写出该户此月应缴电费y (元)与用电量x (千瓦时)之间的函数关系式.四、解答题(本题共20分,每小题5分)19.已知:如图,菱形ABCD 中,过AD 的中点E 作AC 的垂线EF ,DOCBA 21DOCBAED A交AB 于点M ,交CB 的延长线于点F .如果FB 的长是2,求菱形ABCD 的周长.20.已知:如图,点A 、B 在⊙O 上,直线AC 是⊙O 的切线,联结AB 交O C 于点D ,AC =CD . (1)求证:OC ⊥OB ; (2)如果OD =1,tan ∠OCA =52,求AC 的长. 21.某课外小组为了解本校八年级700名学生每学期参加社会实践活动的时间,随机对该年级50名学生进行了调查,根据收集的数据绘制了如下的频数分布表和频数分布直方图(各组数据包括最小值,不包括最大值). (1)补全下面的频数分布表和频数分布直方图:(2)可以估计这所学校八年级的学生中,每学期参加社会实践活动的时间不少于8小时的学生大约有多少人?22.小杰遇到这样一个问题:如图1,在□ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,连结EF ,△AEF的三条高线交于点H ,如果AC =4,EF =3,求AH 的长.小杰是这样思考的:要想解决这个问题,应想办法将题目中的已知线段与所求线段尽可能集中到分组/时 频数 频率 6~8 2 0.04 8~10 0.12 10~12 12~14 18 14~16 10 0.20 合 计501.00OD CBA同一个三角形中.他先后尝试了翻折、旋转、平移的方法,发现可以通过将△AEH 平移至△GCF 的位置(如图2),可以解决这个问题.请你参考小杰同学的思路回答: (1)图2中AH 的长等于.(2)如果AC =a ,EF =b ,那么AH 的长等于.BA D CEFHG HFECDA B图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的一元二次方程242(1)0x x k -+-=有两个不相等的实数根. (1)求k 的取值范围;(2)如果抛物线242(1)y x x k =-+-与x 轴的两个交点的横坐标为整数,求正整数k 的值;(3)直线y =x 与(2)中的抛物线在第一象限内的交点为点C ,点P 是射线OC 上的一个动点(点P 不与点O 、点C 重合),过点P 作垂直于x 轴的直线,交抛物线于点M ,点Q 在直线PC 上,距离点P 为2个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.24.在△ABC 中,D 为BC 边的中点,在三角形内部取一点P ,使得∠ABP =∠ACP .过点P 作PE ⊥AC 于点E ,PF ⊥AB 于点F .12345–1–2–3–412345–1–2xy O(1)如图1,当AB =AC 时,判断的DE 与DF 的数量关系,直接写出你的结论; (2)如图2,当AB ≠AC ,其它条件不变时,(1)中的结论是否发生改变?请说明理由. 图1图225.如图,将矩形OABC 置于平面直角坐标系xOy 中,A (32,0),C (0,2). (1)抛物线2y x bx c =-++经过点B 、C ,求该抛物线的解读式;(2)将矩形OABC 绕原点顺时针旋转一个角度α(0°<α<90°),在旋转过程中,当矩形的顶点落在(1)中的抛物线的对称轴上时,求此时这个顶点的坐标; (3)如图(2),将矩形OABC 绕原点顺时针旋转一个角度θ(0°<θ<180°),将得到矩形OA’B’C’,设A ’C’的中点为点E ,联结CE ,当θ=°时,线段CE 的长度最大,最大值为.北京市丰台区2011_2012学年第二学期初三综合练习(二)参考答案 一、选择题(本题共32分,每小题4分)AEFPB D CCE BAD F P题号 1 2 3 4 5 6 7 8 答案 CCBCADAA二、填空题(本题共16分,每小题4分)题号 9 1011 12答案x ≥12)5(-a b 60°21n+;5151 三、解答题(本题共30分,每小题5分)13.解:原式=3-1+4-422⨯……4分=6-22….5分14.解:2(1)(2)(2)a a a a --+-=22224a a a --+……1分.=224aa -+.……2分2230a a --=,∴223a a -=.…3分∴原式=224347aa -+=+=.….….5分15.21124x x x -=-- 解:2(2)(4)1x x x+--=.……1分22241x x x +-+=.……2分23x =-.…… 3分32x =-.…….4分 检验:经检验,32x =-是原方程的解.∴原方程的解是32x =-.……5分 16.证明:∠1=∠2,∴OA=OB .…1分 在△COA 和△DOB 中 , OA=OB ,∠AOC =∠BOD ,CO=DO .∴△COA ≌△DOB .……….4分∴∠C =∠D .…………….5分17.解:(1)反比例函数ky x=的图象经过点A (-1,1) , ∴-11-1k =⨯=.…………1分 (2)P 1(0,2)、P 2(0,-2)、P 3(0,2)、P 4(0,-2) (5)分18.解:(1)……2分4月份总用电量/千瓦时 电费/元小刚20098小丽300 150.5 (2)当0230x ≤≤时,0.49y x =;……3分当230400x <≤时,0.54-11.5y x =;……4分当400x >时,0.79-111.5y x =.……5分 四、解答题(本题共20分,每小题5分) 19.解:联结BD . ∵在菱形ABCD 中, ∴AD ∥BC ,AC ⊥BD .……1分又∵EF ⊥AC ,∴BD ∥EF .∴四边形EFBD 为平行四边形.……2分 ∴FB = ED =2.……3分 ∵E 是AD 的中点. ∴AD =2ED =4.……4分 ∴菱形ABCD 的周长为4416⨯=.……5分20.(1)证明:∵OA =OB, ∴∠B =∠4. ∵CD =AC , ∴∠1=∠2.∵∠3=∠2,∴∠3=∠1. ∵AC 是⊙O 的切线, ∴OA ⊥AC .……1分∴∠OAC =90°.∴∠1+∠4=90°. ∴∠3+∠B =90°. ∴OC ⊥OB .……2分(2)在Rt △OAC 中 ,∠OAC =90°, ∵tan ∠OCA =52,∴52OA AC =.……3分 ∴设AC =2x ,则AO =5x .由勾股定理得,OC =3x .∵AC =CD ,∴AC =CD =2x . ∵OD =1,∴OC =2x +1. ∴2x +1=3x .……4分∴x =1.∴AC =21⨯=2.……5分21.解:(1)……3分(注:错一空扣1分,最多扣3分)…4分(2)700⨯(1-0.04)=672.……5分答:这所学校每学期参加社会实践活动的时间不少于8小时的学生大约有672人. 22.解:(1)7;……3分(2)22a b -.……5分分组/时 频数 频率 6~8 2 0.04 8~10 6 0.12 10~12 14 0.28 12~14 18 0.36 14~16 10 0.20 合 计501.00五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)由题意得△>0.∴△=2(4)4[2(1)]8240k k ---=-+>.……1分 ∴解得3<k .……2分(2)∵3<k 且k 为正整数,∴1=k 或2.……3分当1=k 时,x x y 42-=,与x 轴交于点(0,0)、(4,0),符合题意; 当2=k 时,242+-=x x y ,与x 轴的交点不是整数点,故舍去. 综上所述,1=k .……4分432ABCD O1(3)∵2,4y x y x x =⎧⎨=-⎩,∴点C 的坐标是(5,5).∴OC 与x 轴的夹角为45°.过点Q 作QN ⊥PM 于点N ,(注:点Q 在射线PC 上时,结果一样,所以只写一种情况即可)∴∠NQP =45°,NQ PM S ⋅=21. ∵PQ =2,∴NQ =1.∵P (t t ,),则M (t t t 4,2-),∴PM =t t t t t 5)4(22+-=--.……5分 ∴t t S 5212+-=. ∴当50<<t 时,t t S 25212+-=;……6分 当5>t 时,t t S 25212-=.……7分24.解:(1)DE =DF .……1分(2)DE =DF 不发生改变.……2分理由如下:分别取BP 、CP 的中点M 、N ,联结EM 、DM 、FN 、DN .∵D 为BC 的中点,∴BP DN BP DN //,21=.……3分∵,AB PE ⊥∴BP BM EM 21==.∴21,∠=∠=EM DN .∴12213∠=∠+∠=∠.…4分同理,524,//DM FN MD PC =∠=∠. ∴四边形MDNP 为平行四边形.……5分∴67∠=∠.∵,41∠=∠∴35∠=∠. ∴EMD DNF ∠=∠.……6分 ∴△EMD ≌△DNF .∴DE =DF .……7分25.解:(1)∵矩形OABC ,A (32,0),C (0,2),∴B (32,2).∴抛物线的对称轴为x =3.∴b =3.……1分∴二次函数的解读式为:2232y x x =-++.……2分(2)①当顶点A 落在对称轴上时,设点A 的对应点为点A ’,联结OA ’, 设对称轴x =3与x 轴交于点D ,∴OD =3.∴OA ’ = OA =32.在Rt △OA ’D 中,根据勾股定理A ’D =3.∴A ’(3,-3) .……4分7654321NMCD BPFEACA B yxB'C'DA'O②当顶点落C对称轴上时(图略),设点C的对应点为点C’,联结OC’,在Rt△OC’D中,根据勾股定理C’D =1.∴C’(3,1).……6分(3) 120°,4.……8分。

2013北京丰台区中考一模数学试题答案

2013北京丰台区中考一模数学试题答案

丰台区2013年初三毕业及统一练习 数 学 试 卷一、选择题(本题共32分,每小题4分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.-2的倒数是A .2B .-2C .21D . 21-2.第九届中国(北京)国际园林博览会将于2013年的5月18日至11月18日在丰台区举办.据相关介绍,本届园博会在占地面积、建设规模、园区特色、标志建筑、绿色低碳等方面均超过以往任何一届,目前已有120多个国内外城市参展.业界专家预测,北京园博会接待游客将达20 000 000人次,堪称园林版的“奥运会”.将20 000 000用科学记数法表示为A .6102⨯B .61020⨯C .7102⨯D .8100.2⨯3.如图,下列水平放置的几何体中,俯视图是长方形的是4.如果一个正多边形的每个外角为36°,那么这个正多边形的边数是A .12B .10C .9D .85.某中学周末有40人去体育场观看足球赛,40张票分别为A 区第2排1号到40号, 小明同学从40张票中随机抽取一张,则他抽取的座位号为10号的概率是A .140 B . 139C . 12D . 146.如图,直线AB 、CD 相交于点O ,OE CD ⊥, 54BOE ∠=,则∠AOC 等于A .54°B .46°C .36°D .26° 7. 某中学书法兴趣小组12名成员的年龄情况如下:A . 15,16B . 13,14C . 13,15D .14,148.如图,在ABC △中,1AB AC ==,20BAC ∠=.动点P 、Q 分别在直线BC 上运动,且始终保持100PAQ ∠= .设BP x =,CQ y =,则y 与x 的函数关系的图象大致可以表示为二、填空题(本题共16分,每小题4分) 9.在函数y x 的取值范围是___________.A ODBECA B C D ABCD10.分解因式:23x y y -= .11.某地铁站的手扶电梯的示意图如图所示.其中AB 、CD 分别表示电梯出入口处的水平线,∠ABC =135°,BC 的长是25m , 则乘电梯从点B 到点C 上升的高度h 是 m .12.我们把函数图象与x 轴交点的横坐标称为这个函数的零点.如函数12+=x y 的图象与x 轴交点的坐标为(21-,0),所以该函数的零点是21-.(1)函数542-+=x x y 的零点是 ;(2)如图,将边长为1的正方形ABCD 放置在平面直角坐标系xOy 中,且顶点A 在x 轴上.若正方形ABCD 沿x 轴正方向滚动,即先以顶点A 为中心顺时针旋转,当顶点B 落在x 轴上时,再以顶点B 为中心顺时针旋转,如此继续.顶点D 的轨迹是一函数的图象,则该函数在其两个相邻零点间的图象与x 轴所围区域的面积为 .三、解答题(本题共30分,每小题5分)131034sin60(2013)π-+-︒+-.14.解不等式组:302(1)33.x x x +>⎧⎨-+⎩,≥15.已知:如图,在△ABC 中,AD 是中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F . 求证:BE =CF .16.已知30x y -=,求代数式2224+4y 2y x xy x y÷--17.如图,在平面直角坐标系xOy 中,直线+3y kx =的图象与反比例函数4(>0)y x x=的图象交于 点A (1,m),与x 轴交于点B ,过点A 作AC x ⊥轴于点C . (1)求一次函数的解析式; (2)若P 为x 轴上一点,且△ABP 的面积为10,直接写出点P18.列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.四、解答题(本题共20分,每小题5分)19.如图,四边形ABCD 中,AB = AD ,∠BAD =90°,∠CBD =30°,∠BCD =45°, 若AB =22.求四边形ABCD 的面积.20.已知:如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O E 是BC 的中点,连结DE . (1)求证:DE 与⊙O 相切; (2)连结OE ,若cos ∠BAD =35,BE =143,求OE 的长.ABCD21.某电器商场从生产厂家购进彩电、洗衣机、冰箱共480台,各种电器的进货比例如图1所示,商场经理安排6人销售彩电,2人销售洗衣机,4人销售洗冰箱.前5天这三种电器的销售情况如图2与表格所示.请你根据统计图表提供的信息,解答以下问题: (1)该电器商场购进彩电多少台? (2)把图2补充完整; (3)把表格补充完整;(4)若销售人员与销售速度不变,请通过计算说明哪种电器最先售完?22.操作与探究:如图,在平面直角坐标系xOy 中,已知点0M 的坐标为(1,0).将线段0OM 绕原点O 沿逆时针方向旋转45,再将其延长到1M ,使得001OM M M ⊥,得到线段1OM ;又将线段1OM 绕原点O 沿逆时针方向旋转45,再将其延长到2M ,使得112OM M M ⊥,得到线段2OM ,如此下去,得到线段3OM ,4OM ,…,n OM . (1)写出点M 5的坐标; (2)求56OM M △的周长;(3)我们规定:把点)(n n n y x M ,(=n 0,1,2,3…)图2图1冰箱洗衣机的横坐标n x ,纵坐标n y 都取绝对值后得到的新坐标()n ny x,称之为点n M 的“绝对坐标”.根据图中点n M的分布规律,请写出点n M 的“绝对坐标”.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.二次函数2y x bx c =++的图象如图所示,其顶点坐标为M (1,-4).(1) 求二次函数的解析式;(2)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线y x n =+与这个新图象有两个公共点时,求n 的取值范围.24.在ABC △中,∠ACB =90°,AC >BC ,D 是AC 边上的动点,E 是BC 边上的动点,AD =BC ,CD =BE . (1) 如图1,若点E 与点C 重合,连结BD ,请写出∠BDE 的度数;(2)若点E 与点B 、C 不重合,连结AE 、BD 交于点F ,请在图2中补全图形,并求出∠BFE 的度数.D BC (E )A图125.如图,在平面直角坐标系xOy 中,⊙C 的圆心坐标为(-2,-2),半径为2.函数y =-x +2的图象与x 轴交于点A ,与y 轴交于点B ,点P 为直线AB 上一动点.(1)若△POA 是等腰三角形,且点P 不与点A 、B 重合,直接写出点P 的坐标; (2)当直线PO 与⊙C 相切时,求∠POA 的度数;(3)当直线PO 与⊙C 相交时,设交点为E 、F ,点M 为线段EF 的中点,令PO =t ,MO =s ,求s 与t 之间的函数关系式,并写出t 的取值范围.丰台区2013年初三毕业及统一练习数学参考答案及评分标准9.2x ≥ 10.()()y x y x y +- 11.5 12.1-4π;111π22n n n S -+=- 三、解答题(共6小题,每小题5分,满分30分) 13.解:原式=1413+-⨯+ -------- 4分 =43. -------------- 5分14.解:302(1)33.x x x +>⎧⎨-+⎩,≥由①得3x >-.………1分由②得x ≤1. ………3分∴ 原不等式组的解集是-3<x ≤1.……5分 15. 证明:∵在△ABC 中,AD 是中线,∴BD =CD ,-------------- 1分 ∵CF ⊥AD ,BE ⊥AD ,∴∠CFD =∠BED =90° ,--------------- 2分 在△BED 与△CFD 中, ∠BED =∠CFD ,∠BDE =∠CDF ,-------------- 3分 BD =CD ,∴△BED ≌△CFD ,-------------- 4分 ∴BE =CF .-------------- 5分16.解:原式=2-2,2)y x y x y + ( ------------ 2分 =2(-2)yx y . ------------ 3分∵30x y -=,∴3x y =.∴原式=12(3y-2y)22y y y ==. ------------- 5分17.解:(1)由图象知反比例函数xmy =2的图象经过点B (4,3), ∴43m=. ∴m =12. ---------- 1分 ∴反比例函数解析式为212y x=. ---------- 2分 由图象知一次函数b kx y +=1的图象经过点A (-6,-2) , B (4,3),∴⎩⎨⎧=+-=+-.3426 ,b k b k 解得⎪⎩⎪⎨⎧==.,121b k --------- 3分∴一次函数解析式为1112y x =+. -------- 4分 (2)当0<x <4或x <-6时,21y y <.------ 5分18.解:设抢修车的速度为x 千米/时,则吉普车的速度为15x 千米/时. ------ 1分 由题意得,60151.51515=-x x . 解得,.经检验,是原方程的解,并且都符合题意.答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时. 根据题意,得:150x +90(1000-x )=126000,------ 3 分 解方程得 x =600. ------ 4 分 ∴1000-600=400.答:当日这一售票点售出普通票600张,优惠票400张. ------- 5 分四、解答题(共4小题,每小题5分,满分20分) 19.解:过点C 作CE ∥DB ,交AB 的延长线于点E .∴∠ACE =∠COD =60°. -----------------1分 又∵DC ∥AB , ∴四边形DCEB 为平行四边形.---------------- 2分 ∴BD =CE ,BE = DC =3,AE =AB +BE =8+3=11. ---------------- 3分 又∵DC ∥AB ,AD =BC , ∴DB =AC =CE .∴△ACE 为等边三角形.∴AC =AE =11, ∠CAB =60°. -------------------------------------------------- 4分过点C 作CH ⊥AE 于点H .在Rt △ACH 中, CH =AC ·sin ∠CAB =11×23.∴梯形ABCD . -------------------------------------------------- 5分20.(1)证明:如图1所示,连接OD ,BD∵AB 是⊙O 的直径,∴90=∠=∠BDC ADB ° . ……1分在Rt △BDC 中∵E 是BC 的中点,∴DE =21BC; ∴DE =BE; ∴21∠=∠. ∵OD =OB , ∴43∠=∠;∵9042=∠+∠=∠ABC °∴9031=∠+∠=∠ODE ° 即OD ⊥DE ∴DE 是⊙O 的切线 ……2分(2)解: ∵ADB ABC ∠=∠,A A ∠=∠∴△ABC ∽ △ADB ……3分 ∴ADAB AB AC =∵3=AD ,4=AB ∴316=AC ……7分∵OE 是△ABC 的中位线∴3821==AC OE21. 解:(1)480×55%=264(件). ----------------- 1分(2)画图正确. -----------------2分 (3)如表格 60 . ----------------- 3分(4)上衣售完需264÷6÷5=8.8(天).----------------- 5分裤子售完需480×30%÷4÷3=12(天).鞋子售完需 480×15%÷2÷3=12 (天). ∴上衣先售完.22.解:(1)M 5(―4,―4)………………………………………4分(2)由规律可知,245=OM ,2465=M M ,86=OM ……………6分 ∴56M OM △的周长是288+……………………………………8分(3)解法一:由题意知,0OM 旋转8次之后回到x 轴的正半轴,在这8次旋转中,点n M 分别落在坐标象限的分角线上或x 轴或y 轴上,但各点“绝对坐标”的横、纵坐标均为非负数,因此,点n M 的“绝对坐标”可分三类情况: 令旋转次数为n① 当点M 在x 轴上时: M 0(0,)2(0),M 4(0,)2(4),M 8(0,)2(8),M 12(0,)2(12),…,即:点n M 的“绝对坐标”为(0,)2(n )。

2013年北京市丰台区初三数学二模试题及答案

2013年北京市丰台区初三数学二模试题及答案

P4 ma m D CABSS S SO aO aO a O a。

S SS 丰台区2013年初三统一练习(二)数 学 试 卷 2013.6一、选择题(本题共32分,每小题4分) 1.2-的绝对值是A .2B .12C .-2D .12-2.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,某种电子元件的面积大约只有0.000 000 7毫米2,将0.000 000 7用科学记数法表示为A .7×106B .7×10-6C .-7×107D .7×10-7 3. 32()a a -⋅-的运算结果是A . a 5B .-a 5C .a 6D .-a 64.如图,点A 、B 、C 都在O ⊙上,若68AOB = ∠,则ACB ∠的度数为 A .68B .60C .34D .225.抛物线2(2)2y x =-+的顶点坐标为A .(2,2)-B .(2,2)-C .(2,2)D .(2,2)--6.某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中每名队员的平均成绩 与方差S 2如下表所示.如果要选择一个成绩高且发挥稳定的人参赛,则这个人应是 A .甲B .乙C .丙D .丁7.下面四个图形中,三棱柱的平面展开图是A .B .C .D .8.如图,有一直角墙角,两边的长度足够长,在P 处有一棵树与两墙的 距离分别是a 米(0<a <12)、4米.现在想用16米长的篱笆,借助墙角围成一个矩形的花圃ABCD ,且将这棵树围在花圃内(不考虑树的粗细). 设此矩形花圃的最大面积为S ,则S 关于a 的函数图象大致是甲 乙 丙 丁 x8 9 9 8 S 2111.21.3OC BAx二、 填空题(本题共16分,每小题4分) 9.若分式42x x -+的值为0,则x 的值为 . 10.分解因式:244xy xy x -+=__________________.11.在盒子里放有四张分别画有等边三角形、平行四边形、矩形、圆的卡片(卡片除所画内容不同外,其余均相同),从中随机抽取一张卡片,卡片上画的恰好是轴对称图形的概率是 .12.如图,在△OA 1B 1中,∠OA 1B 1=90°,OA 1= A 1B 1=1.以O 为圆心,1OA 为半径作扇形OA 1B 2,⌒A 1B 2与1OB 相交于点2B ,设△OA 1B 1与扇形OA 1B 2之间的阴影部分的面积为1S ;然后过点B 2作B 2A 2⊥OA 1于点A 2,又以O 为圆心,2OA 为半径作扇形OA 2B 3,⌒A 2B 3与1OB 相交于点3B ,设△OA 2B 2与扇形OA 2B 3之间的阴影部分面积为2S ;按此规律继续操作,设△OA n B n 与扇形OA n B n +1之间的阴影部分面积为n S .则S 1=___________; S n = . 三、解答题(本题共30分,每小题5分) 13.计算:1(2)8+21cos 45-----+ ().14.解方程:11312=---x x x .15.已知:如图,B C E ,,三点在同一条直线上,AC DE ∥,AC CE =,B D ∠=∠.求证:ABC CDE △≌△.ADB CEB 1A 1A 2 A 3 OS 2S 1S 3B 3B 4B 216.已知11m m+=,求)21)(21()3(m m m m -+++的值.17.如图,在平面直角坐标系xOy 中,若点(2,)A n -,(1,2)B -是一次函数y kx b =+的图象和反比例函数m y x=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积.18.列方程或方程组解应用题:某农场去年种植了10亩地的西瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种西瓜.已知西瓜种植面积的增长率是亩产量的增长率的2倍,预计今年西瓜的总产量为60000kg , 求西瓜亩产量的增长率. O xyABC四、解答题(本题共20分,每小题5分)19.如图,四边形ABCD 中, CD=2, 90=∠BCD , 60=∠B , 30,45=∠=∠CAD ACB ,求AB的长.20.已知:如图,直线PA 交⊙O 于A 、B 两点,AE 是⊙O 的直径,点C 是⊙O 上一点,且AC 平分∠P AE ,过点C 作CD ⊥P A ,垂足为点D .(1)求证:CD 与⊙O 相切; (2)若tan ∠ACD =21,⊙O 的直径为10,求AB 的长.A B P OCD ED AB C21.6月5日是世界环境日,某城市在宣传“绿色环境城市”活动中,发布了一份2013年1至5月份空气质量抽样调查报告,随机抽查的30天中,空气质量的相关信息如下:%请你根据统计图表提供的信息,解答以下问题(结果均取整数): (1)请将图表补充完整;(2)请你根据抽样数据,通过计算,预测该城市一年(365天)中空气质量级别为优和良的天数大约共有多少天?22.操作探究:一动点沿着数轴向右平移5个单位,再向左平移2个单位,相当于向右平移3个单位.用实数加法表示为 5+(2-)=3.若平面直角坐标系xOy 中的点作如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移a 个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移b 个单位),则把有序数对{a ,b }叫做这一平移的“平移量”.规定“平移量”{a ,b }与“平移量”{c ,d }的加法运算法则为}{}{}{d b c a d c b a ++=+,,,.(1)计算:{3,1}+{1,2};(2)若一动点从点A (1,1)出发,先按照“平移量”{2,1}平移到点B ,再按照“平移量”{-1,2}平移到点C ;最后按照“平移量”{-2,-1}平移到点D ,在图中画出四边形ABCD ,并直接写出点D 的坐标;(3)将(2)中的四边形ABCD 以点A 为中心,顺时针旋转90°,点B旋转到点E ,连结AE 、BE 若动点P 从点A 出发,沿△AEB 的三边AE 、EB 、BA 平移一周. 请用“平移量”加法算式表示动点P 的平移过程. 空气污染指数0~50 51~100 101~150 151~200 201~250 空气质 量级别 优 良 轻微 污染 轻度 污染 中度污染天数 15 4 2 50%良 优 13% % 7% 轻微污染轻度污染 中度污染15 轻度 优良轻微中度3 y 2y 天数 级别yxO11五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的方程2(2)30--+-=.x m x m(1)求证:此方程总有两个实数根;(2)设抛物线2(2)3=--+-与y轴交于点M,若抛物线与x轴的一个交点关于直线y=-x的y x m x m对称点恰好是点M,求m的值.yO1x(备图)24.在Rt △ABC 中,AB =BC ,∠B =90°,将一块等腰直角三角板的直角顶点O 放在斜边AC 上,将三角板绕点O 旋转.(1)当点O 为AC 中点时,①如图1, 三角板的两直角边分别交AB ,BC 于E 、F 两点,连接EF ,猜想线段AE 、CF 与EF 之间存在的等量关系(无需证明);②如图2, 三角板的两直角边分别交AB ,BC 延长线于E 、F 两点,连接EF ,判断①中的猜想是否成立.若成立,请证明;若不成立,请说明理由;(2)当点O 不是AC 中点时,如图3,,三角板的两直角边分别交AB ,BC 于E 、F 两点,若14AO AC,求OE OF的值.COB A OE图1FBA OCEFA BCE F图2图325.如图,把△OAB 放置于平面直角坐标系xOy 中,90OAB ∠=︒,32,2OA AB ==,把△OAB 沿x 轴的负方向平移2OA 的长度后得到△DCE .(1)若过原点的抛物线2+y ax bx c =+经过点B 、E ,求此抛物线的解析式;(2)若点P 在该抛物线上移动,当点P 在第一象限内时,过点P 作x PQ ⊥轴于点Q ,连结OP .若以O 、P 、Q 为顶点的三角形与以B 、C 、E 为顶点的三角形相似,直接写出点P 的坐标;(3)若点M (-4,n ) 在该抛物线上,平移抛物线,记平移后点M 的对应点为M ′,点B 的对应点为B ′.当抛物线向左或向右平移时,是否存在某个位置,使四边形M ′B ′CD 的周长最短?若存在,求出此时抛物线的解析式;若不存在,请说明理由.A O xBCD yE丰台区2013年初三统一练习(二)数学参考答案及评分标准一、选择题(本题共32分,每小题4分) 题号 1 2 3 4 5 6 7 8 答案ADBCCBAC二、填空题(本题共16分,每小题4分) 9.4 10.2(2)x y - 11.34 12.128π-; 2122n n π+- 三、解答题(本题共30分,每小题5分) 13.解:原式=1222122--++-------- 4分 =1322-. -------- 5分 14.解:23111xx x --=--,----------- 1分 231x x --=-, -----------2分41x -=, ----------- 3分14x =-.-----------4分经检验,14x =-是原方程的解.----------- 5分∴原方程的解是14x =-.15.证明:∵AC ∥DE ,∴∠ACB =∠E.-------------- 1分 在△ABC 和△CDE 中, ∠ACB =∠E ,∠B =∠D , -------------- 4分 AC =CE ,∴△ABC ≌△CDE.-------------- 5分 16.解:∵11m m+=,∴21m m -=-. ------------ 1分 ∴原式=223+14m m m +- ------------ 2分=2331m m -++ ------------ 3分 =23()1m m --+ ------------ 4分= 3(1)14-⨯-+= . ------------ 5分17.解:(1)∵点(1,2)B -在函数my x=的图象上, ∴2m =-.∴反比例函数的解析式为2y x=-.-- 1分点(2,)A n -在函数2y x=-的图象上,∴1n =.∴(2,1)A -.y kx b =+ 经过(2,1)A -、(1,2)B -,∴21,2.k b k b -+=⎧⎨+=-⎩解得:1,1.k b =-⎧⎨=-⎩∴一次函数的解析式为1y x =--. ---- 3分(2)C 是直线AB 与x 轴的交点,∴当0y =时,1x =-. ∴点(1,0)C -.---------4分1OC ∴=.AOB ACO BCO S S S ∴=+△△△11111222=⨯⨯+⨯⨯ 32= ---------5分 18.解:设西瓜亩产量的增长率为x ,则西瓜种植面积的增长率为2x . ------ 1分 由题意得,2000(1+)10(12)60000x x ⋅+= . --2 分 解得,121,22x x ==-. ------ 3分 但22x =-不合题意,舍去. ------ 4分 答:西瓜亩产量的增长率为50%. ------ 5分 四、解答题(本题共20分,每小题5分)19.解:过点D 作DE ⊥AC 于E,过点A 作AF ⊥BC 于F .∵∠ACB =45°,∠BCD =90°, ∴∠ACD =45°.∵CD =2,∴DE =EC =1. -----------------1分 ∵∠CAD =30°,∴AE =3.O xy A B CDABCFE∴AC =31+. ---------------- 3分∴F A =FC =316222++=.------------------------------- 4分 ∵∠ABF =60°, ∴622326sin 60233AF AB ++==⋅=︒. ------------------------ 5分 20. (1)证明:连结OC .∵ 点C 在⊙O 上,OA =OC ,∴ .OCA OAC ∠=∠∵ CD PA ⊥,∴ 90CDA ∠=,有90CAD DCA ∠+∠= . ∵ AC 平分∠P AE ,∴ .DAC CAO ∠=∠ ∴ .DAC OCA ∠=∠ ---------1分∴ 90.DCO DCA ACO DCA DAC ∠=∠+∠=∠+∠=∵ 点C 在⊙O 上,OC 为⊙O 的半径,∴ CD 为⊙O 的切线. ---------2分(2)解: 过点O 作OG ⊥AB 于G .∵90OCD ∠= ,CD PA ⊥,∴四边形OCDG 是矩形. ∴OG =CD , GD =OC . ---------3分∵ ⊙O 的直径为10,∴OA =OC =5.∴DG =5.∵tan ∠ACD 12AD CD ==,设AD =x , CD=2x ,则OG=2x.∴ AG =DG-AD=5- x .在Rt AGO △中,由勾股定理知222.AG OG OA +=∴ ()22(5)225.x x -+= 解得122,0()x x ==舍. -------------------------4分∴ 22(52)6AB AG ==⨯-= . -------------------------5分 21. 解:(1)20 %-------------------------3分如图,画图基本准确,每个统计图全部正确得1分. (2)365×(20%+50%)≈256.答:该城市一年为优和良的天数大约共有256天. -------------------------5分22.(1){4,3}. -------------------------1分(2)①画图 -------------------------2分空气污染指数 0~50 51~100 101~150 151~200 201~250空气质 量级别 优 良轻微 污染 轻度 污染 中度污染天数 6 15 4 32 50%良优13% 10 %7% 轻微污染轻度污染 中度污染yxBACDO11 ABPO C D E G②D (0,3). -------------------------3分(3){1,-2}+{1,3}+{-2,-1}.-------------------------5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23、(1)证明: 22224(2)4(3)816(4)0b ac m m m m m ∆=-=---=-+=-≥,----------- 1分∴此方程总有两个实数根. ------------------------- 2分(2)解:抛物线2(2)3y x m x m =--+-与y 轴交点为M (0,3m -).---------------------3分抛物线与x 轴的交点为(1,0)和(3m -,0),它们关于直线y x =-的对称点分别为(0,1-)和 (0, 3m -).-----------------5分 由题意,可得:1333m m m -=--=-或,即m =2或m =3. -------------------------7分24解:(1)① 猜想:222AE CF EF +=.-------------------------1分 ② 成立. ------------------------2分证明:连结OB.∵AB =BC , ∠ABC =90°,O 点为AC 的中点,∴12OB AC OC ==,∠BOC =90°,∠ABO =∠BCO =45°.∵∠EOF =90°,∴∠EOB =∠FOC . 又∵∠EBO =∠FCO ,∴△OEB ≌△OFC (ASA ).∴BE =CF . -------------------------3分 又∵BA=BC , ∴AE =BF .在RtΔEBF 中,∵∠EBF =90°, 222B F B E E F∴+=.222AE CF EF ∴+=. -------------------------4分 (2)解:如图,过点O 作OM ⊥AB 于M ,ON ⊥BC 于N . ∵∠B =90°, ∴∠MON =90°. ∵∠EOF =90°,∴∠EOM =∠FON .∵∠EMO =∠FNO =90°,∴△OME ∽△ONF . -------------------------5分 ∴OM OE ON OF =∵△AOM 和△OCN 为等腰直角三角形, ∴△AOM ∽△OCN ∴OM AO ONOC=.∵14AO AC =, ∴13OE OF =. -------------------------7分25.解:(1)依题意得:322B (,).∵OC =2,CE=32,∴3 22E -(,). ∵抛物线经过原点和点B 、E,∴设抛物线的解析式为2y ax =(0)a ≠.∵抛物线经过点322B (,),∴342a = .解得:a =38.CB AOEFA OBCE F M N∴抛物线的解析式为238y x =.-------------------------2分(2) 64512927P (,)或318P (,).-------------------------4分 (3)存在.因为线段M B ''和CD 的长是定值,所以要使四边形M B CD ''的周长最短,只要使M D CB ''+最短.如果将抛物线向右平移,显然有M ′D +CB ′>MD +CB ,因此不存在某个位置,使四边形M ′B ′CD 的周长最短, 显然应该将抛物线238y x =向左平移.由题知(4,6)M -. -------------------------5分设抛物线向左平移了n 个单位,则点M '和B ′的坐标分别为M ′(-4-n ,6)和B ′(2-n ,32).因为CD =2,因此将点B ′向左平移2个单位得B ′′(-n ,23).要使M D CB ''+最短,只要使M D '+DB ′′最短. 点M′关于x 轴对称点的坐标为M ′′(-4-n ,-6). 设直线M ′′B ′′的解析式y kx b =+,点D 应在直线M ′′B ′′上, ∴直线M ′′B ′′的解析式为151582y x =+.----------------6分 将B ′′(-n ,23)代入,求得165n =.--------------7分故将抛物线向左平移165个单位时,四边形M ′B ′CD 的周长最短,此时抛物线的解析式为2316()85y x =+. -------------------------8分M ′y4 x2 2M ′8-2 O -2 -4 6 B ′CD -4 4 B ′′。

2013北京市各城区初三数学二模代几综合题汇总

2013北京市各城区初三数学二模代几综合题汇总

2013年北京市各区中考二模试题汇编之--------代几综合题2013年海淀二模25. 在平面直角坐标系xOy 中,点A 的坐标是0,2(),过点A 作直线l 垂直y 轴,点B 是直线l 上异于点A 的一点,且ÐOBA =a .过点B 作直线l 的垂线m ,点C 在直线m 上,且在直线l 的下方,ÐOCB =2a .设点C 的坐标为x ,y ().(1) 判断△OBC 的形状,并加以证明;(2) 直接写出y 与x 的函数关系式(不要求写自变量的取值范围); (3) 延长CO 交(2)中所求函数的图象于点D .求证:CD =CO ×DO .2013年西城二模25.如图1,在平面直角坐标系xOy 中,直线l 和抛物线W 交于A ,B 两点,其中点A 是抛物线W 的顶点.当点A 在直线l 上运动时,抛物线W 随点A 作平移运动.在抛物线平移的过程中,线段AB 的长度保持不变. 应用上面的结论,解决下列问题:如图2,在平面直角坐标系xOy 中,已知直线1:2l y x =-.点A 是直线1l 上的一个动点,且点A 的横坐标为t .以A 为顶点的抛物线21:C y x bx c =-++与直线1l 的另一个交点为点B . (1) 当0t =时,求抛物线1C 的解析式和AB 的长;(2) 当点B 到直线OA 的距离达到最大时,直接写出此时点A 的坐标;(3) 过点A 作垂直于y 轴的直线交直线21:2l y x =于点C .以C 为顶点的抛物线22:C y x mx n =++与直线2l 的另一个交点为点D . ①当AC ⊥BD 时,求t 的值;②若以A ,B ,C ,D 为顶点构成的图形是凸四边形,直接写出满足条件的t 的取值范围.2013年石景山二模25.(1)如图1,把抛物线2y x =-平移后得到抛物线1C ,抛物线1C 经过点(4,0)A -和原点(0,0)O ,它的顶点为P ,图1图2 备用图它的对称轴与抛物线2y x =-交于点Q ,则抛物线1C 的解析式为____________;图中阴影部分的面积为_____. (2)若点C 为抛物线1C 上的动点,我们把90ACO ∠=时的△ACO 称为抛物线1C 的内接直角三角形.过点(1,0)B 做x 轴的垂线l ,抛物线1C 的内接直角三角形的两条直角边所在直线AC 、CO 与直线l 分别交于M 、N 两点,以MN 为直径的⊙D 与x 轴交于E 、F 两点,如图2.请问:当点C 在抛物线1C 上运动时,线段EF 的长度是否会发生变化?请写出并证明你的判断.2013年朝阳二模24.如图,在平面直角坐标系xOy 中,抛物线y = ax 2+bx +4与x 轴交于点A (-2,0)、B (6,0),与y 轴交于点C ,直线CD ∥x 轴,且与抛物线交于点D ,P 是抛物线上一动 点.(1)求抛物线的解析式;(2)过点P 作PQ ⊥CD 于点Q ,将△CPQ 绕点C 顺时针旋转,旋转角为α(0º﹤α﹤90º),当cos α=35,且旋转后点P 的对应点'P 恰好落在x 轴上时,求点P 的坐标.2013年门头沟二模25. 如图,在平面直角坐标系xOy 中, 已知矩形ABCD 的两个顶点B 、C 的坐标分别是B (1,0)、C (3,0).直线AC 与y 轴交于点G (0,6).动点P 从点A 出发,沿线段AB 向点B 运动.同时动点 Q 从点C 出发,沿线段CD 向点D 运动.点P 、Q 的运动速度均为每秒1个单位,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E . (1)求直线AC 的解析式;(2)当t 为何值时,△CQE 的面积最大?最大值为多少?(3)在动点P 、Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使得以C 、Q 、E 、H 为顶点的四边形是菱形?图1图 2P Q E yxA B D O C G y x B A D C O 备用图y x B A D C O2013年顺义二模 25、已知抛物线c bx x y ++-=241与x 轴交于A 、B ,与y 轴交于点C ,连结AC 、BC ,D 是线段OB 上一动点,以CD 为一边向右侧作正方形CDEF ,连结BF 。

2013北京初三二模分类试23 24题

2013北京初三二模分类试23  24题

初三分类试题—综合题解答题1.在平面直角坐标系xOy 中, A ,B 两点在函数11:(0)k C y x x=>的图象上,其中10k >.AC ⊥y 轴于点C ,BD ⊥x 轴于点D ,且 AC =1.(1) 若1k =2,则AO 的长为 ,△BOD 的面积为 ; (2) 如图1,若点B 的横坐标为1k ,且11k >,当AO =AB 时,求1k 的值; (3) 如图2,OC =4,BE ⊥y 轴于点E ,函数22:(0)k C y x x=>的图象分别与线段BE ,BD 交于点M ,N ,其中210k k <<.将△OMN 的面积记为1S ,△BMN 的面积记为2S ,若12S S S =-,求S 与2k 的函数关系式以及S 的最大值.2.在△ABC 中,AB =AC ,AD ,CE 分别平分∠BAC 和∠ACB ,且AD 与CE 交于点M .点N 在射线AD 上,且NA =NC .过点N 作NF ⊥CE 于点G ,且与AC 交于点F ,再过点F 作FH ∥CE ,且与AB 交于点H .(1) 如图1,当∠BAC =60°时,点M ,N ,G 重合. ①请根据题目要求在图1中补全图形;②连结EF ,HM ,则EF 与HM 的数量关系是__________; (2) 如图2,当∠BAC =120°时,求证:AF =EH ;(3) 当∠BAC =36°时,我们称△ABC 为“黄金三角形”,此时2BC AC=EH =4,直接写出GM 的长.4.已知:抛物线2(2)2y ax a x =+--过点(3,4)A . (1)求抛物线的解析式;(2)将抛物线2(2)2y ax a x =+--在直线1y =-下方的部分沿直线1y =-翻折,图象其余的部分保持不变,得到的新函数图象记为G .点()1,M m y 在图象G 上,且10y ≤.①求m 的取值范围;②若点()2,N m k y +也在图象G 上,且满足24y ≥恒成立,则k 的取值范围为 .5.如图1,在△ABC 中,AB =AC ,ABC α∠=. 过点A 作BC 的平行线与∠ABC 的平分线交于点D ,连接CD .图1 图2 (1)求证:AC AD =;(2)点G 为线段CD 延长线上一点,将射线GC 绕着点G 逆时针旋转β,与射线BD图1 图2备用图交于点E .①若βα=,2GD AD =,如图2所示,求证:2DEG BCD S S ∆∆=; ②若2βα=,GD kAD =,请直接写出DEGBCDS S ∆∆的值(用含k 的代数式表示).7. 已知:关于x 的一元二次方程01)2()1(2=--+-x m x m (m 为实数). (1)若方程有两个不相等的实数根,求m 的取值范围;(2)求证:抛物线1)2()1(2--+-=x m x m y 总过x 轴上的一个定点;(3)若m 是整数,且关于x 的一元二次方程01)2()1(2=--+-x m x m 有两个不相等的整数根时,把抛物线1)2()1(2--+-=x m x m y 向右平移3个单位长度,求平移后的解析式.8. 在矩形ABCD 中,4AB =,3BC =,E 是AB 边上一点,EF CE ⊥交AD 于点F ,过点E 作AEH BEC ∠=∠,交射线FD 于点H ,交射线CD 于点N . (1)如图1,当点H 与点F 重合时,求BE 的长;(2)如图2,当点H 在线段FD 上时,设BE x =,DN y =,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)连结AC ,当以点E ,F ,H 为顶点的三角形与△AEC 相似时,求线段DN 的长.10.已知关于x 的一元二次方程x 2+(4-m )x+1-m=0(1)求证:无论m 取何值,此方程总有两个不相等的实数根;(2)此方程有一个根是-3,在平面直角坐标系xOy 中,将抛物线y =x 2+(4-m )x+1-m向右平移3个单位,得到一个新的抛物线,当直线y =x +b 与这个新抛物线有且只有一个公共点时,求b 的值.12. 在□ABCD 中,E 是AD 上一点,AE =AB ,过点E 作直线EF ,在EF 上取一点G ,使得∠EGB =∠EAB ,连接AG .(1)如图1,当EF 与AB 相交时,若∠EAB =60°,求证:EG =AG +BG ;(2)如图2,当EF 与AB 相交时,若∠EAB = α(0º﹤α﹤90º),请你直接写出线段EG 、AG 、BG 之间的数量关系(用含α的式子表示);(3)如图3,当EF 与CD 相交时,且∠EAB =90°,请你写出线段EG 、AG 、BG 之间的数量关系,并证明你的结论.13.已知二次函数217=22y x kx k ++-. (1)求证:不论k 为任何实数,该函数的图象与x 轴必有两个交点;(2)若该二次函数的图象与x 轴的两个交点在点A (1,0)的两侧,且关于x 的一元二次方程k 2x 2+(2k +3)x +1=0有两个不相等的实数根,求k 的整数值;(3)在(2)的条件下,关于x 的另一方程 x 2+2(a +k )x +2a -k 2+6 k -4=0 有大于0且小于3的实数根,求a 的整数值.图3图2F图1F14.(1)如图1,正方形ABCD 中,E 、F 分别是BC 、CD 边上的点,且满足BE =CF ,联结AE 、BF 交于点H ..请直接写出线段AE 与BF 的数量关系和位置关系;(2)如图2,正方形ABCD 中,E 、F 分别是BC 、CD 边上的点,联结BF ,过点E 作EG ⊥BF 于点H ,交AD 于点G ,试判断线段BF 与GE 的数量关系,并证明你的结论; (3)如图3,在(2)的条件下,联结GF 、HD . 求证:①FG +BE;②∠HGF =∠HDF .16. 在平面直角坐标系xOy 中,抛物线224276883m m y x x m m --=-++-+经过原点O ,点B (-2,n )在这条抛物线上. (1)求抛物线的解析式;(2)将直线2y x =-沿y 轴向下平移b 个单位后得到直线l , 若直线l 经过B 点,求n 、b 的值;(3)在(2)的条件下,设抛物线的对称轴与x 轴交于点C ,直线l 与y 轴交于点D ,且与抛物线的对称轴交于点E .若P 是抛物线上一点,且PB =PE ,求P 点的坐标.第24题图1F BA 第24题图2FBD GE第21题图3FBGE17.已知:在△AOB 与△COD 中,OA =OB ,OC =OD ,︒=∠=∠90COD AOB . (1)如图1,点C 、D 分别在边OA 、OB 上,连结AD 、BC ,点M 为线段BC 的中点,连结OM ,则线段AD 与OM 之间的数量关系是 ,位置关系是 ;(2)如图2,将图1中的△COD 绕点O 逆时针旋转,旋转角为α (︒<<︒900α).连结AD 、BC ,点M 为线段BC 的中点,连结OM .请你判断(1)中的两个结论是否仍然成立.若成立,请证明;若不成立,请说明理由;(3)如图3,将图1中的 △COD 绕点 O 逆时针旋转到使 △COD 的一边OD 恰好与△AOB 的边OA 在同一条直线上时,点C 落在OB 上,点M 为线段BC 的中点. 请你判断(1)中线段AD 与OM 之间的数量关系是否发生变化,写出你的猜想,并加以证明.19. 已知二次函数m x x y ++=22的图象C 1与x 轴有且只有一个公共点. (1)求C 1的顶点坐标;(2)将C 1向下平移若干个单位后,得抛物线C 2,如果C 2与x 轴的一个交点为A (—3,0),求C 2的函数关系式,并求C 2与x 轴的另一个交点坐标;(3)若.,),2(),,(21121y y C y Q y n P >且上的两点是直接写出实数n 的取值范围.解:20. 如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,连结AM 、CM .(1) 当M 点在何处时,AM +CM 的值最小;(2)当M 点在何处时,AM +BM +CM 的值最小,并说明理由; (3)当AM +BM +CM 的最小值为13+时,求正方形的边长.图1O MABC D图2DCBMO图3A22.已知:如图,抛物线L 1:y =x 2﹣4x +3与x 轴交于A .B 两点(点A 在点B 左侧),与y 轴交于点C .(1)直接写出点A 和抛物线L 1的顶点坐标; (2)研究二次函数L 2:y =kx 2﹣4kx +3k (k ≠0).①写出二次函数L 2与二次函数L 1有关图象的两条相同的性质;②若直线y =8k 与抛物线L 2交于E 、F 两点,问线段EF 的长度是否会因k 值的变化而发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.23.已知:如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,ABAD = 3,BC = 4,以点D 为旋转中心,将腰DC 逆时针旋转а至DE .(1)当а=90°时,连结AE ,则△EAD 的面积等于___________(直接写出结果); (2)当0°<а< 180°时,连结BE ,请问BE 能否取得最大值,若能,请求出BE 的最大值;若不能,请说明理由;(3)当0°<а< 180°时,连结CE ,请问а为多少度时,△CDE25.已知关于x 的方程2(2)30x m x m --+-=. (1)求证:此方程总有两个实数根;(2)设抛物线2(2)3y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y =-x 的对称点恰好是点M ,求m 的值.α26.在Rt △ABC 中,AB =BC ,∠B =90°,将一块等腰直角三角板的直角顶点O 放在斜边AC 上,将三角板绕点O 旋转. (1)当点O 为AC 中点时,①如图1, 三角板的两直角边分别交AB ,BC 于E 、F 两点,连接EF ,猜想线段AE 、CF 与EF 之间存在的等量关系(无需证明);②如图2, 三角板的两直角边分别交AB ,BC 延长线于E 、F 两点,连接EF ,判断①中的猜想是否成立.若成立,请证明;若不成立,请说明理由;(2)当点O 不是AC 中点时,如图3,,三角板的两直角边分别交AB ,BC 于E 、F 两点,若14AO AC=,求OE OF的值.28.如图,抛物线2y x ax b =-++过点A (-1,0),B (3,0),其对称轴与x 轴的交点为C , 反比例函数ky x=(x >0,k 是常数)的图象经过抛物线的顶点D . (1)求抛物线和反比例函数的解析式.(备图)COB A OE图1 FBA OCEFA BCE F图2图3yxO(2)在线段DC 上任取一点E ,过点E 作x 轴平行线,交y 轴于点F 、交双曲线于点G ,联结DF 、DG 、FC 、GC .①若△DFG 的面积为4,求点G 的坐标; ②判断直线FC 和DG 的位置关系,请说明理由; ③当DF =GC 时,求直线DG 的函数解析式.解:29.如图,四边形ABCD 、1111A B C D 是两个边长分别为5和1且中心重合的正方形.其中,正方形1111A B C D 可以绕中心O 旋转,正方形ABCD 静止不动.(1)如图1,当11D D B B 、、、四点共线时,四边形11DCC D 的面积为 __; (2)如图2,当11D D A 、、三点共线时,请直接写出11CD DD = _________; (3)在正方形1111A B C D 绕中心O 旋转的过程中,直线1CC 与直线1DD 的位置关系是______________,请借助图3证明你的猜想.31. 已知点A (a ,1y )、B (2a ,y 2)、C (3a ,y 3)都在抛物线21122y x x =-上.(1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,请说明理由.BBB图1 图2 图332.(1)如图1,以AC 为斜边的Rt △ABC 和矩形HEFG 摆放在直线l 上(点B 、C 、E 、F 在直线l 上),已知BC =EF =1,AB =HE =2. △ABC 沿着直线l 向右平移,设CE =x ,△ABC 与矩形HEFG 重叠部分的面积为y (y ≠0). 当x =35时,求出y 的值; (2)在(1)的条件下,如图2,将Rt △ABC 绕AC 的中点旋转180°后与Rt △ABC 形成一个新的矩形ABCD ,当点C 在点E 的左侧,且x =2时,将矩形ABCD 绕着点C 顺时针旋转α角,将矩形HEFG 绕着点E 逆时针旋转相同的角度. 若旋转到顶点D 、H 重合时,连接AG ,求点D 到AG 的距离;(3)在(2)的条件下,如图3,当α=45°时,设AD 与GH 交于点M ,CD 与HE 交于点N ,求证:四边形MHND 为正方形.M N图3HG lFECB A DlABCEFGH图1图2D GlFECBA(H )34.已知:关于x 的一元二次方程01)2()1(2=--+-x m x m (m 为实数) (1)若方程有两个不相等的实数根,求m 的取值范围;(2)在(1)的条件下,求证:无论m 取何值,抛物线1)2()1(2--+-=x m x m y 总过x 轴上的一个固定点;(3)若m 是整数,且关于x 的一元二次方程01)2()1(2=--+-x m x m 有两个不相等的整数根,把抛物线1)2()1(2--+-=x m x m y 向右平移3个单位长度,求平移后的 解析式.35.如图1,△ABC 是等腰直角三角形,四边形ADEF 是正方形,D 、F 分别在AB 、AC 边 上,此时BD =CF ,BD ⊥CF 成立.(1)当正方形ADEF 绕点A 逆时针旋转θ(0°<θ<90°)时,如图2,BD =CF 成立吗? 若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF 绕点A 逆时针旋转45°时,如图3,延长BD 交CF 于点G . ①求证:BD ⊥CF ;②当AB =4,AD =时,求线段BG 的长.37.已知抛物线232y x mx =+-.(1)求证:无论m 为任何实数,抛物线与x 轴总有两个交点;(2)若m 为整数,当关于x 的方程2320x mx +-=的两个有理数根都在1-与43之间 (不包括-1、43)时,求m 的值. (3)在(2)的条件下,将抛物线232y x mx =+-在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新图象G ,再将图象G 向上平移n 个单位,若图象G 与过点(0,3)且与x 轴平行的直线有4个交点,直接写出n 的取值范围是 .38.如图,直线MN与线段AB相交于点O, 点C和点D在直线MN上,且45ACN BDN∠=∠=︒.(1) 如图1所示,当点C与点O重合时,且AO OB=,请写出AC与BD的数量关系和位置关系;(2)将图1中的MN绕点O顺时针旋转到如图2所示的位置,AO OB=,(1)中的AC 与BD的数量关系和位置关系是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)将图2中的OB拉长为AO的k倍得到如图3,求ACBD的值.。

北京市丰台区届中考二模数学试卷含答案

北京市丰台区届中考二模数学试卷含答案

丰台区 年初三统一练习(二)数学参考答案二、填空题(本题共18分,每小题3分) 11. x (x -2)2.12. 60. 13.1,1ab(答案不唯一). 14. 100,3100.3x y y x15.预估理由需包含统计图提供的信息,且支撑预估的数据. 16.1234(2,1),(1,2),(1,1),(0,1).C C C C三、解答题(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:原式 1421232=-⨯++ -------- 4分 = -------- 5分18. 解:原式2222244()2x xy y x y y =-+---234y xy =- -------- 3分(34)y y x =-∵43x y =,∴340y x -=. ∴原式=0. -------- 5分19. 解:(1)∵原方程有两个不相等的实数根,∴94(1)m ∆=--450m =+>,即54m >-. -------- 3分 (2)∵m 为负整数,∴1m =-.∴方程为2320x x ++=,即(1)(2)0x x ++=.解得121,2x x =-=-. -------- 5分20.证明:∵△ABC 是等边三角形,∴∠C =60°. -------- 1分∵BD AC ⊥于点D , ∴∠BDC =90°. ∵E 是BC 中点,∴1.2DE BC CE == -------- 3分∴△DEC 是等边三角形. -------- 4分 ∴.DE DC = -------- 5分21. 解:设王刚原来每小时跑x 公里,则现在每小时跑1.2x 公里. -------- 1分 由题意,得12121.1.26x x =+ -------- 2分解得 12x =. -------- 3分 经检验,12x =是所列方程的解,并且符合实际意义.-------- 4分答:王刚原来每小时跑12公里. -------- 5分 22.(1)∵DE ∥AC ,CE ∥BD∴四边形OCED 是平行四边形. -------- 1分 ∵四边形ABCD 是菱形, ∴ AC BD ⊥.∴90DOC ∠=︒.∴平行四边形OCED 是矩形. -------- 2分(2) ∵四边形ABCD 是菱形,BD =8,∴142OD BD ==,CD =AD =5. -------- 3分∴223CO CD OD =-=.∵四边形OCED 是矩形,∴DE =OC =3,CE =OD =4. -------- 4分 ∵90E ∠=︒,∴在Rt △DEC 中,3tan 4DE DCE EC ∠==. -------- 5分23.解:(1)由题意,得 6.k -=解得 6.k =- -------- 1分 (2)①当点B 在第二象限时,如图1.过点A 作AE ⊥x 轴于E , 过点B 作BF ⊥x 轴于F . ∴AE ∥BF . ∴BF CB AECA=.∵AB =2BC, ∴13CB CA=.∵AE =6,OEDCBAxy 1 2 3 4 5 –1 –2 –3 –4 –5 1 23 4 5 6 7 8 –1–2 –3 –4 –5B COA FE∴BF =2.当y =2时,62,x =-解得x =-3.∴B (-3,2). -------- 3分②当点B 在第四象限时,如图2,同①可求点B (1,-6). 综上所述,点B 的坐标为(-3,2)或(1,-6).-------- 5分24.证明:连接AC .∵AB 是O 的直径∴90ACB ∠=.∴90CAB B ∠+∠=︒. ∵E 为BC 的中点, ∴CAE EAB ∠=∠.∴2CAB EAB ∠=∠. ∵BAE D ∠2=∠,∴CAB D ∠=∠. ------- 1分 ∴90B D ∠+∠=︒.∴90DAB ∠=︒.即AB AD ⊥.又∵AB 是直径,∴AD 是O 的切线. ------- 2分 (2)∵在Rt △ACD 中,3cos 5DC D AD ==,6AD =,18.5DC ∴=------- 3分 ∵在Rt △ABD 中,3cos 5AD D BD ==,6AD =, ∴10BD =.∵CAF EAB ∠=∠,90ACB ∠=,AB FG ⊥, ∴CF FG =. ------- 4分 设CF FG x ==. ∵AB FG ⊥, ∴GFB D ∠=∠. ∴3cos 5FG GFB FB ∠==. ∴53FB x =. ∵10DC CF FB ++=.GO FDCBAE图1xy 1 2 3 4 5 –1 –2 –3 –4–5 1 23 4 5 6 7 8 –1–2 –3 –4 –5 –6 –7BC O A FE∴1851053x x ++=. 解得125x =.∴125FG =. ------- 5分25. 解:(1)16.16; ------- 1分 (2)统计表如下:202X 年和 年除夕当日微信红包收发总量和音视频的通话时长统计表微信红包收发总量音视频通话时长 202X 年 10.1亿个 1.05亿分钟 年80.8亿个4.2亿分钟------- 5分26. 解:(1)0x ≠. ------- 1分(2)38,23m n ==. ------- 3分 (3(4①当x ②函数的图象与y 轴无交点,图象由两部分组成. ③关于原点成中心对称.……(写出一条即可) ------- 5分27.(1)将()3,0A 代入,得1m =. -------1分∴抛物线的表达式为223y x x =--. ∴B 点的坐标()1,0-. -------2分 (2)y 的取值范围是45y -≤<. -------5分 (3) 当x =21时,y =415-. xyOx y 1 1 O 2 3 4 5 --4-3 -2 -1-123 45-4-3-2代入1y kx =+得 219-=k . 当x =-1时,y =0,代入1y kx =+得k =1. 结合图象可得, k 的取值范围是1=k 或192k. -------7分28.解:(1)①补全图形,如图1所示. ----1分 ②FH 与FC 的数量关系是:FH FC =.----2分证明:延长DF 交AB 于点G .∵ABC △中,AC=BC ,90ACB ∠=︒, ∴∠A=∠B=45°. ∵∠FDE=90°, ∴∠A=∠AGD=45°. ∴AD=DG.∵点D 为AC 的中点, ∴AD=DC. ∴DC=DG. ∵DE=DF,∴DC- DE =DG- DF ,即EC =FG . ∵∠EDF =90°,FH FC ⊥,∴∠1+∠CFD =90°,∠2+∠CFD=90°. ∴∠1 =∠2.∵DEF △等腰直角三角形,∴∠DEF =∠DFE = 45°. ∴∠CEF =∠FGH = 135°. ∴△CEF ≌△FGH .∴ CF =FH . ----5分(2)求解思路如下:a .画出图形,如图3所示.b .与②同理,可证△CEF ≌△FGH ,可得CF =FH ;从而得出FCH 是等腰直角三角形;c . 作P EF CP 于⊥,由2CE可得CP 的长; d .在Rt △CPF 中,由sin12CP CF,可求CF 的长,进而求出FCH 的面积. ----7分29.(1)1(4,0)P -是理想点,2(3,0)P 不是理想点. ----2分E D BAAFCEP DHBG(2)解法1:设MN 与x 轴交于点F ,设理想点的纵坐标为0y ,则0(3,)P y -.∵(0,1)A ,∴0113AP y y x -=+. 令4x =,得04(1)13y y -=+,即04(1)(4,1)3y M -+. 同理04(1)(4,1)3y N +--. ∵设G 是MN 的中点,∴04(4,)3y G -.17()23M N MG y y =-=,2FC =.在Rt GFC ∆中,222GC FG FC =+, ∴22047()()433y =+.解得0y =,即理想点的纵坐标为分 解法2:连接PO 并延长交MN 于点G .∵MN ∥y 轴,∴OA POGM PG =,OB PO GN PG=, 即OA OBGM GN=. ∵OA OB =,∴GM GN =,即点G 是MN 的中点. 设直线3x =-与x 轴交于E , MN 与x 轴交于点F . ∵OA POGM PG =,EO PO EF PG =, ∴OA GM EO EF=,即137MG =. ∴73MG =. ∴73CG MG ==. 在Rt △CFG 中,CF =2,由勾股定理得FG =∵PE EO FG FO=,∴PE=∴理想点的纵坐标为4±.(3)44003m m或-≤<<≤. ----8分。

7北京市2013各区初三二模数学分类试题-证明题

7北京市2013各区初三二模数学分类试题-证明题

初三数学分类试题—证明题西城1.如图,点C 是线段AB 的中点,点D ,E 在直线AB 的同侧,∠ECA =∠DCB ,∠D =∠E .求证:AD =BE .2.如图,四边形ABCD 中,∠BAD=135°,∠BCD=90°,AB=BC=2,tan ∠BDC= 63. (1) 求BD 的长; (2) 求AD 的长.海淀3.已知:如图,在△ABC 中,90ABC ∠=︒.DC ⊥AC 于点C ,且CD CA =,DE ⊥BC 交BC 的延长线于点E .求证:CE AB =.4.如图,ABCD 中,E 为BC 中点,过点E 作AB 的垂线交AB 于点G ,交DC 的延长线于点H ,连接DG .若10BC =,45GDH ∠=︒,DG 82=,求CH 的长及ABCD的周长. 东城5. 已知:如图,点E ,F 分别为□ABCD 的边BC ,AD 上的点,且12∠=∠.求证:AE=CF .6. 已知:如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME ⊥CD 于点E .(1)求证:AM =2CM ;(2)若12∠=∠,23CD =,求ME 的值.7.已知:如图,E 、F 为BC 上的点,BF=CE ,点A 、D 分别在BC 的两侧,且AE ∥DF ,AE =DF .求证:AB ∥CD .8.如图,在平行四边形ABCD 中,AD = 4,∠B =105º,E 是BC 边的中点,∠BAE =30º,将△ABE 沿AE 翻折,点B 落在点F 处,连接FC ,求四边形ABCF 的周长.房山9已知:如图,点C 、D 在线段AB 上,E 、F 在AB 同侧,DE 与CF 相交于点O ,且AC =BD , AE =BF ,A B ∠=∠. 求证:DE =CF .10.如图,四边形ABCD 中,AB ∥CD ,AB =13,CD =4,点E 在边AB 上,DE ∥BC .若CB CE =,且3tan =∠B ,求四边形ABCD 的面积.FDBE D FCEBAA C DB E F O第9题图 第10题图C D E门头沟11.已知:如图,在△ABC 中, ∠ABC =90º,BD ⊥AC 于点D ,点E 在BC 的延长线上,且BE =AB ,过点E 作EF ⊥BE ,与BD 的延长线交于点F . 求证:BC =EF .门头沟12.如图,在四边形ABCD 中,∠DAB =60º,AC 平分∠DAB ,BC ⊥AC ,AC 与BD交于点E ,AD =6,CE 437,7tan 33BEC ∠=BC 、DE 的长及四边形ABCD 的面积.怀柔13.已知如图,点B 、E 、C 、F 在一条直线上,BC =EF ,AB ∥DE ,∠A =∠D . 求证:AC=DF . 证明:13题图14. 已知如图:在菱形ABCD 中,O 是对角线BD 上的一点.连结AO 并延长,与DC 交于点R ,与BC 的延长线交于点S .若460,10AD DCB BS ===,∠. (1)求AS 的长度;(2)求OR 的长度. 解:大兴15.已知:如图,在Rt △ABC 中,∠BAC=90°,AC=2AB ,点D 是AC 的中点,以AD 为斜边在△ABC 外ABCDFE14题图 A B CDEADE作等腰直角三角形AED ,连结BE 、EC .试猜想线段BE 和EC 的数量关系及位置关系,并证明你的猜想.16.如图,将□ABCD 的边DC 延长到点E ,使CE=DC ,连接AE ,交BC 于点F .若∠AFC=2∠D ,连结AC 、BE.求证:四边形ABEC 是矩形. 丰台17.已知:如图,B C E ,,三点在同一条直线上,AC DE ∥,AC CE =,B D ∠=∠.求证:ABC CDE △≌△.18.如图,四边形ABCD 中, CD=2, 90=∠BCD , 60=∠B , 30,45=∠=∠CAD ACB ,求AB 的长.石景山19.如图,四边形ABCD 是正方形,G 是BC 上任意一点(点G 与B 、C 不重合),AE ⊥DG 于E ,CF ∥AE 交DG 于F .请在图中找出一对全等三角形,并加以证明.证明:20.如图,在矩形ABCD 中,AB =3,BC =4,点M 、N 、分别在BC 、AB 上,将矩形ABCD 沿MN 折叠,设点B 的对应点是点E .(1)若点E 在AD 边上,BM =27,求AE 的长;(2)若点E 在对角线AC 上,请直接写出AE 的取值围: .解:昌平21. 如图,AC //FE ,点F 、C 在BD 上,AC=DF , BC=EF . 求证:AB=DE .FE D C B A A DB C E D ABCDC GENMDCB A ACD22. 如图,AC 、BD 是四边形ABCD 的对角线,∠DAB =∠ABC =90°,BE ⊥BD 且BE =BD ,连接EA 并延长交CD 的延长线于点F . 如果∠AFC =90°,求∠DAC 的度数.密云23.如图,在△ABC 中,AB =AC ,AD 平分∠BAC , 求证:∠DBC =∠DCB 。

2013年丰台区中考二模数学试题和答案

2013年丰台区中考二模数学试题和答案

丰台区2013年初三统一练习(二)数学参考答案及评分标准一、选择题(本题共32分,每小题4分) 题号 1 2 3 4 5 6 7 8 答案ADBCCBAC二、填空题(本题共16分,每小题4分) 9.4 10.2(2)x y - 11.34 12.128π-; 2122n n π+- 三、解答题(本题共30分,每小题5分) 13.解:原式=1222122--++-------- 4分 =1322-. -------- 5分 14.解:23111x x x --=--,----------- 1分231x x --=-, -----------2分 41x -=, ----------- 3分14x =-.-----------4分经检验,14x =-是原方程的解.----------- 5分∴原方程的解是14x =-.15.证明:∵AC ∥DE ,∴∠ACB =∠E.-------------- 1分在△ABC 和△CDE 中, ∠ACB =∠E ,∠B =∠D , -------------- 4分 AC =CE ,∴△ABC ≌△CDE.-------------- 5分16.解:∵11m m+=,∴21m m -=-. ------------ 1分∴原式=223+14m m m +- ------------ 2分 =2331m m -++ ------------ 3分=23()1m m --+ ------------ 4分= 3(1)14-⨯-+= . ------------ 5分17.解:(1)∵点(1,2)B -在函数my x =的图象上,∴2m =-. ∴反比例函数的解析式为2y x=-.-- 1分 点(2,)A n -在函数2y x=-的图象上,∴1n =.∴(2,1)A -.y kx b =+ 经过(2,1)A -、(1,2)B -,∴21,2.k b k b -+=⎧⎨+=-⎩解得:1,1.k b =-⎧⎨=-⎩∴一次函数的解析式为1y x =--. ---- 3分(2)C 是直线AB 与x 轴的交点,∴当0y =时,1x =-. ∴点(1,0)C -.---------4分1OC ∴=.AOB ACO BCO S S S ∴=+△△△11111222=⨯⨯+⨯⨯ 32= ---------5分18.解:设西瓜亩产量的增长率为x ,则西瓜种植面积的增长率为2x . ------ 1分 由题意得,2000(1+)10(12)60000x x ⋅+= . --2 分 解得,121,22x x ==-. ------ 3分 但22x =-不合题意,舍去. ------ 4分 答:西瓜亩产量的增长率为50%. ------ 5分 四、解答题(本题共20分,每小题5分)19.解:过点D 作DE ⊥AC 于E,过点A 作AF ⊥BC 于F .∵∠ACB =45°,∠BCD =90°, ∴∠ACD =45°.∵CD =2,∴DE =EC =1. -----------------1分 ∵∠CAD =30°,∴AE =3. ---------------- 2分 ∴AC =31+. ---------------- 3分∴F A =FC =316222++=.------------------------------- 4分 ∵∠ABF =60°, ∴622326sin 60233AF AB ++==⋅=︒. ------------------------ 5分 20. (1)证明:连结OC .∵ 点C 在⊙O 上,OA =OC ,∴ .OCA OAC ∠=∠∵ CD PA ⊥,∴ 90CDA ∠=,有90CAD DCA ∠+∠=.∵ AC 平分∠P AE ,∴ .DAC CAO ∠=∠Oxy A B CABPOCD GDABCFE∴ .DAC OCA ∠=∠ ---------1分∴ 90.DCO DCA ACO DCA DAC ∠=∠+∠=∠+∠=∵ 点C 在⊙O 上,OC 为⊙O 的半径,∴ CD 为⊙O 的切线. ---------2分 (2)解: 过点O 作OG ⊥AB 于G .∵90OCD ∠= ,CD PA ⊥,∴四边形OCDG 是矩形. ∴OG =CD , GD =OC . ---------3分∵ ⊙O 的直径为10,∴OA =OC =5.∴DG =5.∵tan ∠ACD 12AD CD ==,设AD =x , CD=2x ,则OG=2x.∴ AG =DG-AD=5- x .在Rt AGO △中,由勾股定理知222.AG OG OA +=∴ ()22(5)225.x x -+= 解得122,0()x x ==舍. -------------------------4分∴ 22(52)6AB AG ==⨯-= . -------------------------5分 21. 解:(1)20 %-------------------------3分如图,画图基本准确,每个统计图全部正确得1分. (2)365×(20%+50%)≈256.答:该城市一年为优和良的天数大约共有256天. -------------------------5分22.(1){4,3}. -------------------------1分(2)①画图 -------------------------2分②D (0,3). -------------------------3分(3){1,-2}+{1,3}+{-2,-1}.-------------------------5分空气污染指数 0~50 51~100 101~150 151~200 201~250空气质 量级别 优 良轻微 污染 轻度 污染 中度污染天数6 15 4 3 2 15轻度优良轻微中度3 y 2y天数级别4650% 良优13% 10 %7% 轻微污染轻度污染 中度污染yxBACDO11五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23、(1)证明: 22224(2)4(3)816(4)0b ac m m m m m ∆=-=---=-+=-≥,----------- 1分∴此方程总有两个实数根. ------------------------- 2分(2)解:抛物线2(2)3y x m x m =--+-与y 轴交点为M (0,3m -).---------------------3分抛物线与x 轴的交点为(1,0)和(3m -,0),它们关于直线y x =-的对称点分别为(0,1-)和 (0, 3m -).-----------------5分 由题意,可得:1333m m m -=--=-或,即m =2或m =3. -------------------------7分24解:(1)① 猜想:222AE CF EF +=.-------------------------1分 ② 成立. ------------------------2分证明:连结OB.∵AB =BC , ∠ABC =90°,O 点为AC 的中点,∴12OB AC OC ==,∠BOC =90°,∠ABO =∠BCO =45°.∵∠EOF =90°,∴∠EOB =∠FOC . 又∵∠EBO =∠FCO ,∴△OEB ≌△OFC (ASA ).∴BE =CF . -------------------------3分 又∵BA=BC , ∴AE =BF .在RtΔEBF 中,∵∠EBF =90°, 222B F B E E F∴+=.222AE CF EF ∴+=. -------------------------4分 (2)解:如图,过点O 作OM ⊥AB 于M ,ON ⊥BC 于N . ∵∠B =90°, ∴∠MON =90°. ∵∠EOF =90°,∴∠EOM =∠FON .∵∠EMO =∠FNO =90°,∴△OME ∽△ONF . -------------------------5分 ∴OM OE ON OF =∵△AOM 和△OCN 为等腰直角三角形, ∴△AOM ∽△OCN ∴OM AO ONOC=.∵14AO AC=, ∴13OE OF=. -------------------------7分CB AOEFA OBCE F M N25.解:(1)依题意得:322B (,).∵OC =2,CE=32,∴3 22E -(,). ∵抛物线经过原点和点B 、E,∴设抛物线的解析式为2y ax =(0)a ≠.∵抛物线经过点322B (,),∴342a = .解得:a =38.∴抛物线的解析式为238y x =.-------------------------2分(2) 64512927P (,)或318P (,).-------------------------4分 (3)存在.因为线段M B ''和CD 的长是定值,所以要使四边形M B CD ''的周长最短,只要使M D CB ''+最短.如果将抛物线向右平移,显然有M ′D +CB ′>MD +CB ,因此不存在某个位置,使四边形M ′B ′CD 的周长最短, 显然应该将抛物线238y x =向左平移.由题知(4,6)M -. -------------------------5分设抛物线向左平移了n 个单位,则点M '和B ′的坐标分别为M ′(-4-n ,6)和B ′(2-n ,32). 因为CD =2,因此将点B ′向左平移2个单位得B ′′(-n ,23).要使M D CB ''+最短,只要使M D '+DB ′′最短. 点M′关于x 轴对称点的坐标为M ′′(-4-n ,-6). 设直线M ′′B ′′的解析式y kx b =+,点D 应在直线M ′′B ′′上, ∴直线M ′′B ′′的解析式为151582y x =+.----------------6分 将B ′′(-n ,23)代入,求得165n =.--------------7分故将抛物线向左平移165个单位时,四边形M ′B ′CD 的周长最短,此时抛物线的解析式为 2316()85y x =+. -------------------------8分M ′y 4 x2 2 M ′ 8-2 O -2 -4 6B ′C D-44 B ′′。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P 4 ma m DCABSSSSO a O a O a O a 。

丰台区2013年初三统一练习(二) 数 学 试 卷 2013.6一、选择题(本题共32分,每小题4分)1.2-的绝对值是 A .2 B .12 C .-2 D .12- 2.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,某种电子元件的面积大约只有0.000 000 7毫米2,将0.000 000 7用科学记数法表示为A .7×106B .7×10-6C .-7×107D .7×10-73. 32()a a -⋅-的运算结果是A . a 5 B .-a 5 C .a 6 D .-a 6 4.如图,点A 、B 、C 都在O ⊙上,若68AOB =∠,则ACB ∠的度数为 A .68B .60C .34D .225.抛物线2(2)2y x =-+的顶点坐标为A .(2,2)-B .(2,2)-C .(2,2)D .(2,2)-- 6.某射击队要从四名运动员中选拔一名运动员参加比赛,选拔赛中每名队员的平均成绩 与方差S 2如下表所示.如果要选择一个成绩高且发挥稳定的人参赛,则这个人应是甲 乙 丙 丁 x8 9 9 8 S 2111.21.3A .甲B .乙C .丙D .丁7.下面四个图形中,三棱柱的平面展开图是A .B .C .D .8.如图,有一直角墙角,两边的长度足够长,在P 处有一棵树与两墙的 距离分别是a 米(0<a <12)、4米.现在想用16米长的篱笆,借助墙 角围成一个矩形的花圃ABCD ,且将这棵树围在花圃内(不考虑树的粗细). 设此矩形花圃的最大面积为S ,则S 关于a 的函数图象大致是A. B. C.D. O CBAx二、 填空题(本题共16分,每小题4分) 9.若分式42x x -+的值为0,则x 的值为 . 10.分解因式:244xy xy x -+=__________________.11.在盒子里放有四张分别画有等边三角形、平行四边形、矩形、圆的卡片(卡片除所画内容不同外,其余均相同),从中随机抽取一张卡片,卡片上画的恰好是轴对称图形的概率是 .12.如图,在△OA 1B 1中,∠OA 1B 1=90°,OA 1= A 1B 1=1.以O 为圆心,1OA 为半径作扇形OA 1B 2,⌒A 1B 2 与1OB 相交于点2B ,设△OA 1B 1与扇形OA 1B 2之间的阴影部分的面积为1S ;然后过点B 2作B 2A 2⊥OA 1于点A 2,又以O 为圆心,2OA 为半径作扇形OA 2B 3,⌒A 2B 3 与1OB 相交于点3B ,设△OA 2B 2与扇形OA 2B 3之间的阴影部分面积为2S ;按此规律继续操作,设△OA n B n 与扇形OA n B n +1之间的阴影部分面积为n S . 则S 1=___________; S n = .三、解答题(本题共30分,每小题5分) 13.计算:1(2)8+21cos 45-----+().14.解方程:11312=---x xx .15.已知:如图,B C E ,,三点在同一条直线上,AC DE ∥,AC CE =,B D ∠=∠. 求证:ABC CDE △≌△.16.已知11m m+=,求)21)(21()3(m m m m -+++的值.ADB C EB 1 A 1A 2A 3 O S 2S 1S 3 B 3 B 4 B 217.如图,在平面直角坐标系xOy 中,若点(2,)A n -,(1,2)B -是一次函数y kx b =+的图象和反比例函数m y x=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积.18.列方程或方程组解应用题:某农场去年种植了10亩地的西瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种西瓜.已知西瓜种植面积的增长率是亩产量的增长率的2倍,预计今年西瓜的总产量为60000kg , 求西瓜亩产量的增长率.四、解答题(本题共20分,每小题5分)19.如图,四边形ABCD 中, CD=2,90=∠BCD ,60=∠B ,30,45=∠=∠CAD ACB ,求AB 的长.20.已知:如图,直线P A 交⊙O 于A 、B 两点,AE 是⊙O 的直径,点C 是⊙O 上一点,且AC 平分∠P AE ,过点C 作CD ⊥P A ,垂足为点D .(1)求证:CD 与⊙O 相切; (2)若tan ∠ACD =21,⊙O 的直径为10,求AB 的长.O xyABCA B POCD EDAB C21.6月5日是世界环境日,某城市在宣传“绿色环境城市”活动中,发布了一份2013年1至5月份空气质量抽样调查报告,随机抽查的30天中,空气质量的相关信息如下:%请你根据统计图表提供的信息,解答以下问题(结果均取整数): (1)请将图表补充完整;(2)请你根据抽样数据,通过计算,预测该城市一年(365天)中空气质量级别为优和良的天数大约共有多少天?22.操作探究:一动点沿着数轴向右平移5个单位,再向左平移2个单位,相当于向右平移3个单位.用实数加法表示为 5+(2-)=3.若平面直角坐标系xOy 中的点作如下平移:沿x 轴方向平移的数量为a (向右为正,向左为负,平移a 个单位),沿y 轴方向平移的数量为b (向上为正,向下为负,平移b 个单位),则把有序数对{a ,b }叫做这一平移的“平移量”.规定“平移量”{a ,b }与“平移量”{c ,d }的加法运算法则为}{}{}{d b c a d c b a ++=+,,,. (1)计算:{3,1}+{1,2};(2)若一动点从点A (1,1)出发,先按照“平移量”{2,1}平移到点B ,再按照“平移量”{-1,2}平移到点C ;最后按照“平移量”{-2,-1}平移到点D ,在图中画出四边形ABCD ,并直接写出点D 的坐标;(3)将(2)中的四边形ABCD 以点A 为中心,顺时针旋转90°,点B 旋转到点E ,连结AE 、BE 若动点P 从点A 出发,沿△AEB 的三边AE 、EB 、BA 平移一周. 请用“平移量”加法算式表示动点P 的平移过程.空气污染指数0~50 51~100 101~150 151~200 201~250 空气质 量级别 优 良 轻微 污染 轻度 污染 中度污染天数15 4 2 50%良 优 13% % 7% 轻微污染轻度污染 中度污染15 轻度 优良轻微中度3 y 2y 天数 级别yxO11五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的方程2(2)30x m x m --+-=. (1)求证:此方程总有两个实数根;(2)设抛物线2(2)3y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y =-x 的对称点恰好是点M ,求m的值.24.在Rt △ABC 中,AB =BC ,∠B =90°,将一块等腰直角三角板的直角顶点O 放在斜边AC 上,将三角板绕点O 旋转. (1)当点O 为AC 中点时,①如图1, 三角板的两直角边分别交AB ,BC 于E 、F 两点,连接EF ,猜想线段AE 、CF 与EF 之间存在的等量关系(无需证明);②如图2, 三角板的两直角边分别交AB ,BC 延长线于E 、F 两点,连接EF ,判断①中的猜想是否成立.若成立,请证明;若不成立,请说明理由;(2)当点O 不是AC 中点时,如图3,,三角板的两直角边分别交AB ,BC 于E 、F 两点,若14AO AC=,求OE OF的值.25.如图,把△OAB 放置于平面直角坐标系xOy 中,90OAB ∠=︒,32,2OA AB ==,把△OAB 沿x 轴的负方向平移2OA 的长度后得到△DCE .(1)若过原点的抛物线2+y ax bx c =+经过点B 、E ,求此抛物线的解析式;(2)若点P 在该抛物线上移动,当点P 在第一象限内时,过点P 作x PQ ⊥轴于点Q ,连结OP .若以O 、P 、Q 为顶点的三角形与以B 、C 、E 为顶点的三角形相似,直接写出点P 的坐标;(3)若点M (-4,n ) 在该抛物线上,平移抛物线,记平移后点M 的对应点为M ′,点B 的对应点为B ′.当抛物线向左或向右平移时,是否存在某个位置,使四边形M ′B ′CD 的周长最短?若存在,求出此时抛物线的解析式;若不存在,请说明理由.yxO1(备图)COB A OE图1 FBA OCEFA BCE F图2 图3A OxBCD yE丰台区2013年初三统一练习(二)数学参考答案及评分标准一、选择题(本题共32分,每小题4分) 题号 1 2 3 4 5 6 7 8 答案ADBCCBAC二、填空题(本题共16分,每小题4分) 9.4 10.2(2)x y - 11.34 12.128π-; 2122n n π+- 三、解答题(本题共30分,每小题5分) 13.解:原式=1222122--++ -------- 4分 =1322-. -------- 5分 14.解:23111xx x --=--,----------- 1分 231x x --=-, -----------2分41x -=, ----------- 3分14x =-.-----------4分经检验,14x =-是原方程的解.----------- 5分∴原方程的解是14x =-.15.证明:∵AC ∥DE ,∴∠ACB =∠E.-------------- 1分 在△ABC 和△CDE 中, ∠ACB =∠E ,∠B =∠D , -------------- 4分 AC =CE ,∴△ABC ≌△CDE.-------------- 5分 16.解:∵11m m+=,∴21m m -=-. ------------ 1分 ∴原式=223+14m m m +- ------------ 2分=2331m m -++ ------------ 3分=23()1m m --+ ------------ 4分 = 3(1)14-⨯-+= . ------------ 5分17.解:(1)∵点(1,2)B -在函数my x=的图象上, ∴2m =-.∴反比例函数的解析式为2y x=-.-- 1分点(2,)A n -在函数2y x=-的图象上,∴1n =.∴(2,1)A -.y kx b =+经过(2,1)A -、(1,2)B -,∴21,2.k b k b -+=⎧⎨+=-⎩解得:1,1.k b =-⎧⎨=-⎩∴一次函数的解析式为1y x =--. ---- 3分(2)C 是直线AB 与x 轴的交点,∴当0y =时,1x =-. ∴点(1,0)C -.---------4分1OC ∴=.AOB ACO BCO S S S ∴=+△△△11111222=⨯⨯+⨯⨯ 32= ---------5分 18.解:设西瓜亩产量的增长率为x ,则西瓜种植面积的增长率为2x . ------ 1分 由题意得,2000(1+)10(12)60000x x ⋅+= . --2 分 解得,121,22x x ==-. ------ 3分 但22x =-不合题意,舍去. ------ 4分 答:西瓜亩产量的增长率为50%. ------ 5分 四、解答题(本题共20分,每小题5分)19.解:过点D 作DE ⊥AC 于E,过点A 作AF ⊥BC 于F .∵∠ACB =45°,∠BCD =90°, ∴∠ACD =45°.∵CD =2,∴DE =EC =1. -----------------1分Oxy A B CDABCFE∵∠CAD =30°,∴AE =3. ---------------- 2分 ∴AC =31+. ---------------- 3分∴F A =FC =316222++=.------------------------------- 4分 ∵∠ABF =60°, ∴622326sin 60233AF AB ++==⋅=︒. ------------------------ 5分 20. (1)证明:连结OC .∵ 点C 在⊙O 上,OA =OC ,∴ .OCA OAC ∠=∠∵ CD PA ⊥,∴ 90CDA ∠=,有90CAD DCA ∠+∠=. ∵ AC 平分∠P AE ,∴ .DAC CAO ∠=∠ ∴ .DAC OCA ∠=∠ ---------1分 ∴ 90.DCO DCA ACO DCA DAC ∠=∠+∠=∠+∠= ∵ 点C 在⊙O 上,OC 为⊙O 的半径,∴ CD 为⊙O 的切线. ---------2分 (2)解: 过点O 作OG ⊥AB 于G .∵90OCD ∠=,CD PA ⊥,∴四边形OCDG 是矩形. ∴OG =CD , GD =OC . ---------3分∵ ⊙O 的直径为10,∴OA =OC =5.∴DG =5.∵tan ∠ACD 12AD CD ==,设AD =x , CD=2x ,则OG=2x.∴ AG =DG-AD=5- x . 在Rt AGO △中,由勾股定理知222.AG OG OA +=∴ ()22(5)225.x x -+= 解得122,0()x x ==舍. -------------------------4分∴ 22(52)6AB AG ==⨯-= . -------------------------5分 21. 解:(1)20 %-------------------------3分如图,画图基本准确,每个统计图全部正确得1分.空气污染指数 0~50 51~100 101~150 151~200 201~250空气质 量级别 优 良轻微 污染 轻度 污染 中度污染天数6 15 4 3 2 50%良优13% 10 %7% 轻微污染轻度污染 中度污染yxBACDO11 ABPOCD EG(2)365×(20%+50%)≈256.答:该城市一年为优和良的天数大约共有256天. -------------------------5分22.(1){4,3}. -------------------------1分(2)①画图 -------------------------2分②D (0,3). -------------------------3分(3){1,-2}+{1,3}+{-2,-1}.-------------------------5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23、(1)证明: 22224(2)4(3)816(4)0b ac m m m m m ∆=-=---=-+=-≥,----------- 1分∴此方程总有两个实数根. ------------------------- 2分(2)解:抛物线2(2)3y x m x m =--+-与y 轴交点为M (0,3m -).---------------------3分抛物线与x 轴的交点为(1,0)和(3m -,0),它们关于直线y x =-的对称点分别为(0,1-)和(0, 3m -).-----------------5分 由题意,可得:1333m m m -=--=-或,即m =2或m =3. -------------------------7分24解:(1)① 猜想:222AE CF EF +=.-------------------------1分 ② 成立. ------------------------2分证明:连结OB.∵AB =BC , ∠ABC =90°,O 点为AC 的中点,∴12OB AC OC ==,∠BOC =90°,∠ABO =∠BCO =45°.∵∠EOF =90°,∴∠EOB =∠FOC . 又∵∠EBO =∠FCO ,∴△OEB ≌△OFC (ASA ).∴BE =CF . -------------------------3分 又∵BA=BC , ∴AE =BF .在RtΔEBF 中,∵∠EBF =90°, 222BF BE EF ∴+=.222AE CF EF ∴+=. -------------------------4分(2)解:如图,过点O 作OM ⊥AB 于M ,ON ⊥BC 于N . ∵∠B =90°, ∴∠MON =90°. ∵∠EOF =90°,∴∠EOM =∠FON .∵∠EMO =∠FNO =90°,∴△OME ∽△ONF . -------------------------5分 ∴OM OE ON OF =∵△AOM 和△OCN 为等腰直角三角形, ∴△AOM ∽△OCN ∴OM AO ONOC=.CB AOEFA OBCE F M N∵14AO AC =, ∴13OE OF =. -------------------------7分 25.解:(1)依题意得:322B (,). ∵OC =2,CE=32,∴3 22E -(,). ∵抛物线经过原点和点B 、E,∴设抛物线的解析式为2y ax =(0)a ≠. ∵抛物线经过点322B (,),∴ 342a = .解得:a =38. ∴抛物线的解析式为238y x =.-------------------------2分 (2) 64512927P (,)或318P (,) .-------------------------4分 (3)存在.因为线段MB''和CD 的长是定值,所以要使四边形M B CD ''的周长最短,只要使M D CB ''+最短.如果将抛物线向右平移,显然有M ′D +CB ′>MD +CB ,因此不存在某个位置,使四边形M ′B ′CD 的周长最短, 显然应该将抛物线238y x =向左平移. 由题知(4,6)M -. -------------------------5分设抛物线向左平移了n 个单位,则点M '和B ′的坐标分别为M ′(-4-n ,6)和B ′(2-n ,32). 因为CD =2,因此将点B ′向左平移2个单位得B ′′(-n ,23). 要使M D CB ''+最短,只要使M D '+DB ′′最短.点M′关于x 轴对称点的坐标为M ′′(-4-n ,-6). 设直线M ′′B ′′的解析式y kx b =+, 点D 应在直线M ′′B ′′上, ∴直线M ′′B ′′的解析式为151582y x =+.----------------6分 将B ′′(-n ,23)代入,求得165n =.--------------7分 故将抛物线向左平移165个单位时,四边形M ′B ′CD 的周长最短,此时抛物线的解析式为 2316()85y x =+. -------------------------8分M ′ y 4 x 2 2 M ′ 8 -2 O -2-4 6 B ′ C D -44 B ′′。

相关文档
最新文档