人教版-数学-七年级数学下册—第5章相交线与平行线5.1.1相交线-课件

合集下载

七年级数学下册:第五章相交线与平行线5.1相交线5.1.3同位角、内错角、同旁内角教学课件(新版新人教版)

七年级数学下册:第五章相交线与平行线5.1相交线5.1.3同位角、内错角、同旁内角教学课件(新版新人教版)
18、只要愿意学习,就一定能够学会。——列宁 19、如果学生在学校里学习的结果是使自己什么也不会创造,那他的一生永远是模仿和抄袭。——列夫·托尔斯泰
20、对所学知识内容的兴趣可能成为学习动机。——赞科夫 21、游手好闲地学习,并不比学习游手好闲好。——约翰·贝勒斯 22、读史使人明智,读诗使人灵秀,数学使人周密,自然哲学使人精邃,伦理学使人庄重,逻辑学使人善辩。——培根 23、我们在我们的劳动过程中学习思考,劳动的结果,我们认识了世界的奥妙,于是我们就真正来改变生活了。——高尔基 24、我们要振作精神,下苦功学习。下苦功,三个字,一个叫下,一个叫苦,一个叫功,一定要振作精神,下苦功。——毛泽东 25、我学习了一生,现在我还在学习,而将来,只要我还有精力,我还要学习下去。——别林斯基、学习外语并不难,学习外语就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。——高士其 2、对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如了。——高士其 3、学和行本来是有联系着的,学了必须要想,想通了就要行,要在行的当中才能看出自己是否真正学到了手。否则读书虽多,只是成为一座死书库。——谢觉哉、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 11、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的生命才真正开始。 12、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 13、你想过普通的生活,就会遇到普通的挫折。你想过最好的生活,就一定会遇上最强的伤害。这个世界很公平,想要最好,就一定会给你最痛。
A
B
C

相交线教学课件-人教版七年级数学下册

相交线教学课件-人教版七年级数学下册

对顶角的概念与性质 练2
领补角和对顶角的综 合应用
测1 测3 例1
理解
练3 测4
掌握
例3 练4 例2 测5
应用 综合 评价 测6
测2 拓1
总结反思 知识内化
收获检验
今天我们学习了哪些知识?
1 什么是邻补角?邻补角与补角有什么区别? 2 什么是对顶角?对顶角有什么性质?
归纳小结
角的名称
特征
性质
相同点
b
1 2O
a
3
4
由对顶角相等,得
∠3 = ∠1 = 40°,∠4 = ∠2 = 140°.
例3.完成下列解题过程.
A
如图,直线 AB ,CD 相交于 O ,
∠AOC = 80°,∠1 = 30°,求
∠2 的度数.
C
D
1E O2
B
解:∵ ∠DOB = ∠ AOC ( 对顶角相等 ), ∠AOC = 80°(已知),
探究 1
∠1 和∠3 之间有怎样的位置关系?
C
A
12 O4 3
B
D
图中还有其 他的对顶角吗?
形如∠1 与∠3 有一个公共顶点 O ,并且∠1 的两边 分别是∠3 的两边的反向延长线,具有这种位置关系的两 个角,互为对顶角.
练一练 1 下列各图中,∠1 和∠2 是邻补角吗?为什么?
12 1
12 2
解:∵ ∠BOD = ∠AOC = 76°, 又∵ OE 平分 ∠BOD ,
F
C
B

∠DOE
=
∠BOE
=
1 2
∠BOD
=
1 2
×
76°=
38°.
A

5.1.1相交线(课件)-2022-2023学年数学七年级下册(人教版)

5.1.1相交线(课件)-2022-2023学年数学七年级下册(人教版)

右图的几何描述为:
直线AB、CD相交于点O.
C
A
O
B D
情境引入
剪刀是我们生活中的常见 工具,剪刀可以抽象成什么几何图形?当我 们使用剪刀时,如何控制剪刀开口大小?
合作探究
思考1:我们将剪刀抽象成如图所示的两条相交 直线,那么∠1 与∠3在数量上有什么关系呢? ∠2 与∠4呢?
思考Байду номын сангаас:∠1 与∠3在位置上又有什么关系呢? ∠2 与∠4在位置上又有什么关系呢
那么这两个角互为邻补角.图中∠1的邻补角有__∠__2_、___∠__4_.
对顶角:如果一个角的两边是另一个角的两边的 反向延长,线那么这两
个角互为对顶角.图中∠1的对顶角是__∠___3_.
性质:对顶角相等,邻补角互补
当堂检测
1、下列各图中, ∠1 、∠2是对顶角吗?
2、下列各图中, ∠1 、∠2是邻补角吗?
观察下列图片,说一说图中直线与直线的位置关系.
情境引入
观察下列图片,说一说直线与直线的位置关系.
归纳:
两条直线的 位置关系
异面 共面
相交 平行
一般的相交
特殊的相交 (垂直)
在同一平面内,两条直线的位置关系有两种:相交和平行。
你能画出两条相交直线吗?如何定义相交?相交可以分为几类?
如果两条直线只有一个公共点,就说这两条直线相交.该公共点叫 做两直线的交点.
合作探究
已知:直线AB与CD相交于O点(如图),试说明:∠1=∠3、
∠2=∠4.
解:∵直线AB与CD相交于O点, ∴∠1+∠2=180° ∠2+∠3=180°, ∴∠1=∠3. 同理可得:∠2=∠4.
应用格式:∵直线AB与CD相交于O点 ∴∠1=∠3

5.1.1相交线课件(新人教版七年级数学下)

5.1.1相交线课件(新人教版七年级数学下)

尝试应用
学习体会
1.本节课你有哪些收获?
2.预习时的疑难问题解决了吗?你还有哪些疑惑?
3.你认为本节还有哪些需要注意的地方?
当堂达标
当堂达标
3.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求 ∠2的度数.
作业布置
必做题:1.课本第7---8页习题5.1第1、2题; 2.课本第9---10页习题5.1第8、9题. 选做题:《同步探究》第2页第2、3题.
课中探究
对顶角的性质: ___________________________
尝试应用
1.如图1所示,∠1和∠2是对顶角的图形有( ) A.1个 B.2个 C.3个 D.4个 2.如图2所示,AB与CD相交所成的四个角中,∠1的 邻补角是____,∠1的对顶角是___;若∠1=40°, 则∠2=___,∠3=__,∠4=___;若∠1=90°,则 ∠2=___,∠3=___,∠4= __.
课中探究
活动(二)观察图形,回答问题: 问题5:如图所示,任意两条相交的直线形成的4个
角中,两两相配共能组成几对角?
问题6:这些角有什么位置关系?
课中探究
结论: 邻补角的性质 问题7:对顶角大小有什么关系? 猜想:对顶角____________ 问题8:你能根据“同角的补角相等” 来说说你的发现是正确的吗? 说理过程:
人教版初中数学七年级下册
第五章
相交线与平行线
5.1.1 相交线
创设情景
情境引入
从图片中你能发现哪些几何图形? 你还能列举出生活中相交线的例子吗?
课中探究
探究一:邻补角,对顶角的概念 活动(一)根据问题,说一说、画一画:
问题1:一把张开的剪刀,你能联想出什么几何图形?

人教版七年级数学下册 5.1.1相交线 课件(共18张PPT)

人教版七年级数学下册 5.1.1相交线 课件(共18张PPT)

变式2:若∠2是∠1的3倍,求∠3的度数? 解:设∠1=x°,则∠2=3x°
根据邻补角的定义,得 x+3x=180 所以 x=45 则∠1=45°
根据对顶角相等,可得 ∠3=∠1=45°
今天我们学了什么?
邻补角、对顶角概念 邻补角、对顶角性质
今天我们学了什么?
两直线相交
C
2
B
1
3
4
A
D
位置 特征
1、两直线相交,形成小于平角的角有哪几个?
2、以∠1和∠2为例分析这两个角存在怎样的
位置关系和大小关系?像这样的角还有哪些?
3、以∠1和∠3为例分析这两个角存在怎样的
位置关系?像这样的角还有哪些?
C
2
B
1 o3
4
A
D
动手画出两条相交直线
1、两条直线相交,形成的小于平角的角
有哪几个?
C
2
B
1
o3
4
A
1 2
(1)不是
1 2
(2) 是
1 2
(3) 不是
1
2
(4) 不是
2 1
(5)是
7、你能得到对顶角∠1和∠3的大小关系吗?
C
2
B
动动手:(1)、用量角器测
1
o3
量对顶角∠1和∠3,比较他们
4
的大小
A
D
(2)将对顶角∠1和∠3
进行翻折,比较它们的大小?
4、你能得到对顶角∠1和∠3的大小关系吗?
猜猜看:若直线CD绕点O转 C
例、如图,直线a、b相交,∠1=40°,求
∠2、∠3、∠4的度数。
b
解:由邻补角的定义可知 ∠2=180°-∠1

人教版七年级下册数学第5章《相交线》图文讲解课件

人教版七年级下册数学第5章《相交线》图文讲解课件

知2-讲
∠1=∠3 (或 ∠2=∠4)
解:直线AB与CD相交于O点 由邻补角的定义,可得 ∠1+∠2=180° ∠2+∠3=180 所以:∠1=∠3 同样的道理 ∠2=∠4
C 2O
B
1 ( ( )3 )
4 A
D
例2 如图,∠1与∠2是对顶角的是( C )
知2-讲
导引:判断两个角是不是对顶角,要紧扣对顶角的定义, A图中∠1和∠2的顶点不同;B图中∠1和∠2的两 边都不是互为反向延长线;C图中的∠1和∠2符合 定义;D图中∠1和∠2有一条公共边.
总结
知2-讲
判断两个角是否互为对顶角的方法: 一看它们有没有公共顶点; 二看这两个角的两边是否互为反向延长线,实质就 是看这两个角是否是两条直线相交所成的没有公共 边的两个角.
知2-讲
例3 如图,直线a, b相交,∠1 = 40°, 求∠2, ∠3, ∠4的度数.
解:由邻补角的定义,得 ∠2 = 180°-∠1 = 180°-40°=140°; 由对顶角相等,得 ∠3= ∠1=40° , ∠4= ∠2 = 140°.

个公共顶点③有 一条公共边
互补 成对出现.
两个.
2 易错小结
如图,点O是直线AB上的任意一点,OC,OD,OE是过点O 的三条射线,若∠AOD=∠COE=90°,则下列说法:①与 ∠AOC互为邻补角的角只有一个;②与∠AOC互为补角的角 只有一个;③与∠AOC互为邻补角的角有两个;④与∠AOC 互为补角的角有两个.其中正确的是( D )
(来自《典中点》)
知识点 2 对顶角的定义及性质
知2-讲
对顶角:有一个公共顶点一 个角的两边是另一个角的 两边的反向延长线,那么 这两个角互为对顶角.

第五章 平行线与相交线(第1课时)课件 (新人教版七年级下册)

第五章 平行线与相交线(第1课时)课件 (新人教版七年级下册)
2 4
b a
1
∴ ∠3= 180°- ∠2= 180° - 54°=126°
已知∠ADE=60 °,∠B=60 °,∠AED=40°
证:(1)DE∥BC
A
(2) ∠C的度数 解:(1)∵∠ADE=60 ° ∠B=60°(已知) ∴∠ADE=∠B (等量代换)
E
D
∴DE∥BC
C
(同位角相等,两直线平行)
内错角相等,两直线平行。 同旁内角互补,两直线平行。
7、平行线的性质定理:
两直线平行,内错角相等。 两直线平行,同旁内角互补。
课堂小结
1、命题:判断一件事情的语句叫命题。 (1)正确的命题称为真命题,错误的命题称为假命题。 (2)命题的结构:命题由题设和结论两部分构成,常可写成 “如果„,那么„”的形式。 2、公理:人们长期以来在实践中总结出来的,并作为判断其他 命题真假的根据的命题,叫做公理。 3、定理:经过推理论证为正确的命题叫定理。也可作为继续推 理的依据。 4、判断一个命题是真命题,可以从公理或定理出发,用逻辑推 理的方法证明(公理和定理都是真命题); 判断一个命题是假命题,只要举出一个例子,说明该命题不 成立就可以了,这种方法称为举反例。
性质发现
a
1 3 2
结论
平行线的性质2
b
两条平行线被第三条直线所截, c 内错角相等.
简写为: 两直线平行,内错角相等. 符号语言: ∵a∥b(已知)
∴∠2=∠3(两直线平行, 内错角相等)
合作交流三
如图,已知a//b, 那么2与4有 什么关系呢? 为什么?
a b c
1 4 2
解: ∵a//b (已知), ∴ 1= 2(两直线平行,同位角相等). ∵ 1+ 4=180°(邻补角定义) ∴ 2+ 4=180°(等量代换).

人教版七年级数学下册最新习题课件:5.1.1_相交线

人教版七年级数学下册最新习题课件:5.1.1_相交线

4.如图,直线AB与CD交于点O,则∠AOC=∠____B_O_D____, ∠AOD+∠BOD=___1_8_0_°__.
5.如图,已知直线AB、CD相交于点O. (1)∠AOC的对顶角是__∠__B__O_D_____,图中共有___2__对对顶角; (2)∠AOC的邻补角是__∠__A_O_D__、__∠__B_O__C_______,图中共有_____ 对4邻补角.
(D )
A.50°
B.80°
C.100°
D.130°
11.如图,已知∠AOB 与∠BOC 互为邻补角,且∠BOC>∠AOB.OD 平分 ∠AOB,射线 OE 使∠BOE=12∠EOC,当∠DOE=72°时,则∠EOC=__7_2_°___.
12.已知∠1 和∠2 是两条直线相交形成的两个角,且∠1=x°,∠2=(2x-60)°, 则∠1=__6_0_°___或___8_0_°.
思维训练
16.如图,直线 AB、CD 相交于点 O.已知∠BOD= 75°,OE 把∠AOC 分成两个角,且∠AOE=23∠EOC.
(1)求∠AOE的度数; (2)将射线OE绕点O逆时针旋转α°(0°<α<360°)到OF. ①如图2,当OF平分∠BOE时,求∠DOF的度数; ②若∠AOF=120°时,直接写出α的度数.
第五章 相交线与平行线
5.1 相交线
5.1.1 相交线(第一课时)
名师点睛
知识点 邻补角与对顶角
(1)在同一平面内,有且仅有一个公共点的两条直线称为相交 线.
(2)邻补角:如果两个角有一条公共边,它们的另一边互为反向 延长线,具有这种关系的两个角互为邻补角.其性质:邻补角 互补.
(3)对顶角:两个角有一个公共的顶点,并且一个角的两边分别 是另一个角的两边的反向延长线,具有这种位置关系的两个角 互为对顶角.其性质:对顶角相等.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
O
3
B
D
∠1 与∠3在数量上又有什么关系呢?
对顶角相等
O B 2 ( 1 ( ) 3 ) 4 D 已知:直线AB与CD相交于O A 点(如图), 求证:∠1=∠3, ∠2=∠4 对顶角的性质: 对顶角相等.
C
为什么?
证明:∵直线AB与CD相交于O点, ∴∠1+∠2=180°, ∠3+∠2=180°
北京立交桥
A
O
D
C
B
如果两条直线有一个公共点,就说这两条直 线相交,公共点叫做这两条直线的交点。
数学语言:直线AB、CD相交于点O
学习目标

1.什么样的两个角是互为邻补角? 2.什么两个角是互为对顶角? 3.对顶角角的性质是什么?


握紧把手时,随着两个把手之间的角逐渐变 小,剪刀刃之间的角也相应变小直到剪开布片。 如果把剪刀的构造看作两条相交的直线,这就 关系到两条相交直线所成的角的问题。
对顶角相等。
思考
n条直线最多的交点个数是多少?
能力提升
1:如图,直线a、b相交,若∠1=40°,求 ∠2、∠3、∠ 4的度数。
解:由邻补角的定义, ∠1=40°可得 ∠2=180°-∠1 a =180°- 40° ? =140° 2 40° 1 由对顶角相等,可得 b 3 ? ? 4 ∠3=∠1=40° ∠4=∠2=140°
相交所成的角,对顶角与相交线是唇齿相依,哪里有相交 直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就
有相交线;2.是不是有公共顶点;3.是不是没有公共边。 的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是
对顶角。
(2)对顶角是成对存在的,它们是互为对顶角,如∠1是∠3
探究与发现3
C
A
1 4
若∠1 m°,求各角的度数。 • 变式= 1:若∠ 2是∠1的3倍,求∠3的度数? 0, 求∠4的度数? • 变式 2 :若∠ 2∠ 1=40 若∠1+∠3=50° ,求各角的度数。
2:如图,若∠1:∠2=2:7 ,求各角的度数。
解:设∠1=2x°,则∠2=7x°
根据邻补角的定义,得
2x+7x=180
探究与发现1
C
A
1 4
2
O
3
B
DLeabharlann 形如∠1 与∠2有一条公共边OC,它们的另 一边互为反向延长线,具有这种关系的两个角, 互为邻补角.
邻补角:如果两个角有一条公共边, C
它们的另一边互为反向延长线,那 么这两个角互为邻补角。
注意(1)邻补角的本质特征是:
①两个角有一条公共边; ②两角的另一条边互为反向延长线。

2O B 1 3 (( ) ) 4 D A
(2)如果与互为邻补角,则一定有 180;
反之,如果 180 ,则与不一定是邻补角。 (3)邻补角是有特殊位置的两个互补的角。
图中还有哪些角也是邻补角呢? 有几对邻补角?
补角与邻补角有何区别和联系呢?
探究与发现2
C
A
1
2 O 4 3 D
B
形如∠1 与∠3有一个公共顶点O,并且∠1 的 两边分别是∠3的两边的反向延长线,具有这种 位置关系的两个角,互为对顶角.
图中还有哪些角也是对顶角呢?
对顶角:如果两个角有一个公共点,
B 并且其中一个角的两边是另一个角的 C 2 O ( 两边的反向延长线,那么这两个角互 1 3 ( ) 为对顶角。 ) 4 A D 注意以下两点:(1)辨认对顶角的要领:1.是不是两条直线
∴∠1=∠3 同理可得:∠2=∠4
1.如图,AB、CD、EF是经过点O的三条直线,说出: F ∠AOC 的对顶角是 ∠BOD , C ∠FOB 的对顶角是 ∠EOA , B ∠DOF 的对顶是角 ∠COE , A O ∠AOD 的对顶角是 ∠BOC , ∠EOB 的对顶角是 ∠FOA , D E ∠AOF 的邻补角是 ∠BOF 和∠AOE 。 2、下列图形中,∠1和∠2是对顶角的图形是( C )
1
2
1 2
1 2
1
2
(A)
(B)
(C)
(D)
小结:

1.什么样的两个角是互为邻补角? 2.什么两个角是互为对顶角?
如果两个角有一条公共边,它们的另一边互为反向延长 线,那么这两个角互为邻补角。

如果两个角有一个公共点,并且其中一个角的两边是另 一个角的两边的反向延长线,那么这两个角互为对顶角。
3.对顶角的性质是什么?
a b 1 2 4 3
x=20
则∠1=40°, ∠2=140° 根据对顶角相等,得 ∠3=40°, ∠4=140°
答: ∠1=40°, ∠2=140°, ∠3=40 °, ∠4=140°
相关文档
最新文档