人教a版必修1学案1.3.1单调性与最大(小)值(2)(含答案)

合集下载

【金版新学案】高一数学人教A版必修一练习:1.3.1.2函数的最大值、最小值(含答案解析)

【金版新学案】高一数学人教A版必修一练习:1.3.1.2函数的最大值、最小值(含答案解析)

(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题 (每题 5分,共 20 分)1.以下函数在 [1,4] 上最大值为 3的是()1A. y=x+2 B . y= 3x- 2C. y= x2D. y= 1- x分析:B、 C 在 [1,4] 上均为增函数, A 、 D 在 [1,4] 上均为减函数,代入端点值,即可求得最值,应选 A.答案:Ax+ 7x∈ [ -1,,2.函数 f( x)=则 f(x)的最大值、最小值分别为 ()2x+ 6x∈ [1, 2],A. 10,6 B .10,8C. 8,6D.以上都不对分析:当- 1≤x<1 时, 6≤x+7<8 ,当 1≤x≤2时, 8≤2x+6≤10.∴f(x)min= f(- 1)= 6,f(x)max= f(2)= 10.应选 A.答案:A3.已知函数f(x)=- x2+ 4x+ a,x∈ [0,1] ,若 f(x) 有最小值- 2,则 f(x)的最大值为 () A.- 1 B .0C. 1D. 2分析:∵ f(x)=- (x2-4x+ 4)+ a+4=- (x- 2)2+ 4+ a,∴函数 f(x)图象的对称轴为x= 2.∴f(x)在 [0,1] 上单一递加.又∵ f(x)min=- 2,∴ f(0)=- 2,即 a=- 2.∴f(x)max= f(1) =- 1+ 4- 2= 1.答案:C4.当 0≤x≤2时, a<- x2+2x 恒建立,则实数 a 的取值范围是 ()A. (-∞, 1] B .( -∞, 0]C. ( -∞, 0)D. (0,+∞)分析:令 f(x)=- x2+ 2x,则 f(x)=- x2+ 2x=- ( x-1)2+1.又∵ x∈ [0,2] ,∴ f( x)min= f(0) = f(2)= 0.∴ a<0.答案:C二、填空题 (每题 5分,共15 分)1在 [2,3] 上的最小值为 ________.5.函数 y=x-1分析:作出图象可知y=1在[2,3]上是减函数, y min=113- 1= . x- 12答案:126.已知函数 f(x) = x2- 6x+ 8,x∈ [1, a],而且 f(x)的最小值为 f(a),则实数 a 的取值范围是 ________.分析:如右图可知 f(x)在 [1, a]内是单一递减的,又∵ f(x)的单一递减区间为 (-∞,3] ,∴ 1<a≤3.答案:(1,3]7.关于函数 f(x)= x2+ 2x,在使 f(x) ≥M 建立的全部实数M 中,我们把 M 的最大值 M max =- 1 叫做函数 f(x)= x2+ 2x 的下确界,则关于 a∈R,且 a≠0,a2- 4a+ 6 的下确界为 ________.分析:a2- 4a+ 6= (a- 2)2+ 2≥2,2则 a - 4a+ 6 的下确界为 2.三、解答题 (每题 10 分,共 20 分 )2x+ 18.已知函数f(x)=x+1 .(1)用定义证明函数在区间[1,+∞)上是增函数;(2)求该函数在区间[2,4] 上的最大值与最小值.2x1+ 12x2+1分析: (1)证明:任取x1, x2∈ [1,+∞),且 x1<x2,则 f(x1)- f( x2)=x1+1-x2+1=x1- x2.x1+x2+∵1≤x1<x2,∴ x1- x2<0, (x1+ 1)(x2+ 1)>0,∴f(x1) - f(x2)<0 ,即 f(x1)<f(x2),∴函数 f(x)在 [1,+∞)上是增函数.(2)由 (1)知函数 f(x) 在区间 [2,4] 上是增函数,∴f(x)max= f(4) =2×4+1=9,4+1 52×2+ 15f(x)min= f(2)=2+1 =3.9.有甲、乙两种商品,经营销售这两种商品所能获取的收益挨次是P(万元 )和 Q(万元 ),x3它们与投入资本x(万元 )的关系有经验公式:P=5, Q=5x.今有 3万元资本投入经营甲、乙两种商品,为获取最大收益,对甲、乙两种商品的资本投入分别应为多少?能获取的最大收益是多少?分析:设对甲种商品投资 x 万元,则对乙种商品投资(3- x)万元,总收益为y 万元,依据题意得 y=1x+33- x(0 ≤x≤ 3).55令 3- x= t,则 x= 3- t2,0≤t≤ 3.12313221因此 y=5(3- t ) +5t =-5t-2+20,t∈ [0, 3].当 t=3时, y max=21,此时 x= 0.75,3- x= 2.25. 220由此可知,为获取最大收益,对甲、乙两种商品的资本投入分别为0.75 万元和 2.25 万元,获取的最大收益为 1.05 万元.。

人教版高中数学A版必修1课后习题及答案(全)

人教版高中数学A版必修1课后习题及答案(全)

高中数学必修1课后习题答案第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-.(4)8∈C ,9.1∉C 9.1N ∉.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.解:{|}AB x x =是等腰直角三角形, {|}AB x x =是等腰三角形或直角三角形. 4.解:显然{2,4,6}U B =,{1,3,6,7}U A =, 则(){2,4}U A B =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数; (3)Q π∉π是个无理数,不是有理数; (42R 2是实数; (59Z 93=是个整数; (6)25)N ∈ 2(5)5=是个自然数.2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-; (2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形. 等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}A B x x =≥,{|34}A B x x =≤<.7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形, 平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形, {|}S A x x =是梯形.10.解:{|210}AB x x =<<,{|37}A B x x =≤<, {|3,7}R A x x x =<≥或,{|2,10}R B x x x =≤≥或,得(){|2,10}R A B x x x =≤≥或, (){|3,7}R A B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或, (){|2,3710}R A B x x x x =≤≤<≥或或.B 组1.4 集合B 满足A B A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合, 即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},AB A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}AB A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅.4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =, 得U B A ⊆,即()U U A B B =,而(){1,3,5,7}U A B =, 得{1,3,5,7}U B =,而()U U B B =,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.解:(1)要使原式有意义,则470x +≠,即74x ≠-, 得该函数的定义域为7{|}4x x ≠-; (2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页) 1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<,即22500(050)y x x x =-<<.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示. 3.解:4.解:因为3sin 602=,所以与A 中元素60相对应的B 中的元素是32; 因为2sin 452=,所以与B 中的元素22相对应的A 中元素是45. 1.2函数及其表示习题1.2(第23页) 1.解:(1)要使原式有意义,则40x -≠,即4x ≠,得该函数的定义域为{|4}x x ≠;(2)x R ∈,2()f x x =都有意义,即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()()g x x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(3)对于任何实数,都有362x x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+,即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+. 5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8.7.图象如下:8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d,即d =(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得0)l d ===>,即(0)l d =>.9.解:依题意,有2()2dx vt π=,即24v x t dπ=, 显然0x h ≤≤,即240v t h dπ≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -,得2221235x xt +-=+,(012)x ≤≤, 即241235x xt +-=+,(012)x ≤≤. (2)当4x =时,2441242583()3535t h +-=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数. 5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-, 所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--, 所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数. 4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-,当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m . 3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =. 2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的 垂直平分线的交点,即ABC ∆的外心.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1. 5.解:集合20(,)|{(0,0)}30x y AB x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y BC x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55AB BC =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞; (2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.解:(1)因为1()1x f x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++, 即(1)2af a a +=-+.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.解:由(){1,3}UA B =,得{2,4,5,6,7,8,9}A B =,集合AB 里除去()U A B ,得集合B ,所以集合{5,6,7,8,9}B =.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b ax x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数;(2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x 31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-.练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623b a ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行.3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462rt s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ; (6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R . (3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5. (4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n . (2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n . 点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的. B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35. 点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ), 2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=-2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =; (2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x ==,所以3x =; (4)设lg 0.001x =,则3100.00110x -==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z =-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-. 4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x= (5) 100.3x = (6) 3xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg 6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=- 5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)b x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4. 8. (1)m n <; (2) m n <; (3) m n >; (4)m n >.9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s. 10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43xx-==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79) 1.函数y =21x是幂函数.2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4;(3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a .3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ).(2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbb a a +-++-11lg11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (abb a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1). 9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x 在x ∈(-∞,+∞)上是增函数. 证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x .因为x 1,x 2∈(-∞,+∞),所以.012.01212>+>+x x 又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x 在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x=1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以g (2x )=222x x e e -+,[g (x )]2+[f (x )]2=(2x x ee -+)2+(2xx e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃. 6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3新课程标准数学必修1第三章课后习题解答第三章 函数的应用 3.1函数与方程 练习(P88)1.(1)令f (x )=-x 2+3x +5,作出函数f (x )的图象(图3-1-2-7(1)),它与x 轴有两个交点,所以方程-x 2+3x +5=0有两个不相等的实数根.(2)2x (x -2)=-3可化为2x 2-4x +3=0,令f (x )=2x 2-4x +3,作出函数f (x )的图象(图3-1-2-7(2)),它与x 轴没有交点,所以方程2x (x -2)=-3无实数根. (3)x 2=4x -4可化为x 2-4x +4=0,令f (x )=x 2-4x +4,作出函数f (x )的图象(图3-1-2-7(3)), 它与x 轴只有一个交点(相切),所以方程x 2=4x -4有两个相等的实数根. (4)5x 2+2x =3x 2+5可化为2x 2+2x -5=0,令f (x )=2x 2+2x -5,作出函数f (x )的图象(图3-1-2-7(4)), 它与x 轴有两个交点,所以方程5x 2+2x =3x 2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点. (3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理,可得x0∈(0.625,0.75),x0∈(0.625,0.687 5),x0∈(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 25<0.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)≈-0.70,f(3)≈0.48.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈-0.10.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.562 5,2.625),x0∈(2.562 5,2.593 75),x0∈(2.578 125,2.593 75),x0∈(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 5<0.01,所以原方程的近似解可取为2.593 75.习题3.1 A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解.下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.因为f(-1)·f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈1.58.因为f(-1)·f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-1,-0.875),x0∈(-0.937 5,-0.875).由于|(-0.875)-(-0.937 5)|=0.062 5<0.1,所以原方程的近似解可取为-0.937 5.4.原方程即0.8x-1-lnx=0,令f(x)=0.8x-1-lnx,f(0)没有意义,用计算器算得f(0.5)≈0.59,f(1)=-0.2.于是f(0.5)·f(1)<0,所以这个方程在区间(0.5,1)内有一个解.下面用二分法求方程0.8x-1=lnx在区间(0,1)内的近似解.取区间(0.5,1)的中点x1=0.75,用计算器可算得f(0.75)≈0.13.因为f(0.75)·f(1)<0,所以x0∈(0.75,1).再取(0.75,1)的中点x2=0.875,用计算器可算得f(0.875)≈-0.04.。

高中数学人教A版 必修1《3.2.1函数的单调性与最大(小)值》教案 Word

高中数学人教A版 必修1《3.2.1函数的单调性与最大(小)值》教案 Word

四、教学过程
教学
环节
教学内容设计意图
情境引入
课堂探究通过观察生活中熟悉的事物,引入本节新课。

提高学生概括、推理的能力。

通过思考,观察函数的图象,从特殊到一般,归纳总结最值的定义,提高学生的解决问题、分析问题的能力。

得出定义
类比定义类比得出最小值定义
函数最值的几何意义
常见题型
通过实际问题让学生明白怎样求二次函数在整个定义域上的最值以及利用函数的单调性求函数的最值,提高学生解决问题的能力,进一步掌握单调性与最值的关系。

课堂
小结
通过总结,
让学生进
一步巩固
本节所学
内容,提高
概括能力,
板书设计
课后练习

课后提高学生的数学运算能力和逻辑推理能力。

通过练习。

新教材高中数学第三章函数的概念与性质 单调性与最大小值第二课时学案新人教A版必修第一册

新教材高中数学第三章函数的概念与性质 单调性与最大小值第二课时学案新人教A版必修第一册

第2课时 函数的最大(小)值[课程目标] 1.理解函数的最大(小)值的概念及其几何意义;2.理解函数的最大(小)值是在整个定义域上研究函数,体会求函数最值是函数单调性的应用之一;3.会求一些简单函数的最值.知识点一 函数的最大(小)值的定义及几何意义 设y =f(x)的定义域为I,如果存在实数M 满足: 【思辨】 判断正误(请在括号中打“√”或“×”). (1)函数f(x)=-x 2+1≤2总成立,则f(x)的最大值是2.( × ) (2)函数的最大值或最小值一定是函数值域中的元素.( √ ) (3)函数f(x)的值域是(0,+∞),则函数f(x)的最小值为0.( × )(4)若函数f(x)在区间[a,b]上具有单调性,则f(a)或f(b)是函数f(x)的最大值或最小值.( √ )【解析】 (1)函数f(x)的定义域中不存在x 0,使f(x 0)=2,所以2不是f(x)的最大值. (2)函数的最大值和最小值也是函数值,所以函数的最大值或最小值一定是函数值域中的元素.(3)函数的值域中不包含0,所以0不是函数的最小值. (4)根据函数最大(小)值的定义知说法正确.知识点二 求函数的最值的常用方法1.图象法:作出y =f(x)的图象,观察最高点与最低点,最高(低)点的纵坐标即为函数的最大(小)值.2.运用已学函数的值域. 3.运用函数的单调性(1)若判断y =f(x)在区间[a,b]上单调递增,则y max =__f(b)__,y min =__f(a)__. (2)若判断y =f(x)在区间[a,b]上单调递减,则y max =__f(a)__,y min =__f(b)__. (3)若y =f(x)是定义在区间(a,b)或R 上的连续函数,则函数y =f(x)的最大(小)值要根据具体函数而定.4.分段函数的最大(小)值是指各段上的最大(小)值中的最大(小)的那个. 【思辨】 判断正误(请在括号中打“√”或“×”).(1)函数y =-2x +3在(2,5]上有最小值-7,没有最大值.( √ ) (2)函数y =1x 在[1,2]上有最大值1,最小值12 .( √ )(3)函数y =x 2+2x +3的最小值为2.( √ )(4)函数y =x 2+2x +4(x∈[-3,-2])的最小值为2.( × )【解析】 (1)函数y =-2x +3在(2,5]上单调递减,所以当x =5时,取得最小值-7,没有最大值.(2)函数y =1x 在[1,2]上单调递减,所以在定义域区间的端点取得最值.(3)由二次函数的图象或单调性知,函数的最小值为2.(4)由函数y =x 2+2x +4(x∈[-3,-2])图象知,函数在区间的右端点取得最小值,最小值为4.利用函数的图象求最值例1 已知函数f(x)=x 2-2ax +3,求f(x)在区间[0,2]上的最小值g(a)和最大值h(a). 解:f(x)=(x -a)2+3-a 2,对称轴为直线x =a, f(a)=3-a 2,f(0)=3,f(2)=7-4a,∴g(a)=⎩⎪⎨⎪⎧3,a ≤0,3-a 2,0<a<27-4a ,a ≥2.,h(a)=max{f(0),f(2)}=⎩⎪⎨⎪⎧7-4a ,a ≤1,3,a>1.活学活用1.求函数f(x)=x 2-2ax +2在[-1,1]上的最小值.解:函数f(x)图象的对称轴为直线x =a,且函数图象开口向上,如图1,当a>1时,f(x)在[-1,1]上单调递减, 故f(x)min =f(1)=3-2a ;如图2,当-1≤a≤1时,f(x)在[-1,1]上先减后增, 故f(x)min =f(a)=2-a 2;如图3,当a<-1时,f(x)在[-1,1]上单调递增, 故f(x)min =f(-1)=3+2a.综上可知,f(x)min =⎩⎪⎨⎪⎧3-2a ,a>1,2-a 2,-1≤a≤1,3+2a ,a<-1.2.已知函数f(x)=x 2+4x +3,求f(x)在区间[t,t +1]上的最小值g(t)和最大值h(t). 解:由f(x)=(x +2)2-1,对称轴为直线x =-2,f(-2)=-1,f(t)=t 2+4t +3,f(t +1)=t 2+6t +8,结合图象可知 g(t)=⎩⎪⎨⎪⎧t 2+6t +8,t ≤-3,-1,-3<t<-2,t 2+4t +3,t ≥-2.h(t)=max{f(t),f(t +1)}=⎩⎪⎨⎪⎧t 2+4t +3,t ≤-52,t 2+6t +8,t>-52.分段函数求最值例2 某上市股票在30天内每股的交易价格P(元)与时间t(天)组成有序数对(t,P),点(t,P)落在如图所示中的两条线段上.该股票在30天内的日交易量Q(万股)与时间t(天)的部分数据如下表所示:(1)根据提供的图象,写出该股票每股交易价格P(元)与时间t(天)所满足的函数关系式;(2)根据表中数据,确定该股票日交易量Q(万股)与时间t(天)的函数关系式; (3)用y 表示该股票日交易额(万元),写出y 关于t 的函数关系式,并求出在这30天中第几天日交易额最大,最大是多少.解:(1)由图象知,前20天满足递增的直线方程,且过(0,2),(20,6)两点,易求得直线方程为P =15 t +2.从第20天到第30天满足递减的直线方程,且过(20,6),(30,5)两点,易求得直线方程为P =-110t +8.故函数关系式为P =⎩⎪⎨⎪⎧15t +2,0<t<20,t ∈N ,-110t +8,20≤t ≤30,t ∈N .(2)由表易知,Q 与t 满足一次函数关系式, 即Q =-t +40,0<t ≤30,t ∈N .(3)由(1)(2)可知,y =⎩⎪⎨⎪⎧-15(t -15)2+125,0<t<20,t ∈N ,110(t -60)2-40,20≤t ≤30,t ∈N ,当0<t<20且t =15时,y max =125; 当20≤t≤30时,y 随t 的增大而减小,所以x =20时,y max =120.因为120<125,所以这30天中第15天的日交易额最大,最大值为125万元. [规律方法]1.分段函数的最大值为各段上最大值的最大者,最小值为各段上最小值的最小者,故求分段函数的最大或最小值,应先求各段上的最值,再比较即可得函数的最大、最小值.2.如果函数的图象容易作出,画出分段函数的图象,观察图象的最高点与最低点,并求其纵坐标即可得函数的最大值、最小值.活学活用设函数f(x)=x|x -1|+m,当m>1时,求f(x)在[0,m]上的最大值.解:f(x)=x|x -1|+m =⎩⎪⎨⎪⎧-x 2+x +m ,0≤x ≤1,x 2-x +m ,1<x ≤m.当0≤x≤1时,f(x)=-x 2+x +m =-⎝ ⎛⎭⎪⎫x -12 2+m +14 ≤m+14 ;当1<x≤m 时,f(x)=x 2-x +m =⎝ ⎛⎭⎪⎫x -12 2+m -14 , ∴函数f(x)在(1,m)上单调递增,∴f(x)max =f(m)=m 2.∴f(x)max=max ⎩⎨⎧⎭⎬⎫m +14,m 2=⎩⎪⎨⎪⎧m +14,1<m<1+22,m 2,m ≥1+22.利用单调性求最值例3 已知函数f(x)=x 2+2x +3x ,x ∈[2,+∞).(1)求f(x)的最小值;(2)若f(x)>a 恒成立,求a 的取值范围.解:(1)任取x 1,x 2∈[2,+∞),且x 1<x 2,f(x)=x +3x +2,则f(x 1)-f(x 2)=(x 1-x 2)⎝⎛⎭⎪⎫1-3x 1x 2 .因为x 1<x 2,所以x 1-x 2<0.又因为x 1≥2,x 2>2,所以x 1x 2>4,1-3x 1x 2>0, 所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), 故f(x)在[2,+∞)上单调递增,所以当x =2时,f(x)有最小值,最小值为f(2)=112 .(2)因为f(x)的最小值为f(2)=112 ,所以f(x)>a 恒成立,只需f(x)min >a,得a<112 .活学活用求函数f(x)=x2x -3 在区间[1,2]上的最大值和最小值.解:因为f(x)=x2x -3 ,∀x 1,x 2∈[1,2],且x 1<x 2,则f(x 1)-f(x 2)=x 21 x 1-3 -x 22x 2-3=x 21 x 2-3x 21 -x 1x 22 +3x 22 (x 1-3)(x 2-3)=(x 2-x 1)[3(x 1+x 2)-x 1x 2](x 1-3)(x 2-3).因为1≤x 1<x 2≤2,所以x 1-3<0,x 2-3<0,2<x 1+x 2<4, 即6<3(x 1+x 2)<12.又1<x 1x 2<4,x 2-x 1>0, 故f(x 1)-f(x 2)>0,即f(x 1)>f(x 2),所以函数f(x)=x2x -3 在区间[1,2]上单调递减,所以f(x)max =f(1)=-12 ,f(x)min =f(2)=-4.[规律方法]1.函数的最值与单调性的关系.(1)若f(x)在[a,b]上单调递减,则f(x)在[a,b]上的最大值为f(a),最小值为f(b); (2)若f(x)在[a,b]上单调递增,则f(x)在[a,b]上的最大值为f(b),最小值为f(a). 2.利用函数的单调性求最值,要熟练掌握一些常见函数的基本性质. 【迁移探究】 已知函数f ()x =x -1x +2,x ∈[]3,5 . (1)若不等式f ()x >a 在[]3,5 上恒成立,求实数a 的取值范围; (2)若不等式f ()x >a 在[]3,5 上有解,求实数a 的取值范围.解:(1)由题意可得,即求f(x)的最小值,f(x)=x -1x +2 =1-3x +2 ,判断可得函数f(x)在[]3,5 上单调递增,故f(x)min =f(3)=25 ,故a<25.(2)由题意可得,即求f ()x 的最大值,f(x)=x -1x +2 =1-3x +2,判断可得函数f(x)在[]3,5 上单调递增,故f(x)max =f(5)=47 ,故a<47.1.函数f(x)的部分图象如图所示,则该函数在[-2,2]上的最小值、最大值分别是( C )A .f(-2),f(3)B .0,2C .f(-2),2D .f(2),2【解析】 由图象可知,x =-2时,f(x)取得最小值f(-2);x =1时,f(x)取得最大值f(1)=2.故选C.2.函数y =2x 2+1,x ∈N *的最值情况是( B ) A .无最大值,最小值是1 B .无最大值,最小值是3 C .无最大值,也无最小值 D .不能确定最大、最小值【解析】 因为x∈N *,且函数在(0,+∞)上单调递增,故函数在x =1时取得最小值,最小值为3,无最大值.故选B.3.函数f(x)=1x 2 在区间⎣⎢⎡⎦⎥⎤12,2 上的最大值是( C )A .14 B .-1 C .4 D .-4【解析】 因为f(x)=1x 2 在区间⎣⎢⎡⎦⎥⎤12,2 上单调递减,所以f(x)max =f ⎝ ⎛⎭⎪⎫12 =4.4.若函数y =kx(k>0)在[2,4]上的最小值为5,则k =__20__.【解析】 因为k>0,所以函数y =k x 在[2,4]上单调递减,所以当x =4时,y =kx 最小,由题意知k4=5,得k =20.5.函数f(x)=x 2+3x +a 在区间(-3,3)上的最小值为__a -94__.【解析】 因为f(x)=x 2+3x +a =⎝ ⎛⎭⎪⎫x +32 2+a -94 ,-3<x<3,所以f(x)在(-3,3)上的最小值为f ⎝ ⎛⎭⎪⎫-32 =a -94 .温馨说明:课后请完成高效作业16。

高中数学新教材人教A版必修第一册学案:3.2函数的基本性质Word版含答案

高中数学新教材人教A版必修第一册学案:3.2函数的基本性质Word版含答案

【新教材】3.2.1 单调性与最大(小)值(人教A版)1、理解增函数、减函数的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会运用函数图象理解和研究函数的性质.重点:1、函数单调性的定义及单调性判断和证明;2、利用函数单调性或图像求最值.难点:根据定义证明函数单调性.一、预习导入阅读课本76-80页,填写。

1.增函数、减函数的定义2、单调性与单调区间如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间上具有(严格的)________,区间D叫做y=f(x)的________.[点睛] 一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“,”连接.如函数y=1x在(-∞,0),(0,+∞)上单调递减,却不能表述为:函数y=1x在(-∞,0)∪(0,+∞)上单调递减.3、函数的最大(小)值1.判断(正确的打“√”,错误的打“×”)(1)所有的函数在其定义域上都具有单调性.( )(2)在增函数与减函数的定义中,可以把“任意两个自变量”改为“存在两个自变量”.( )(3)任何函数都有最大值或最小值.( )(4)函数的最小值一定比最大值小.( )2.函数y=f(x)的图象如图所示,其增区间是( )A.[-4,4] B.[-4,-3],[1,4]C.[-3,1] D.[-3,4]3.函数y=f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是( )A .-1,0B .0,2C .-1,2 D.12,2 4.下列函数f (x )中,满足对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)的是( )A .f (x )=x 2B .f (x )=1xC .f (x )=|x |D .f (x )=2x +15.函数f (x )=2x,x ∈[2,4],则f (x )的最大值为______;最小值为________. 题型一 利用图象确定函数的单调区间例1求下列函数的单调区间,并指出其在单调区间上是增函数还是减函数:(1)y=3x-2;(2)y=-1x . 跟踪训练一1. 已知x ∈R,函数f(x)=x|x-2|,试画出y=f(x)的图象,并结合图象写出函数的单调区间.题型二 利用函数的图象求函数的最值例2 已知函数y=-|x-1|+2,画出函数的图象,确定函数的最值情况,并写出值域.跟踪训练二1.已知函数f(x)={1x ,0<x<1,x,1≤x ≤2.(1)画出f(x)的图象;(2)利用图象写出该函数的最大值和最小值.题型三 证明函数的单调性 例3 求证:函数f(x)=x+1x 在区间(0,1)内为减函数. 跟踪训练三1.求证:函数f(x)=21x在(0,+∞)上是减函数,在(-∞,0)上是增函数. 题型四 利用函数的单调性求最值例4 已知函数f(x)=x+ 4x .(1)判断f(x)在区间[1,2]上的单调性;(2)根据f(x)的单调性求出f(x)在区间[1,2]上的最值.跟踪训练四1.已知函数f(x)=6x−1(x∈[2,6],)求函数的最大值和最小值.题型五函数单调性的应用例5已知函数f(x)在区间(0,+∞)上是减函数,试比较f(a2-a+1)与f34⎛⎫⎪⎝⎭的大小.跟踪训练五1.已知g(x)是定义在[-2,2]上的增函数,且g(t)>g(1-3t),求t的取值范围.题型六单调性最值的实际应用例6“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h(单位:m)与时间t(单位:s)之间的关系为h(t)=-4.9t2+14.7t+18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1m)?跟踪训练六1. 某租赁公司拥有汽车100辆,当每辆车的月租金为3 000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金为3 600元时,能租出多少辆?(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大月收益是多少?1.f(x)对任意两个不相等的实数a,b,总有f(a)−f(b)a−b>0,则必有( )A.函数f(x)先增后减 B.函数f(x)先减后增C.函数f(x)是R上的增函数 D.函数f(x)是R上的减函数2.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)的最小值为-2,则f(x)的最大值为( )A.-1 B.0C.1 D.23.已知函数f(x)=4x2-kx-8在区间(5,20)上既没有最大值也没有最小值,则实数k的取值范围是( ) A.[160,+∞) B.(-∞,40]C.(-∞,40]∪[160,+∞) D.(-∞,20]∪[80,+∞)4.若函数y=f(x)的定义域为R,且为增函数,f (1-a)<f(2a-1),则a的取值范围是。

2021年新高一数学教学设计:1.3.1(2)函数的最大(小)值(人教A版必修1)

2021年新高一数学教学设计:1.3.1(2)函数的最大(小)值(人教A版必修1)

1.3.1(2)函数的最大(小)值(教学设计) 教学目的:(1)理解函数的最大(小)值及其几何意义; (2)学会运用函数图象理解和争辩函数的性质;教学重点:函数的最大(小)值及其几何意义. 教学难点:利用函数的单调性求函数的最大(小)值. 教学过程: 一、 复习回顾,新课引入1、用定义证明函数的单调性:取 值 → 作 差 → 变 形 → 定 号 → 下结论 2、画出下列函数的图象,并依据图象解答下列问题: ○1 说出y=f(x)的单调区间,以及在各单调区间上的单调性; ○2 指出图象的最高点或最低点,并说明它能体现函数的什么特征? (1)32)(+-=x x f(2)32)(+-=x x f ]2,1[-∈x (3)12)(2++=x x x f(4)12)(2++=x x x f ]2,2[-∈x二、师生互动,新课讲解:(一)函数最大(小)值定义 1.最大值 一般地,设函数y=f(x)的定义域为I ,假如存在实数M 满足: (1)对于任意的x ∈I ,都有f(x)≤M ; (2)存在x 0∈I ,使得f(x 0) = M 那么,称M 是函数y=f(x)的最大值(Maximum Value ).思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value )的定义.设函数)(x f y =的定义域为I ,假如存在实数M 满足: (1)对于任意的I x ∈,都有M x f ≥)(;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最小值(minimum value). 留意:○1 函数最大(小)首先应当是某一个函数值,即存在x 0∈I ,使得f(x 0) = M ; ○2 函数最大(小)应当是全部函数值中最大(小)的,即对于任意的x ∈I ,都有f(x)≤M (f(x)≥M ). 2.利用函数单调性的推断函数的最大(小)值的方法(1) 利用二次函数的性质(配方法)求函数的最大(小)值 (2)利用图象求函数的最大(小)值(3)利用函数单调性的推断函数的最大(小)值1)假如函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);2)假如函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b); (二)典型例题例1.(课本P30例3)利用二次函数的性质确定函数的最大(小)值. 解一:(顶点法); 解二:(配方法)y=-4.9(x-1.5)2+29.025说明:对于具有实际背景的问题,首先要认真审清题意,适当设出变量,建立适当的函数模型,然后利用二次函数的性质或利用图象确定函数的最大(小)值.变式训练1:如图,把截面半径为25cm 的圆形木头锯成矩形木料,假如矩形一边长为x ,面积为y ,试将y 表示成x 的函数,并画出函数的大致图象,并推断怎样锯才能使得截面面积最大?例2:(课本P31例4)求函数12-=x y 在区间[2,6]上的最大值和最小值. 分析:函数单调性求最值。

高考调研高中数学(人教A版必修一)备课资源:第1章+第3节+函数的基本性质(打包12份)1313 单

高考调研高中数学(人教A版必修一)备课资源:第1章+第3节+函数的基本性质(打包12份)1313 单

=(x1-x2)(
1 x1+
x2+1)<0.
∴f(x1)-f(x2)<0,f(x1)<f(x2).
∴f(x)= x+x在[2,+∞)上单调递增.
∴f(x)min=f(2)= 2+2.
课后巩固
1.已知函数f(x)=3x,x∈[1,2],则f(x)的最大值为( )
A.2
B.4
C.6
D.8
答案 C
2.已知函数f(x)=|x|,x∈[-1,3],则f(x)的最小值为( )
A.0
B.1
C.2
D.3
答案 A
3.函数y=x2-2x+2在[-2,2]上的最大值、最小值为( )
A.10,2
B.10,1
C.2,1
D.以上都不对
答案 B
4.函数y=2x2+2,x∈N*的最小值是________. 答案 4
解析 ∵x∈N*,∴x2≥1,∴y=2x2+2≥4, 即y=2x2+2在x∈N*上的最小值为4,此时x=1.
题型三 利用单调性求函数的最值 例4 求函数f(x)=x+4x在x∈[1,3]上的最大值与最小值.
【解析】 设1≤x1<x2≤3,
则f(x1)-f(x2)=x1-x2+
4(1-
4 x1x2
).又∵
x1<x2,∴x1-x2<0.
①当1≤x1<x2≤2时,1-x14x2<0.
A.f(-2),0 C.f(-2),2
B.0,2 D.f(2),2
【解析】 由函数最值的几何意义知,当x=-2时,有最小 值f(-2);当x=1时,有最大值2.
【答案】 C
题型二 二次函数的最值 例3 已知函数f(x)=x2-4x-4. (1)若函数定义域为[3,4],求函数的最值; (2)若函数定义域为[-3,4],求函数的最值. 【思路分析】 ①确定对称轴与抛物线的开口方向、作 图. ②在图像上标出定义域的位置. ③观察单调性写出最值.

新教材高中数学第三章函数的概念与性质 单调性与最大小值第2课时函数的最大小值学案新人教A版必修第一册

新教材高中数学第三章函数的概念与性质 单调性与最大小值第2课时函数的最大小值学案新人教A版必修第一册

第2课时函数的最大(小)值课程标准(1)理解函数的最大值和最小值的概念及其几何意义.(2)能借助函数的图象和单调性,求一些简单函数的最值.(3)能利用函数的最值解决有关的实际应用问题.新知初探·课前预习——突出基础性教材要点要点函数的最大值与最小值助学批注批注❶函数的最值与值域的关系:(1)函数的值域一定存在,函数的最值不一定存在.(2)若函数的最值存在,则最值一定是值域中的元素.(3)若函数的值域是开区间,则函数无最值;若函数的值域是闭区间,则闭区间的端点值就是函数的最值.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)任何函数都有最大(小)值.( )(2)如果一个函数有最大值,那么最大值是唯一的.( )(3)函数f(x)取最大值时,对应的x可能有无限多个.( )(4)如果f(x)的最大值、最小值分别为M,m,则f(x)的值域为[m,M].( )2.函数f(x)=1x在[1,+∞)上( )A.有最大值无最小值B.有最小值无最大值C.有最大值也有最小值D.无最大值也无最小值3.函数f(x)=-2x+1(x∈[-2,2])的最小、最大值分别为( )A.3,5B.-3,5C.1,5D.-5,34.函数f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是________.题型探究·课堂解透——强化创新性题型 1 利用函数的图象求函数的最值例1 已知函数f(x)={x2−x,0≤x≤22x−1,x>2,求函数f(x)的最大值、最小值.方法归纳图象法求最值的一般步骤巩固训练1 若x∈R,f(x)是y=2-x2,y=x这两个函数中的较小者,则f(x)的最大值为( )A.2B.1C.-1D.无最大值题型 2 利用函数的单调性求最值.例2 已知函数f(x)=2x+1x+1(1)判断函数在区间(-1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间[2,4]上的最大值和最小值.方法归纳函数的最大(小)值与单调性的关系(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间[a,b]上的最小(大)值是f(a),最大(小)值是f(b).(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),最小(大)值是f(a)与f(c)中较小(大)的一个.在区间[2,6]上的最大值和最小值.巩固训练2 求函数y=2x−1题型 3 求二次函数的最值例3 (1)已知函数f(x)=x2-2x-3,若x∈[0,2],求函数f(x)的最值.(2)求函数f(x)=x2-2x+2在区间[t,t+1]上的最小值g(t).(3)已知函数f(x)=x2-ax+1,求f(x)在[0,1]上的最大值.方法归纳求二次函数最值问题的解题策略一般都是讨论函数的定义域与对称轴的位置关系,往往分三种情况:(1)定义域在对称轴左侧;(2)对称轴在定义域内;(3)定义域在对称轴右侧.在讨论时可结合函数图象,便于分析、理解.巩固训练3 已知二次函数f(x)=-x2+2ax-a在区间[0,1]上有最大值2,求实数a的值.第2课时 函数的最大(小)值新知初探·课前预习[教材要点]要点≤ ≥ f (x 0)=M 纵坐标 纵坐标[基础自测]1.答案:(1)× (2)√ (3)√ (4)×2.解析:函数f (x )=1x 是反比例函数,当x ∈(0,+∞)时,函数图象下降,所以在[1,+∞)上f (x )单调递减,f (1)为f (x )在[1,+∞)上的最大值,函数在[1,+∞)上没有最小值.答案:A3.解析:因为f (x )=-2x +1(x ∈[-2,2])是单调递减函数,所以当x =2时,函数的最小值为-3.当x =-2时,函数的最大值为5.答案:B4.解析:由图象知点(1,2)是最高点,点(-2,-1)是最低点, ∴y max =2,y min =-1. 答案:-1,2题型探究·课堂解透例1 解析:作出f (x )的图象如图:由图象可知,当x =2时,f (x )取最大值2;当x =12时,f (x )取最小值-14.所以f (x )的最大值为2,最小值为-14.巩固训练1 解析:在同一坐标系中,作出函数的图象(如图中的实线部分), 则f (x )max =f (1)=1. 答案:B例2 解析:(1)f (x )在(-1,+∞)上单调递增,证明如下:任取-1<x 1<x 2, 则f (x 1)-f (x 2)=2x 1+1x 1+1−2x 2+1x 2+1=x 1−x 2(x 1+1)(x 2+1),因为-1<x 1<x 2⇒x 1+1>0,x 2+1>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0⇒f (x 1)<f (x 2), 所以f (x )在(-1,+∞)上单调递增. (2)由(1)知f (x )在[2,4]上单调递增, 所以f (x )的最小值为f (2)=2×2+12+1=53,最大值f (4)=2×4+14+1=95.巩固训练2 解析:设x 1,x 2是区间[2,6]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=2x1−1−2x 2−1=2(x 2−x 1)(x1−1)(x 2−1)由于2<x 1<x 2<6, 得x 2-x 1>0,(x 1-1)(x 2-1)>0,于是f (x 1)-f (x 2)>0,f (x 1)>f (x 2) 所以,函数y =2x−1在区间[2,6]上单调递减.x =2时取最大值,最大值是2,在x =6时取最小值,最小值为25.例3 解析:(1)∵函数f (x )=x 2-2x -3开口向上,对称轴x =1,∴f (x )在[0,1]上单调递减,在[1,2]上单调递增,且f (0)=f (2).图1∴f (x )max =f (0)=f (2)=-3,f (x )min =f (1)=-4. (2)当t +1<1,即t <0时,函数图象如图1所示,函数f (x )在区间[t ,t +1]上为减函数,所以最小值为g (t )=f (t +1)=t 2+1; 当t >1时,函数图象如图2所示,图2图3函数f (x )在区间[t ,t +1]上为增函数,所以最小值为g (t )=f (t )=t 2-2t +2.当t ≤1≤t +1,即0≤t ≤1时, 函数图象如图3所示,最小值为g (t )=f (1)=1,综上所述,g (t )={t 2+1,t <01,0≤t ≤1t 2−2t +2,t >1.(3)因为函数f (x )=x 2-ax +1的图象开口向上,其对称轴为x =a2,当a 2≤12,即a ≤1时,f (x )的最大值为f (1)=2-a ;当a 2>12,即a >1时,f (x )的最大值为f (0)=1. 综上f (x )max ={2−a ,a ≤11,a >1.巩固训练3 解析:f(x)=-(x-a)2+a2-a,对称轴为x=a.(1)当a<0时,f(x)在[0,1]上单调递减,∴f(0)=2,即a=-2.(2)当a>1时,f(x)在[0,1]上单调递增,∴f(1)=2,即a=3.(3)当0≤a≤1时,f(x)在[0,a]上单调递增,在[a,1]上单调递减, ∴f(a)=2,即a2-a=2,解得a=2或a=-1,与0≤a≤1矛盾.综上a=-2或a=3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3.1单调性与最大(小)值(二)自主学习1.通过对一些熟悉函数图象的观察、分析,理解函数最大值、最小值的定义.2.会利用函数的单调性求函数的最值.1.函数的最大值、最小值的定义一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有f (x )≤M (f (x )≥M );(2)存在x 0∈I f (x 0)=M .那么,称M 是函数y =f (x )的最大值(最小值).2.函数f (x )=x 2+2x +1 (x ∈R )有最小值,无最大值.若x ∈[0,1],则f (x )最大值为4,最小值为1.3.函数f (x )=1x在定义域上无最值.(填“有”或“无”)对点讲练利用单调性求函数最值【例1】 已知函数f (x )=x 2+2x +3x(x ∈[2,+∞)), (1)求f (x )的最小值; (2)若f (x )>a 恒成立,求a 的取值范围.分析 求最值问题往往依赖于函数的单调性,由于这个函数并不是我们所熟悉的函数,可考虑先判断一下单调性,再求最值.解 (1)任取x 1,x 2∈[2,+∞),且x 1<x 2,f (x )=x +3x+2, 则f (x 1)-f (x 2)=(x 1-x 2)⎝⎛⎭⎫1-3x 1x 2∵x 1<x 2,∴x 1-x 2<0又∵x 1≥2,x 2>2,∴x 1x 2>4,1-3x 1x 2>0∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).故f (x )在[2,+∞)上是增函数.∴当x =2时,f (x )有最小值,即f (2)=112. (2)∵f (x )最小值为f (2)=112, ∴f (x )>a 恒成立,只须f (x )min >a ,即a <112. 规律方法 运用函数单调性求最值是求函数最值的重要方法,特别是当函数图象不好作或作不出来时,单调性几乎成为首选方法.另外f (x )>a 恒成立,等价于f (x )min >a ,f (x )<a 恒成立,等价于f (x )max <a .变式迁移1 求函数f (x )=x x -1在区间[2,5]上的最大值与最小值;若f (x )<a 在[2,5]上恒成立,求a 的取值范围.解 任取2≤x 1<x 2≤5,则f (x 1)=x 1x 1-1,f (x 2)=x 2x 2-1, f (x 2)-f (x 1)=x 2x 2-1-x 1x 1-1=x 1-x 2(x 2-1)(x 1-1), ∵2≤x 1<x 2≤5,∴x 1-x 2<0,x 2-1>0,x 1-1>0.∴f (x 2)-f (x 1)<0.∴f (x 2)<f (x 1).∴f (x )=x x -1在区间[2,5]上是减函数. ∴f (x )max =f (2)=22-1=2. f (x )min =f (5)=55-1=54. f (x )<a 恒成立,等价于a >f (x )max ,即a >2.闭区间上二次函数的最值问题【例2】 函数f (x )=x 2-4x -4在闭区间[t ,t +1](t ∈R )上的最小值记为g (t ).(1)试写出g (t )的函数表达式;(2)作g (t )的图象并写出g (t )的最小值.分析 本题需要先求f (x )的最小值,关键是分析其对称轴x =2与区间[t ,t +1]的位置关系.解 (1)f (x )=x 2-4x -4=(x -2)2-8.当t >2时,f (x )在[t ,t +1]上是增函数,∴g (t )=f (t )=t 2-4t -4;当t ≤2≤t +1,即1≤t ≤2时,g (t )=f (2)=-8;当t +1<2,即t <1时,f (x )在[t ,t +1]上是减函数,∴g (t )=f (t +1)=t 2-2t -7.从而g (t )=⎩⎪⎨⎪⎧ t 2-2t -7 (t <1),-8 (1≤t ≤2),t 2-4t -4 (t >2).(2)g (t )的图象如图所示,由图象易知g (t )的最小值为-8.规律方法 (1)含有参数的二次函数的值域与最值问题,主要考虑其顶点(对称轴)与定义域区间的位置关系,由此进行分类讨论.(2)二次函数的对称轴与定义域区间的位置通常有三种关系:①定义域区间在对称轴右侧;②定义域区间在对称轴左侧;③定义域区间在对称轴的两侧.变式迁移2 求f (x )=x 2-2ax -1在区间[0,2]上的最大值和最小值.解 f (x )=(x -a )2-1-a 2,对称轴为x =a .①当a <0时,由图①可知,f (x )min =f (0)=-1,f (x )max =f (2)=3-4a .②当0≤a <1时,由图②可知,f (x )min =f (a )=-1-a 2,f (x )max =f (2)=3-4a .③当1≤a ≤2时,由图③可知,f (x )min =f (a )=-1-a 2,f (x )max =f (0)=-1.④当a >2时,由图④可知,f (x )min =f (2)=3-4a ,f (x )max =f (0)=-1.1.求函数的最值,若能作出函数的图象,由最值的几何意义不难得出.2.运用函数的单调性求最值是求最值的重要方法,特别是函数图象作不出来时,单调性几乎成为首选方法.3.探求二次函数在给定区间上的最值问题,一般要先作出y =f (x )的草图,然后根据图象的增减性进行研究.特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,并且最大(小)值不一定在顶点处取得.课时作业一、选择题1.函数f (x )=2x 2-6x +1在区间[-1,1]上的最小值为( )A .9B .-3 C.74 D.114答案 B2.函数f (x )(-2≤x ≤2)的图象如图所示,则函数的最大值,最小值分别为( )A .f (2),f (-2)B .f ⎝⎛⎭⎫12,f (-1)C .f ⎝⎛⎭⎫12,f ⎝⎛⎭⎫-32D .f ⎝⎛⎭⎫12,f (0) 答案 C3.函数f (x )=⎩⎪⎨⎪⎧2x +6, x ∈[1,2],x +7, x ∈[-1,1)则f (x )的最大值与最小值分别为( ) A .10,6 B .10,8C .8,6D .以上都不对答案 A解析 画图象可知.4.函数f (x )=11-x (1-x )的最大值是( ) A.45 B.54 C.34 D.43答案 D解析 f (x )=1⎝⎛⎭⎫x -122+34≤43. 5.函数y =|x -3|-|x +1|的( )A .最小值是0,最大值是4B .最小值是-4,最大值是0C .最小值是-4,最大值是4D .没有最大值也没有最小值答案 C解析 y =|x -3|-|x +1|=⎩⎪⎨⎪⎧ -4 (x ≥3)-2x +2 (-1≤x <3)4 (x <-1)作出图象可求.二、填空题6.函数y =-x 2+6x +9在区间[a ,b ](a <b <3)有最大值9,最小值-7,则a =________,b =__________.答案 -2 0解析 y =-(x -3)2+18,∵a <b <3,∴在区间[a ,b ]上单调递增,即-b 2+6b +9=9,得b =0,-a 2+6a +9=-7,得a =-2.7.已知f (x )=x 2+2(a -1)x +2在区间[1,5]上的最小值为f (5),则a 的取值范围为________. 答案 a ≤-4解析 由对称轴方程为x =1-a ,∵区间[1,5]上的最小值为f (5),∴1-a ≥5,得a ≤-4.8.若定义运算a ⊙b =⎩⎪⎨⎪⎧b ,a ≥b a ,a <b ,则函数f (x )=x ⊙(2-x )的值域是________. 答案 (-∞,1]解析 由题意知x ⊙(2-x )表示x 与2-x 两者中的较小者,借助y =x 与y =2-x 的图象,不难得出,f (x )的值域为(-∞,1].三、解答题9.已知函数f (x )=x 2+2ax +2,x ∈[-5,5].(1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数.解 (1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1,∵x ∈[-5,5],故当x =1时,f (x )的最小值为1.当x =-5时,f (x )的最大值为37.(2)函数f (x )=(x +a )2+2-a 2图象的对称轴为x =-a .∵f (x )在[-5,5]上是单调的,∴-a ≤-5,或-a ≥5.即实数a 的取值范围是a ≤-5,或a ≥5.10.已知函数f (x )=x 2+2x +a x,x ∈[1,+∞). (1)当a =12时,求函数f (x )的最小值; (2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.解 (1)当a =12时,f (x )=x +12x+2 设1≤x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+12x 1+2-⎝⎛⎭⎫x 2+12x 2+2 =(x 1-x 2)+⎝⎛⎭⎫12x 1-12x 2=(x 1-x 2)+x 2-x 12x 1x 2=(x 1-x 2)(2x 1x 2-1)2x 1x 2, ∵1≤x 1<x 2,∴x 1-x 2<0,2x 1x 2-1>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴函数f (x )在[1,+∞)上为增函数.∴f (x )min =f (1)=72. (2)方法一 在区间[1,+∞)上,f (x )=x 2+2x +a x>0恒成立,等价于x 2+2x +a >0恒成立. 设y =x 2+2x +a ,x ∈[1,+∞),y =x 2+2x +a =(x +1)2+a -1递增,∴当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时,函数f (x )恒成立,故a >-3.方法二 在区间[1,+∞)上f (x )=x 2+2x +a x>0恒成立等价于x 2+2x +a >0恒成立.即a >-x 2-2x 恒成立.又∵x ∈[1,+∞),a >-x 2-2x 恒成立,∴a 应大于函数u =-x 2-2x ,x ∈[1,+∞)的最大值.∴a >-x 2-2x =-(x +1)2+1.当x =1时,u 取得最大值-3,∴a >-3.。

相关文档
最新文档