考研数学高数知识点:常考类型函数求导
导数知识点总结考研

导数知识点总结考研一、导数的定义导数是微积分学中的一个重要概念,它描述了函数在某一点处的变化率。
在几何上,一个函数在某一点处的导数可以理解为这个函数在该点处的切线斜率。
在代数上,函数f(x)在点x=a处的导数可以用极限来表示,即f'(a) = lim(x→a) (f(x) - f(a)) / (x - a)如果这个极限存在,那么函数f(x)在点x=a处是可导的,其导数即为f'(a)。
如果导数存在,那么函数在该点处是光滑的,即函数在该点处的变化率是连续的。
二、导数的计算1. 基本导数法则- 常数导数法则:如果f(x) = c,其中c为常数,那么f'(x) = 0。
- 幂函数导数法则:如果f(x) = x^n,其中n为自然数,那么f'(x) = nx^(n-1)。
- 指数函数导数法则:如果f(x) = a^x,其中a为正数且不等于1,那么f'(x) = a^x * ln(a)。
- 对数函数导数法则:如果f(x) = log_a(x),其中a为正数且不等于1,那么f'(x) = 1/(x *ln(a))。
2. 导数的四则运算- 和差法则:如果f(x) = g(x) + h(x) (或f(x) = g(x) - h(x)),那么f'(x) = g'(x) + h'(x) (或f'(x)= g'(x) - h'(x))。
- 积法则:如果f(x) = g(x) * h(x),那么f'(x) = g'(x) * h(x) + g(x) * h'(x)。
- 商法则:如果f(x) = g(x) / h(x),那么f'(x) = (g'(x) * h(x) - g(x) * h'(x)) / h(x)^2。
3. 链式法则如果f(x) = g(h(x)),那么f'(x) = g'(h(x)) * h'(x)。
高数求导公式大全法则

高数求导公式大全法则
高数求导公式和法则如下:
1. 基本初等函数求导公式:
y=c y'=0
y=α^μ y'=μα^(μ-1)
y=a^x y'=a^x lna
y=e^x y'=e^x
y=loga,x y'=loga,e/x
y=lnx y'=1/x
y=sinx y'=cosx
2. 基本的求导法则:
求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。
两个函数的乘积的导函数:一导乘二+一乘二导。
两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。
3. 链式法则:如果有复合函数,则用链式法则求导。
4. 导数的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率。
5. 导数的计算方法:计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。
6. 导数在几何上的意义是该函数曲线在这一点上的切线斜率。
希望对您有所帮助!如果您还有疑问,建议咨询数学专业人士。
考研数学高数章节重点

第一章第一节:函数 函数的四个性质:1,有界性;无穷大、无界、无穷小之间的运算。
(重点) 2,单调性;利用导数求单调性。
3,周期性,一般用定义来求;存在一个常数T ,使得()()f x f x T =+。
称T 为一个周期。
4,奇偶性。
一般用定义或者化为已知的周期函数来求;奇函数()()f x f x -=-,偶函数()()f x f x -=第二节:极限1,数列{}n a 极限的几种求法,第一种方法是:定理——单调有界必有极限;证明分两步,1,证明单调性,如果是增函数,则证明有上界;如果是减函数,则证明有下界。
第二种方法是:夹逼准则。
证明中要找到数列{}n b ,{}n c ,满足两条:1,n n n b a c ≤≤;2,lim lim n n n n b c a →∞→∞==,那么lim n n a a →∞=。
2,,函数的极限的定义及求法,理解左右极限。
几个常用的极限 (1):lim 1n n n →∞=;(2):0||1lim ||1||1||1n n q q q q →∞<⎧⎪==⎨⎪∞>⎩;(3)1101100lim m m m m mn n x n n n m n b x b x bx b b m n a x b x ax a a m n---→∞-⎧<⎪++++⎪==⎨++++⎪⎪∞>⎩ :无穷小与无穷大1,理解无穷大与无穷小之间的转换。
● 有限个无穷小之和、乘积都是无穷小。
● 有界量乘以无穷小是无穷小。
● 无穷大相乘是无穷大。
● 无穷大与无界相乘或相加都是无界。
第四节:极限的运算法则 设lim n n a a →∞=,lim n n b b →∞=,则lim()n n n a b a b →∞+=+;lim()n n n a b ab →∞=;limn n na ab b →∞=,其中0,0n b b ≠≠。
一定要分清楚什么时候求极限和的时候可以用求和的极限的区别。
常见函数求导公式

常见函数求导公式一、导数的定义和意义导数是微积分学中的重要概念,表示函数在某一点处变化的快慢,其定义如下:设函数f(x)在点x0处可导,则函数f(x)在点x0处的导数为:f'(x0)=lim (h->0) (f(x0+h)-f(x0))/hh表示x0点向右或向左趋近的增量,也称为步长。
导数表示的是函数在x0处的瞬时变化率,即刻画函数在x0点处的局部行为。
在实际应用中,导数可以用来求函数的最值、零点、凸凹性、极值等,是研究函数性质的重要工具。
二、常见函数的导数公式及解释1. 常数函数对于常数函数f(x)=C(C为常数),其导数为0。
这是因为常数函数在任意点处的增量都为0,所以导数就表示为其在该点的变化率,即为0。
实际应用中,常数函数的导数可以用来判断函数是否恒定,以及在一些积分问题中作为常数项的处理。
2. 幂函数对于幂函数f(x)=xn(n为常数),其导数为f'(x)=n * xn-1。
这是因为在求导过程中,对于给定的x0,我们可以将函数f(x)在x0处取其切线来近似描述该点处的变化情况,并将变化率表示为该切线的斜率。
而对于幂函数f(x)=xn来说,它的切线斜率即为f'(x)=n * xn-1。
实际应用中,幂函数可以用来描述物理量之间的关系,例如速度与时间的关系v=t^n,其中v为速度,t为时间,n为常数,求导可得到加速度a=dv/dt=n * t^(n-1)。
3. 指数函数对于指数函数f(x)=a^x(a>0且a≠1),其导数为f'(x)=ln(a) * a^x。
这是因为指数函数与自然对数函数e^x有着紧密联系,在求导过程中我们可以对指数函数应用链式法则,即将函数f(x)=a^x表示为f(x)=e^(xlna),然后对自然对数函数求导得到f'(x)=ln(a) * a^x。
实际应用中,指数函数可以用来描述物质的衰变规律,例如放射性元素衰变规律可以表示为N=N0e^(-λt),其中N为元素个数,N0为初始值,λ为衰变常数,t为时间,求导可得到衰变速率为dN/dt=-λN。
求导公式归纳总结

求导公式归纳总结求导是微积分中的一个重要概念,它用于计算函数在某一点的变化率。
求导公式是求导过程中的基础工具,理解和掌握各种求导公式对于解决实际问题至关重要。
本文将对常见的求导公式进行归纳总结,以帮助读者更好地理解和应用求导知识。
一、基本求导公式1. 常数的导数为0:(c)' = 0,其中c为常数。
2. 变量的一次幂的导数为1:(x^n)' = nx^(n-1),其中n为正整数。
3. 常见函数的导数:a) 正弦函数的导数:(sinx)' = cosx;b) 余弦函数的导数:(cosx)' = -sinx;c) 指数函数的导数:(e^x)' = e^x;d) 对数函数的导数:(lnx)' = 1/x。
二、基本求导法则1. 常数倍法则:若f(x)可导,则(cf(x))' = cf'(x),其中c为常数。
2. 和差法则:若f(x)和g(x)可导,则(f(x)±g(x))' = f'(x)±g'(x)。
3. 乘积法则:设f(x)和g(x)可导,则(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)。
4. 商法则:设f(x)和g(x)可导,且g(x)≠0,则(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2。
三、复合函数的求导若y=f(g(x))是由两个函数复合而成的复合函数,即y=f(u)和u=g(x),则它们的求导公式如下:1. 外函数求导:先对外函数f(u)求导,然后乘以内函数g'(x),即dy/du · du/dx = dy/dx。
2. 内函数求导:令y=u,则dy/du就是外函数的导数。
然后对内函数u=g(x)求导,即du/dx。
四、三角函数的链式法则链式法则适用于由三角函数和其他函数复合而成的函数。
高等数学导数公式大全

高等数学导数公式大全在高等数学中,导数是一个非常重要的概念,它反映了函数在某一点处的变化率。
导数公式则是求解导数的基本工具,熟练掌握这些公式对于学习和应用高等数学具有至关重要的意义。
下面,我们将详细介绍常见的导数公式。
一、基本函数的导数公式1、常数函数的导数若\(f(x) = C\)(\(C\)为常数),则\(f'(x) = 0\)。
这意味着常数函数的图像是一条水平直线,其斜率始终为零,即变化率为零。
2、幂函数的导数对于\(f(x) = x^n\)(\(n\)为实数),其导数为\(f'(x) = nx^{n 1}\)。
例如,\(f(x) = x^2\)的导数为\(f'(x) = 2x\);\(f(x) =x^3\)的导数为\(f'(x) = 3x^2\)。
3、指数函数的导数若\(f(x) = e^x\),则\(f'(x) = e^x\)。
\(e\)是一个常数,约等于\(271828\),\(e^x\)的导数等于其本身,这是指数函数的一个重要特性。
若\(f(x) = a^x\)(\(a > 0\)且\(a \neq 1\)),则\(f'(x) = a^x \ln a\)。
4、对数函数的导数若\(f(x) =\ln x\),则\(f'(x) =\frac{1}{x}\)。
若\(f(x) =\log_a x\)(\(a > 0\)且\(a \neq 1\)),则\(f'(x) =\frac{1}{x \ln a}\)。
二、三角函数的导数公式1、\(f(x) =\sin x\),则\(f'(x) =\cos x\)。
2、\(f(x) =\cos x\),则\(f'(x) =\sin x\)。
3、\(f(x) =\tan x\),则\(f'(x) =\sec^2 x\)。
4、\(f(x) =\cot x\),则\(f'(x) =\csc^2 x\)。
考研求导公式整理

考研求导公式整理考研求导公式整理一、一元函数的导数1.〔变量函数〕的导数:若y={f(x)},则y′={f′(x)} 2.关于x的二次函数的导数:若y=ax^2+bx+c,则y′=2ax+b 3.关于x的三次函数的导数:若y=ax^3+bx^2+cx+d,则y′=3ax^2+2bx+c4.关于x的多项式的导数:若y=f(x)=a_0x^n+a_1x^(n-1)+a_2x^(n-2)+…+a_n(n>0),则y′=n a_0x^(n-1)+ (n-1)a_1x^(n-2)+ (n-2)a_2x^(n-3)+…+ a_n5.幂函数的导数:若y=x^n(n>0),则y′=nx^(n-1)6.指数函数的导数:若y=ax^n,则y′=nax^(n-1)7.对数函数的导数:若y=lnx,则y′=1/x二、多元函数的偏导数1.关于x的偏导数:若z=f(x,y),则z_x=f_x=f/x2.关于y的偏导数:若z=f(x,y),则z_y=f_y=f/y3.有关x、y二元函数的偏导数求导法则:若z=f(x,y),则f_x处的求导:f_x=f/x 且f_y=f/y;z_xy=f_xy=f_x/y=^2f/xy;z_yx=f_yx=f_y/x=^2f/yx=f_xy(因为二元函数极限值的变化原则);z_xx=f_xx=f_x/x=^2f/x^2;z_yy=f_yy=f_y/y=^2f/y^2。
三、关于连续变化函数的导数1.函数的连续变化和对称性:若f(x)连续,则f′(x)也是连续;若f(x)周期性变化(即f(x+2π)=f(x)),则f′(x)也周期性变化(即f′(x+2π)=f′(x))。
2.函数上升下降规则:若f(x)在点x0处取得极大值或极小值,则f′(x0)=0(即抛物线在顶点处的切线);(f(x)在区间(a,b)上增加时,则f′(x)>0,在区间(a,b)上减少时,则f′(x)<0)。
高数常用求导公式24个

高数常用求导公式24个(原创版)目录1.导数的定义与概念2.常用求导公式分类3.幂函数求导公式4.三角函数求导公式5.指数函数与对数函数求导公式6.反三角函数求导公式7.复合函数求导公式8.隐函数求导公式9.参数方程求导公式10.高阶导数求导公式正文一、导数的定义与概念导数是微积分学中的一个重要概念,表示函数在某一点变化率的数量级。
导数可以用以下符号来表示:f"(x) 或 dy/dx。
导数是函数在某一点的局部性质,可以帮助我们了解函数在该点的变化情况。
二、常用求导公式分类在求导过程中,我们需要掌握一些常用的求导公式。
这些公式可以根据函数的类型进行分类,如下所示:1.幂函数求导公式2.三角函数求导公式3.指数函数与对数函数求导公式4.反三角函数求导公式5.复合函数求导公式6.隐函数求导公式7.参数方程求导公式8.高阶导数求导公式三、幂函数求导公式幂函数是指形如 f(x) = x^n 的函数,其中 n 为实数。
幂函数的导数公式如下:f"(x) = n * x^(n-1)四、三角函数求导公式三角函数包括正弦函数、余弦函数和正切函数。
它们的导数公式如下:1.正弦函数:f"(x) = cos(x)2.余弦函数:f"(x) = -sin(x)3.正切函数:f"(x) = 1 / cos^2(x)五、指数函数与对数函数求导公式1.指数函数:f"(x) = a^x * ln(a)2.自然对数函数:f"(x) = 1 / x3.普通对数函数:f"(x) = 1 / (xlna)六、反三角函数求导公式反三角函数包括反正弦函数、反余弦函数和反正切函数。
它们的导数公式如下:1.反正弦函数:f"(x) = 1 / (1 + x^2)^(3/2)2.反余弦函数:f"(x) = -x / (1 + x^2)^(3/2)3.正切函数:f"(x) = 1 / (1 + x^2)七、复合函数求导公式复合函数是指形如 f(g(x)) 的函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
凯程考研集训营,为学生引路,为学员服务!
的辅导班(如果经济条件允许的情况下)。2017 考研开始准备复习啦,早起的鸟儿有虫吃, 一分耕耘一分收获。加油!
ቤተ መጻሕፍቲ ባይዱ
凯程考研集训营,为学生引路,为学员服务!
考研数学高数知识点:常考类型函数求 导
凯程考研集训营,为学生引路,为学员服务!
凯程考研集训营,为学生引路,为学员服务!
小提示:目前本科生就业市场竞争激烈,就业主体是研究生,在如今考研竞争日渐激烈的情 况下,我们想要不在考研大军中变成分母,我们需要:早开始+好计划+正确的复习思路+好