【海文考研数学】:线代知识点归纳 1行列阵
线性代数知识点总结

线性代数知识点总结线性代数知识点总结第一章行列式行列式是线性代数中的重要概念之一。
行列式的定义包括二三阶行列式和N阶行列式。
其中,N阶行列式是由行列式中所有不同行、不同列的n个元素的乘积的和构成的。
行列式的计算需要用到奇偶排列、逆序数和对换等概念。
行列式还具有多种性质,如行列式行列互换其值不变,行列式中某两行(列)互换,行列式变号等。
通过这些性质,我们可以推论出行列式中某两行(列)对应元素相等,则行列式等于零等结论。
行列式还有一些特殊的形式,如转置行列式、对称行列式、反对称行列式、三线性行列式和上(下)三角形行列式等。
行列式在解线性方程组中应用广泛,如克莱姆法则。
非齐次线性方程组的系数行列式不为零时,有唯一解;而齐次线性方程组的系数行列式为1时,只有零解。
第二章矩阵矩阵是线性代数中另一个重要概念。
矩阵是由数个数排成的矩形阵列,其中包括零矩阵、负矩阵、行矩阵、列矩阵、n阶方阵和相等矩阵等。
矩阵的运算包括加法、数乘和乘法。
其中,加法和数乘都满足交换律和结合律。
而矩阵的乘法需要满足行数等于列数的规则。
矩阵的乘法运算需要用到矩阵的元素之间的乘积和求和。
在矩阵的运算中,我们需要注意矩阵的类型和是否有意义。
一般情况下,矩阵乘法不满足消去律。
即使已知AB=0,也不能得到A=0或B=0.对于矩阵A,它的转置等于A乘以A加B。
即transpose(A)=A(A+B)。
对于标量k和矩阵A,有(kA)=kA和(AB)=BA(反序定理)。
对于方幂A^k,有(A^k)=(A^1+k/2)+(A^2+k/2)。
有几种特殊的矩阵,如对角矩阵、数量矩阵、单位矩阵、上下三角形矩阵、对称矩阵、反对称矩阵、阶梯型矩阵和分块矩阵。
对于分块矩阵,加法、数乘和乘法的规则类似,而转置需要对每个子块进行转置。
矩阵的逆矩阵指的是存在一个N阶矩阵B,使得AB=BA=I。
如果矩阵A是可逆的,则称它是非奇异矩阵,否则称为奇异矩阵,其行列式为0.初等变换不会改变矩阵的可逆性,而初等矩阵都是可逆的。
线性代数各章要点整理

第一章行列式主要知识点一、行列式的定义和性质1.余子式和代数余子式的定义2.行列式按一行或一列展开的公式1)2)3.行列式的性质1)2)用数k乘行列式的某一行(列)所得新行列式=原行列式的k倍. 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等.二、行列式的计算1.二阶行列式和三角形行列式的计算.2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形(或对角形)行列式的计算.3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.4.行列式中各行元素之和为一个常数的类型.5.范德蒙行列式的计算公式第二章矩阵主要知识点一、矩阵的概念1.要分清矩阵与行列式的区别2.几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵)二、矩阵的运算1.矩阵A , B的加、减、乘有意义的充分必要条件2.矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法、乘法的交换律和结合律;乘法关于加法的分配律)重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点).3.转置对称阵和反对称阵1)转置的性质2)若A T=A (A T= - A),则称A为对称(反对称)阵4.逆矩阵1)方阵A可逆(也称非异,非奇异,满秩)的充分必要条件是.当A可逆时,.2)方阵A的伴随阵的定义。
重要公式;与A -1的关系(当方阵A可逆时,)3)重要结论:若n阶方阵A,B满足AB=E,则A,B都可逆,且A-1=B ,B-1=A.4)逆矩阵的性质:; ; .5)消去律:设方阵A可逆,且AB=AC(BA=CA),则必有B=C。
(若不知A可逆,仅知A≠0结论不一定成立。
考研数学线代定理公式汇总

考研数学线代定理公式汇总1.行列式定理:(1) 行列式的值不变性: 对于可逆矩阵A,有det(AB) =det(A)det(B)。
(2)若存在行(列)线性相关,则行列式为0。
(3)拉普拉斯定理:对于n阶行列式,可以通过余子式展开得到。
2.线性方程组定理:(1)线性方程组存在唯一解的充要条件是系数矩阵的秩等于方程组的未知数个数,并且扩展矩阵的秩等于系数矩阵的秩。
(2)齐次线性方程组存在非零解的充要条件是系数矩阵的秩小于方程组的未知数个数。
(3)利用矩阵的逆可以求解非齐次线性方程组。
3.矩阵定理:(1)矩阵的秩等于其非零特征值的个数。
(2)若矩阵A可对角化,则A与其相似矩阵具有相同的特征值。
(3)奇异值分解定理:对于任意矩阵A,都可以分解成奇异值分解形式:A=UΣV^T,其中U和V是正交矩阵,Σ是对角矩阵。
4.向量空间定理:(1)向量组的线性相关性可以通过列向量组的秩判断,如果秩小于向量个数,则线性相关。
(2)向量组的秩等于向量组的极大线性无关组的向量个数。
(3) rank(A^T) = rank(A),其中A是矩阵。
(4)若A和B是可逆矩阵,则(A^T)^-1=(A^-1)^T。
5.特征值与特征向量定理:(1)特征值方程的根为矩阵的特征值。
(2)若特征值λ是矩阵A的特征值,对应的特征向量组成的集合是由矩阵A-λI的零空间生成的。
(3)矩阵A相似于对角矩阵的充要条件是A有n个线性无关的特征向量。
以上是一些常见的数学线性代数定理和公式的汇总,希望对您的学习有所帮助。
当然,线性代数的内容还是比较广泛的,还有很多其他的定理和公式,如矩阵行列式的性质、特征值与特征向量的性质、矩阵的幂等性等。
如果您对这个话题有更深入的了解需求,可以提出具体的问题,我将尽力回答。
2023考研数学(线性代数)知识点归纳

2023考研数学(线性代数)知识点归纳
想理解更多请持续____应届毕业生考试网!
不同专业考察的内容不一样,从历年的实际考研试题来看,3类数学的线性代数试题根本一样,差异仅仅在于:数学(一)比数学(二)和(三)多了n维向量空间的相关内容,但这局部内容在考题中很少出现。
第一章、行列式
1、行列式的定义
2、行列式的性质
3、特殊行列式的值
4、行列式展开定理
5、抽象行列式的计算
第二章、矩阵
1、矩阵的定义及线性运算
2、乘法
3、矩阵方幂
4、转置
5、逆矩阵的概念和性质
6、伴随矩阵
7、分块矩阵及其运算
8、矩阵的初等变换与初等矩阵
9、矩阵的等价
10、矩阵的秩
第三章、向量
1、向量的概念及其运算
2、向量的线性组合与线性表出
3、等价向量组
4、向量组的线性相关与线性无关
5、极大线性无关组与向量组的.秩
6、内积与施密特正交化
7、n维向量空间(数学一)
第四章、线性方程组
1、线性方程组的克莱姆法那么
2、齐次线性方程组有非零解的断定条件
3、非齐次线性方程组有解的断定条件
4、线性方程组解的构造
第五章、矩阵的特征值和特征向量
1、矩阵的特征值和特征向量的概念和性质
2、相似矩阵的概念及性质
3、矩阵的相似对角化
4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章、二次型
1、二次型及其矩阵表示
2、合同变换与合同矩阵
3、二次型的秩
4、二次型的标准型和标准型
5、惯性定理
6、用正交变换和配方法化二次型为标准型
7、正定二次型及其断定。
考研数学《线性代数》考点知识点总结

记作: ri rj ( ci cj ) D D 0 .
3.行列式乘以 k 等于某行(列)所有元素都乘以 k. 推论:某一行(列)所有元素公因子可提到行列式的外面.
记作: kD ri k ( kD ci k ).
记作: kD ri k ( kD ci k ).
行列式的 性质:
a2i a2n
a21
a22
a2i a2n
an1 an2 (ani ani ) ann
an1 an2 ani ann an1 an2 ani ann
上式为列变换,行变换同样成立.
6.把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变.
记作: ci ci kcj ( ri ri krj ), D 不变.
n
aki Akj
k 1
Dij
D, 0,
当i 当i
j, n
j;
或
k 1
aik
Ajk
Dij
D, 0,
当i 当i
j, j; 其中ij
1, 0,
当i j, 当i j.
1 1 11
范德蒙德 行列式:
x1 Dn x12
x2 x22
x3 xn
x32 xn2 = (xi x j ) .证明用数学归纳法.
定理 2:
n 阶行列式可定义为 D (1)ta a p11 p2 2 apnn = (1)ta1p1a2 p2 anpn .
1.D=DT,DT 为 D 转置行列式.(沿副对角线翻转,行列式同样不变)
2.互换行列式的两行(列),行列式变号.
推论:两行(列)完全相同的行列式等于零.
记作: ri rj ( ci c j ) D D .
考研辅导--线性代数--第1章行列式

第一章 行列式◆ 基础知识概要1.n 阶行列式的定义二阶行列式2112221122211211a a a a a a a a -=.三阶行列式.333231232221131211a a a a a a a a a 112233122331132132112332122133132231a a a a a a a a a a a a a a a a a a =++---.对角线法则:n 阶行列式的定义()1212111212122212,,,121...n nn tn j j nj j j j n n nna a a a a a D a a a a a a ⋅⋅⋅==-∑,它是取自不同行不同列的n 个数的乘积1212...n j j nj a a a 的代数和(共!n 项),其中各项的符号为()1t-,t 代表排列12,,,n j j j ⋅⋅⋅的逆序数,简记为()det ij a .n 阶行列式也可定义为()121212,,,1...n nti i i n i i i D a a a ⋅⋅⋅=-∑,其中t 为行标12,,,n i i i ⋅⋅⋅排列的逆序数.例1.1 计算行列式(1)12n λλλ;(2)12nλλλ.练习:计算下列行列式(1)2341342013004000;(2)111212220n nnn a a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅(上三角形行列式);(3)112122120n n nna a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅(下三角形行列式).2. 行列式的性质与计算 2.1行列式的性质(1)行列式与其转置行列式相等;(2)互换行列式的某两行(列)得到新行列式则新行列式应反号;特别地:若行列式中有两行(列)对应元素相等,则行列式等于零; (3)行列式中某一行(列)的所有元素的公因数可以提到行列式的外面; 即以数k 乘以行列式等于用数k 乘以行列式的某一行或某一列; 特别地:若行列式中有一行(列)的元素全为零,则行列式等于零; (4)行列式中如果有某两行(列)对应元素成比例,则行列式的值为零; 特别地:比例系数为1(5)若行列式的某一列(行)的元素是两数之和,例如,第i 列的元素都是两数之和:()()()1112111212222212i i n i i n n n ni ninn a a a a a a a a a a D a a a a a '⋅⋅⋅+⋅⋅⋅'⋅⋅⋅+⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅+⋅⋅⋅, 则D 等于如下两个行列式之和:1112111112112122222122221212i n i n i n i n n n ni nnn n ninn a a a a a a a a a a a a a a a a D a a a a a a a a '⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅'⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅.(6)把行列式的某一行(列)的各元素的k 倍加到另一行(列)的对应元素上,行列式的值不变.注:(1)交换行列式的第,i j 两行(或列),记作i i r r ↔(或i j c c ↔); (2)第i 行(列)提出公因子k ,记作i r k ÷(或i c k ÷);(3)以数k 乘第j 行(列)加到第i 行(列)上,记作i j r kr +(或i j c kc +).范德蒙(Vandermonde )行列式()3122222123111111231111nn ijnj i nn n n n nx x x x V x x x x x x x x x x ≤<≤----⋅⋅⋅⋅⋅⋅==-⋅⋅⋅⋅⋅⋅∏注 右边是“大指标减小指标”.例1.2 计算行列式111311212524131122D ---=.(答:332)练习:计算行列式(1)3112513420111533D ---=---;(答:40)(2)3111131111311113D =;(答:48)(3) 1234234134124123D =;(答:160)(4)2324323631063ab c d aa ba b ca b c d D a a b a b c a b c da ab a bc a b c d++++++=++++++++++++;(答:4a )(5)222111a ab acD ab b bc ac bcc +=++;(答:2221a b c +++) (6)123400000a xa a a x x D x x xx+-=--;(答:431i i x x a =⎛⎫+ ⎪⎝⎭∑) (7)222b c c a a bD a b c a b c +++=;(8)()()()()()()()()()()()()2222222222222222123123123123a a a a b b b b D cc c cd d d d ++++++=++++++.2.2行列式依行(列)展开余子式:ij M ,代数余子式:()1i jij ij A M +=-定理1.1 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即()112211,2,,ni i i i in in ik ik k D a A a A a A a A i n ==++⋅⋅⋅+==⋅⋅⋅∑,或()112211,2,,nj j j j nj nj kj kj k D a A a A a A a A j n ==++⋅⋅⋅+==⋅⋅⋅∑.注:此定理的主要作用是——降阶.推论 行列式的任一行(列)的各元素与另一行(列)对应的代数余子式乘积之和等于零,即()112210ni j i j in jn ik jk k D a A a A a A a A i j ==++⋅⋅⋅+==≠∑,或()112210ni j i j ni nj ki kj k D a A a A a A a A i j ==++⋅⋅⋅+==≠∑.例1.3 用降阶的方法解例1.2.练习:用降阶的方法求解上面练习第(1)题.例1.4 设1121234134124206A --=-,求(1)12223242234A A A A -+-; (2)3132342A A A ++.解 (1)1222324212122122313241422340A A A A a A a A a A a A -+-=+++=. (2)因为ij A 的大小与元素ij a 无关,因此,313234112111214132341410322121401201120142642064206A A A -----++===-=---. 练习:(1)设1234511122321462221143156,则(a )313233A A A ++=?(b )3435?A A +=(c )5152535455?A A A A A ++++=(答:0,0,0)(2)设,ij ij M A 分别为行列式301022220201201D =--中元素ij a 的余子式和代数余子式,试求(a )31323334A A A A +++; (b )41424344M M M M +++; (c )14244432M M M -++.2.3拉普拉斯(Laplace )展开定理定义 在一个n 阶行列式D 中,任意选定k 行(比如第12,,k i i i ⋅⋅⋅行)和k 列比如12,,k j j j ⋅⋅⋅列)(k n ≤).位于这些行和列的交点上的2k 个元素按照原来的位置组成一个k 阶行列式,称为行列式D 的一个k 阶子式,记作1212k k i i i A j j j ⋅⋅⋅⎛⎫ ⎪⋅⋅⋅⎝⎭,划去12,,k i i i ⋅⋅⋅行和12,,k j j j ⋅⋅⋅列后余下的元素按照原来的位置组成的n k -阶行列式,称为k 阶子式1212k k i i i A j j j ⋅⋅⋅⎛⎫ ⎪⋅⋅⋅⎝⎭的余子式,记作1212k c k i i i A j j j ⋅⋅⋅⎛⎫⎪⋅⋅⋅⎝⎭.在余子式前面加上符号()()()12121k k i i i j j j ++⋅⋅⋅++++⋅⋅⋅+-后被称之为的代数余子式.记作()121212121s tk k c c k k i i i i i i A A j j j j j j +⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=- ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭,这里1212,k k s i i i t j j j =++⋅⋅⋅+=++⋅⋅⋅+.定理1.2 在n 阶行列式D 中,任意选定k 列121k j j j n ≤<<⋅⋅⋅<≤,则12121211212k k k c i i i nk k i i i i i i D A A j j j j j j ≤<<⋅⋅⋅<≤⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=⋅ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭∑. 类似地,任意选定k 行121k i i i n ≤<<⋅⋅⋅<≤,则12121211212k k k c j j j nk k i i i i i i D A A j j j j j j ≤<<⋅⋅⋅<≤⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=⋅ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭∑.证 (略)注 这是定理1.2的推广,它仍然是一种——降阶的思想.例1.4 在行列式1214012110130131D -=中取定1,2行,得到6个子式1,21211,201A ⎛⎫==- ⎪-⎝⎭, 1,21121,302A ⎛⎫== ⎪⎝⎭, 1,21411,401A ⎛⎫== ⎪⎝⎭,1,22152,312A ⎛⎫== ⎪-⎝⎭, 1,22462,411A ⎛⎫== ⎪-⎝⎭, 1,21473,421A ⎛⎫==- ⎪⎝⎭. 对应的代数余子式分别是()()()12121,213181,231c A +++⎛⎫=-=- ⎪⎝⎭,()()()12131,203131,311c A +++⎛⎫=-= ⎪⎝⎭, ()()()12141,201111,413c A +++⎛⎫=-=- ⎪⎝⎭, ()()()12231,213112,301c A +++⎛⎫=-= ⎪⎝⎭, ()()()12241,211132,403c A +++⎛⎫=-=- ⎪⎝⎭,()()()12341,210113,401c A +++⎛⎫=-= ⎪⎝⎭. 由Laplace 展开定理可知()()()()()1823115163717D =-⨯-+⨯+⨯-+⨯+⨯-+-⨯=-.例1.5 证明111111111111111111110000k k r k kk k r k kk r rrr rkr rra a a ab b a ac c b b a a b b c c b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅.证 由Laplace 定理展开,选定第1,2,,k ⋅⋅⋅行,得12112121,2,1,2,,k c j j j nk k k k D A A j j j j j j ≤<<⋅⋅⋅<≤⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=⋅ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭∑1,2,1,2,,1,2,,1,2,,c k k A A k k ⋅⋅⋅⋅⋅⋅⎛⎫⎛⎫=⋅ ⎪ ⎪⋅⋅⋅⋅⋅⋅⎝⎭⎝⎭()()()1111111212111k rk k k kk r rra ab b a a b b ++⋅⋅⋅++++⋅⋅⋅+⋅⋅⋅⋅⋅⋅=⋅-⋅⋅⋅⋅⋅⋅11111111k rk kk r rra ab b a a b b ⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅.注 例1.5的结论可以简记为0A A B CB=⋅.练习:1.计算(1)1234512345121212000000000a a a a ab b b b bc cd de e ; (2)1111111111110000k k k kr k kk r r rrc c a a c c a a b b b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅.2. 设A 为n 阶方阵,A a =,B 为m 阶方阵,B b =,则23O A BO为( )(A )6ab -, (B )23n mab -, (C )()123mnn m ab -, (D )()123m nn m ab +-.◆ 行列式的计算举例例1.6 计算n 阶行列式n x a a a ax a aD aa x a aa ax = 解法1112,3,2,3,(1)(1)(1)000(1)000(1)0i i C C r r ni ni nx n a a a a x n aa a a x n a x a a x a D x n a a x a x a x n aaaxx a+-==+-+-+--==+--+--[]()1(1)n x n a x a -=+--.解法212,3,1111101000010000100001i r r n i n nn n a a a a a a a a x a a a x a a a x a a x a a ax aa x aD aax a a a x a x a aaaxaaaxx a -=+++----===----①如果x a =,则1110000100000100001n n a a a a D +--==--②如果x a ≠,则12,3,11100000000(1)()00000C i x ana x aC n nanx ai n n a a a a x a x a D x a x a x a --+-=+++--==+---.综合①、②有:()()11n n D x n a x a -=+--⎡⎤⎣⎦.例1.7 计算行列式12211000010000000001n nn n x x x x a a a a x a ----∆=-+.解 按第一列展开,12321100001000001n n n n x x xx a a a a x a -----∆=-+1100001000(1)0101n n xa x x+--+--- ()121n n n n n x a x x a a ---=∆+=∆++221n n n x a x a --=∆++==12121n n n n x a x a x a ---∆++++又111x a x a ∆=+=+,11n n n n x a x a -∴∆=+++.例1.8 计算2n a bababD cdc dcd=.解法1 依第一行展开12200(1)00000nn ab abab ab D ab cdcd c d c d d c +=+-2112(1)2(1)2(1)(1)()n n n n adD bc D ad bc D -+---=--=-,222(1)2(2)112()()()()().n n n n n n D ad bc D ad bc D a b ad bc D ad bc ad bc cd----=-=-==-=-=-解法2 利用Laplace 展开定理,选定第1行和第2n 行展开,则1221212121,21,2,,c n j j nn n D A A j j j j ≤<≤⎛⎫⎛⎫=⋅ ⎪ ⎪⎝⎭⎝⎭∑1,21,21,21,2c n n A A n n ⎛⎫⎛⎫=⋅⎪ ⎪⎝⎭⎝⎭()()()()1212211n n n a b D c d+++-=⋅-()()21n ad bc D -=-⋅=⋅⋅⋅ 1()n ab ad bc cd-=- ().n ad bc =-练习:计算n 阶行列式(1)122222222232222n D n=;(答:()22!n --)(2)01211111001001n n a a a D a -=,其中110n a a -⋅⋅⋅≠;(答:111011n n i ia a a a --=⎛⎫⋅⋅⋅- ⎪⎝⎭∑)(3)2222212121212naa aa aDaaa a=;(答:()1nn a+)(4)()()()()111111111n nnn nnna a a na a a nDa a a n----⋅⋅⋅--⋅⋅⋅-=-⋅⋅⋅-⋅⋅⋅;(5)1231110000220000011 nn nDn n⋅⋅⋅--⋅⋅⋅=-⋅⋅⋅⋅⋅⋅--。
线性代数知识点归纳

线性代数知识点归纳线性代数是一门研究向量、向量空间、线性变换以及有限维线性方程组的数学分支。
它广泛应用于各个领域,如物理、计算机科学、工程学等。
线性代数的核心概念和工具包括行列式、矩阵、向量组以及线性方程组等。
下面将详细介绍线性代数的相关知识点。
一、行列式1.1 行列式的概念:行列式是一个函数,它从n×n阶方阵到实数(或复数)的映射。
行列式记作|A|,其中A是一个n×n的方阵。
1.2 逆序数:在n×n阶方阵A中,将行列式中元素a_ij与a_ji互换,所得到的新的行列式称为原行列式的逆序数。
1.3 余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij删去,剩下的(n-1)×(n-1)阶方阵的行列式称为原行列式的余子式,记作M_ij。
1.4 代数余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij替换为它的相反数,然后计算得到的新的行列式,称为原行列式的代数余子式,记作A_ij。
1.5 行列式的性质:行列式具有以下性质:(1)交换行列式中任意两个元素的位置,行列式的值变号。
(2)行列式中某一行(列)的元素乘以常数k,行列式的值也乘以k。
(3)行列式中某一行(列)的元素与另一行(列)的元素相加,行列式的值不变。
(4)行列式某一行(列)的元素与另一行(列)的元素相减,行列式的值变号。
1.6 行列式的计算方法:行列式的计算方法有:降阶法、按行(列)展开法、克拉默法则等。
二、矩阵2.1 矩阵的概念:矩阵是一个由数组元素构成的矩形阵列,矩阵中的元素称为矩阵的项。
矩阵记作A,其中A是一个m×n的矩阵,A_ij表示矩阵A中第i行第j列的元素。
2.2 矩阵的线性运算:矩阵的线性运算包括加法、减法、数乘等。
2.3 矩阵的乘法:两个矩阵A和B的乘法,记作A×B,要求A是一个m×n的矩阵,B是一个n×p的矩阵。
矩阵的乘法满足交换律、结合律和分配律。
考研数学线性代数各章复习要点及命题特点 行列式

考研数学线性代数各章复习要点及命题特点行列式摘要:行列式是线性代数中一个基本的工具,贯穿于线性代数整门学科。
虽然单独考查行列式计算的命题不多,但与行列式有关的命题却很多。
例如,在与特征值有关的问题中有较多型行列式的计算。
在向量组的线性相关性、矩阵的秩、矩阵可逆性、n个未知数n个方程的齐次线性方程组、正定二次型及正定矩阵等问题中,都会涉及行列式的计算。
同学们一定要掌握行列式的性质和基本计算方法,不要因小失大,不要因为行列式没计算正确,导致整道题目全盘皆输。
(一)行列式部分的主要考点有:逆序、逆序数的定义,行列式的定义,余子式与代数余子式的定义,范德蒙行列式的定义,行列式的性质与推论,行列式按行(列)展开定理,行列式的计算公式。
(二)行列式部分考查的主要内容和能力有:1.行列式的定义。
阶行列式是一个数,它是取自来自行列式不同行、不同列的个元素乘积的项的代数和,去每一项的符号由当行(列)标排成自然顺序时,该项列(行)标排列的逆序数所确定。
它是计算行列式的基础。
2.阶行列式的性质。
要求考生熟练掌握行列式的6条性质和2个推论,具有快速计算行列式的能力。
性质1行列式与其转置行列式相等。
性质2互换两行(或列),行列式变号。
推论1如果行列式的两行(列)相同,行列式为零。
性质3行列式的某一行(列)中所有元素都乘以同一个数,等于用k乘以此行列式。
推论2行列式某行(或列)有公因子可以提取到行列式的外面。
性质4行列式某两行(或列)元素对应成比例,行列式为零。
性质5行列式的某行(或列)的每个元素皆为两数之和时,行列式可分解为两个行列式,性质6行列式的某行(或列)的倍数加到另一行(或列),行列式不变,即要求考生熟练运用上述公式计算行列式。
(三)行列式常考的题型有:1.计算数字型行列式;2.计算抽象型行列式;3.克莱姆法则的应用;行列式的计算与矩阵、方程组紧密联系,同学们在后期复习过程中,脑子里时刻要有行列式这个工具。
能够灵活应用行列式进行解题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钻石卡高级辅导系统——全程、全方位、系统化解决考研所有问题,成功率趋近 100% -1-
⑤、范德蒙行列式=大指标减小指标的乘积; ⑥、矩阵的行列式=特征值之积; 5. 6. 对于 n 阶行列式 A ,恒有: E A n (1)k Sk nk ,其中 S k 为所有 k 阶主子式的和;
k 1 n
证明 A 0 的方法: ①、 A A ; ②、反证法; ③、构造齐次方程组 Ax 0 ,证明其有非零解; ④、利用秩,证明 r ( A) n ; ⑤、证明 0 是其特征值;
( 1)
n ( n 1) 2
Aij (1)i j Mij
;
③、上、下三角行列式:( ◥ ◣ )=主对角元素的乘积;
◤
n ( n 1) 和 ◢ =副对角元素的乘积 (1) 2 ;
④、拉普拉斯展开式:
A O A C A B C B O B
、
C A O A (1) m n A B B O B C
【海文考研数学】 :线代知识点归纳 1 行列阵
1. 2. 个元素,展开后有 n! 项; 代数余子式的性质:
2
n 阶行列式共有 n
①、 Aij 和 aij 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为 0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为 A ; 3. 4. 代数余子式和余子式的关系: Mij (1)i j Aij 行列式的重要公式: ①、主对角行列式=主对角元素的乘积; ②、副对角行列式=副对角元素的乘积