最新新人教版七年级下册数学期末试卷资料

合集下载

2024年人教版七7年级下册数学期末试卷(含答案)

2024年人教版七7年级下册数学期末试卷(含答案)

2024年人教版七7年级下册数学期末试卷(含答案)一、选择题1.如图,属于同位角的是( )A .2∠与3∠B .1∠与4∠C .1∠与3∠D .2∠与4∠ 2.春意盎然,在婺外校园里下列哪种运动不属于平移( ) A .树枝随着春风摇曳B .值日学生拉动可移动黑板C .行政楼电梯的升降D .晚自修后学生两列队伍整齐排列笔直前行 3.在平面直角坐标系中,点(﹣1,a +1)一定在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.下列命题中,是假命题的是( )A .经过一个已知点能画一条且只能画一条直线与已知直线平行B .从直线外一点到这条直线的垂线段的长度叫做这点到直线的距离C .在同一平面内,一条直线的垂线可以画无数条D .连接直线外一点与直线上各点的所有线段中,垂线段最短5.如图,C 为AOB ∠的边OA 上一点,过点C 作//CD OB 交AOB ∠的平分线OE 于点F ,作CH OB ⊥交BO 的延长线于点H ,若EFD α∠=,现有以下结论:①COF α∠=;②1802AOH α∠=︒-;③CH CD ⊥;④290OCH α∠=-︒.结论正确的个数是( )A .1个B .2个C .3个D .4个 6.下列说法错误的是( ) A .-8的立方根是-2 B .1212=C .5-5D .3的平方根是3±7.①如图1,//AB CD ,则180AE C ∠+∠+∠=︒;②如图2,//AB CD ,则–P A C ∠=∠∠;③如图3,//AB CD ,则1E A ∠=∠+∠;④如图4,直线////AB CD EF ,点O 在直线EF 上,则–180∠∠+∠=︒αβγ.以上结论正确的个数是( )A .1个B .2个C .3个D .4个8.如图,一个点在第一象限及x 轴、y 轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2021秒时,点所在位置的坐标是( )A .(3,44)B .(41,44)C .(44,41)D .(44,3)九、填空题9.若21(2)30x y z -+-+-=,则x+y+z=________.十、填空题10.点A (2,4)关于x 轴对称的点的坐标是_____.十一、填空题11.如图,在平面直角坐标系中,点A ,B ,C 三点的坐标分别是()2,0A -,()0,4B ,()0,1C -,过点C 作//CD AB ,交第一象限的角平分线于点D ,连接AD 交y 轴于点E .则点E 的坐标为______.十二、填空题12.如图所示,直线AB ,BC ,AC 两两相交,交点分别为A ,B ,C ,点D 在直线AB 上,过点D 作DE ∥BC 交直线AC 于点E ,过点E 作EF ∥AB 交直线BC 于点F ,若∠ABC =50°,则∠DEF 的度数___.十三、填空题13.将一条长方形纸带按如图方式折叠,若1108∠=︒,则2∠的度数为________°.十四、填空题14.对于任意有理数a ,b ,规定一种新的运算a ⊙b =a (a +b )﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____十五、填空题15.在平面直角坐标系中,已知()()()0,,,0,,6A a B b C b 三点,其中a ,b 满足关系式()2340a b -+-=,若在第二象限内有一点(),1P m ,使四边形ABOP 的面积与三角形ABC 的面积相等,则点P 的坐标为________.十六、填空题16.如图,一个点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点()0,0运动到()0,1,然后接着按图中箭头所示方向运动,即()()()()0,00,11,11,0→→→,…,且每秒运动一个单位,到()1,1点用时2秒,到()2,2点用时6秒,到()3,3点用时12秒,…,那么第421秒时这个点所在位置的坐标是____.十七、解答题17.(1)计算:()()23121273-+-⨯--(2)解方程:123123x x +--= 十八、解答题18.求下列各式中x 的值.(1)x 2﹣81=0;(2)2x 2﹣16=0;(3)(x ﹣2)3=﹣27.十九、解答题19.如图,已知∠AED =∠C ,∠DEF =∠B ,试说明∠EFG +∠BDG =180∘,请完成下列填空:∵∠AED =∠C (_________)∴ED ∥BC (_________)∴∠DEF =∠EHC (___________)∵∠DEF =∠B (已知)∴_______(等量代换)∴BD ∥EH (同位角相等,两直线平行)∴∠BDG =∠DFE (两直线平行,内错角相等)∵_________________(邻补角的意义)∴∠EFG +∠BDG =180∘(___________)二十、解答题20.以学校为坐标原点建立平面直角坐标系,图中标明了这所学校附近的一些地方, (1)公交车站的坐标是 ,宠物店的坐标是 ;(2)在图中标出公园()300,200-,书店()100,100的位置;(3)将医院的位置怎样平移得到人寿保险公司的位置.二十一、解答题21.阅读下面文字,然后回答问题.给出定义:一个实数的整数部分是不大于这个数的最大数,这个实数的小数部分为这个数与它的整数部分的差的绝对值.例如:2.4的整数部分为2,小数部分为2.420.4-=;2的整数部分为1,小数部分可用21-表示;再如,﹣2.6的整数部分为﹣3,小数部分为()2.630.4---=.由此我们得到一个真命题:如果2x y =+,其中x 是整数,且01y <<,那么1x =,21y =-.(1)如果7a b =+,其中a 是整数,且01b <<,那么a =______,b =_______; (2)如果7c d -=+,其中c 是整数,且01d <<,那么c =______,d =______; (3)已知37m n +=+,其中m 是整数,且01n <<,求m n -的值;(4)在上述条件下,求()a m a b d ++的立方根.二十二、解答题22.如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?二十三、解答题23.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).二十四、解答题24.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学∠=∠∠=∠,请判断光线a与光线b是否平行,并说明理由.知识有12,34(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线α与水平线OC的夹角为40︒,问如何放置平面镜MN,可使反射光线b正好垂直照射到井底?(即求MN与水平线的夹角)(3)如图3,直线EF上有两点A、C,分别引两条射线AB、CD.105∠=︒,BAF∠=︒,射线AB、CD分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转DCF65动,设时间为t ,在射线CD 转动一周的时间内,是否存在某时刻,使得CD 与AB 平行?若存在,求出所有满足条件的时间t .二十五、解答题25.如图①,AD 平分BAC ∠,AE ⊥BC ,∠B=450,∠C=730.(1) 求DAE ∠的度数;(2) 如图②,若把“AE ⊥BC ”变成“点F 在DA 的延长线上,FE BC ⊥”,其它条件不变,求DFE ∠ 的度数;(3) 如图③,若把“AE ⊥BC ”变成“AE 平分BEC ∠”,其它条件不变,DAE ∠的大小是否变化,并请说明理由.【参考答案】一、选择题1.A解析:A【分析】根据同位角、内错角、同旁内角的意义进行判断即可.【详解】解:∠2与∠3是两条直线被第三条直线所截形成的同位角,因此选项A 符合题意. ∠1与∠4是对顶角,因此选项B 不符合题意.∠1与∠3是内错角,因此选项C 不符合题意.∠2与∠4同旁内角,因此选项D 不符合题意.故选:A .【点睛】本题考查同位角、内错角、同旁内角,理解和掌握同位角、内错角、同旁内角的意义是正确判断的前提.2.A【分析】根据平移的特点可得答案.【详解】解:A 、树枝随着春风摇曳是旋转运动;B 、值日学生拉动可移动黑板是平移运动;C 、行政楼电梯的升降是平移运动;D、晚自修后学生两列队伍整齐排列笔直解析:A【分析】根据平移的特点可得答案.【详解】解:A、树枝随着春风摇曳是旋转运动;B、值日学生拉动可移动黑板是平移运动;C、行政楼电梯的升降是平移运动;D、晚自修后学生两列队伍整齐排列笔直前行是平移运动;故选A.【点睛】此题主要考查了生活中的平移现象,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.3.B【分析】根据非负数的性质判断出点的纵坐标是正数,再根据各象限点的特点解答.【详解】,∴>0,∴点(-1)一定在第二象限,故选B.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号并判断出点的纵坐标是负数是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.A【分析】分别利用平行线以及点到直线的距离以及垂线以及垂线段最短的定义分别分析得出即可.【详解】解:A、在同一平面内,经过一点(点不在已知直线上)能画一条且只能画一条直线与已知直线平行,故选项错误,符合题意;B、从直线外一点到这条直线的垂线段的长叫做点到直线的距离,正确,不符合题意;C、一条直线的垂线可以画无数条,正确,不符合题意;D、连接直线外一点与直线上各点的所有线段中,垂线段最短,正确,不符合题意;故选:A.【点评】此题主要考查了平行线、垂线以及垂线段和点到直线的距离等定义,正确把握相关定义是解题关键.5.D【分析】根据平行线的性质可得EOB EFD α∠=∠=,结合角平分线的定义可判断①;再由平角的定义可判断②;由平行线的性质可判断③;由余角及补角的定义可判断④.【详解】解://CD OB ,EFD α∠=,EOB EFD α∴∠=∠=, OE 平分AOB ∠,COF EOB α∴∠=∠=,故①正确;2AOB α∠=,180AOB AOH ∠+∠=︒,1802AOH α∴∠=︒-,故②正确;//CD OB ,CH OB ⊥,CH CD ∴⊥,故③正确;90HCO HOC ∴∠+∠=︒,180AOB HOC ∠+∠=︒,290OCH α∴∠=-︒,故④正确.正确为①②③④,故选:D .【点睛】本题主要考查平行线的性质,角平分线的定义,垂直的定义,灵活运用平行线的性质是解题的关键.6.B【分析】根据平方根以及立方根的概念进行判断即可.【详解】A 、-8的立方根为-2,这个说法正确;B 、,这个说法错误;C .D 、3的平方根是故选B .【点睛】本题主要考查了平方根与立方根,一个数的立方根只有一个,一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.7.B【分析】如图1所示,过点E 作EF //AB ,由平行线的性质即可得到∠A +∠AEF =180°,∠C +∠CEF =180°,则∠A +∠C +∠AEC =360°,故①错误;如图2所示,过点P 作PE //AB ,由平行线的性质即可得到∠A =∠APE =180°,∠C =∠CPE ,再由∠APC =∠APE =∠CPE ,即可得到∠APC =∠A -∠C ,即可判断②;如图3所示,过点E 作EF //AB ,由平行线的性质即可得到∠A +∠AEF =180°,∠1=∠CEF ,再由∠AEF +∠CEF =∠AEC ,即可判断③ ;由平行线的性质即可得到=180BOE α∠+∠,180COF γ∠+=∠,再由180BOE COF β∠+∠+∠=,即可判断④.【详解】解:①如图所示,过点E 作EF //AB , ∵AB //CD ,∴AB //CD //EF ,∴∠A +∠AEF =180°,∠C +∠CEF =180°, ∴∠A +∠AEF +∠C +∠CEF =360°, 又∵∠AEF +∠CEF =∠AEC , ∴∠A +∠C +∠AEC =360°,故①错误;②如图所示,过点P 作PE //AB , ∵AB //CD ,∴AB //CD //PE ,∴∠A =∠APE =180°,∠C =∠CPE , 又∵∠APC =∠APE =∠CPE , ∴∠APC =∠A -∠C ,故②正确;③如图所示,过点E 作EF //AB , ∵AB //CD ,∴AB //CD //EF ,∴∠A +∠AEF =180°,∠1=∠CEF , 又∵∠AEF +∠CEF =∠AEC , ∴180°-∠A +∠1=∠AEC ,故③错误;④∵////AB CD EF ,∴=180BOE α∠+∠,180COF γ∠+=∠,∵180BOE COF β∠+∠+∠=,∴180180180αβγ-∠+∠+-∠=,∴–180αβγ∠∠+∠=,故④正确;故选B【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质8.D【分析】根据题意找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系即可.【详解】解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,解析:D【分析】根据题意找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系即可.【详解】解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,则可知当点离开x 轴时的横坐标为时间的平方,当点离开y 轴时的纵坐标为时间的平方, 此时时间为奇数的点在x 轴上,时间为偶数的点在y 轴上,∵2021=452-4=2025-4,∴第2025秒时,动点在(45,0),故第2021秒时,动点在(45,0)向左一个单位,再向上3个单位,即(44,3)的位置.故选:D .【点睛】本题考查了动点在平面直角坐标系中的运动规律,找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系,是解题的关键.九、填空题9.6【分析】根据非负数的性质列出方程求出x 、y 、z 的值,代入所求代数式计算即可.【详解】解:∵∴x-1=0,y-2=0,z-3=0,∴x=1,y=2,z=3.∴x+y+z=1+2+3=6解析:6【分析】根据非负数的性质列出方程求出x 、y 、z 的值,代入所求代数式计算即可.【详解】解:∵21(2)0x y -+-=∴x-1=0,y-2=0,z-3=0,∴x=1,y=2,z=3.∴x+y+z=1+2+3=6.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.十、填空题10.(2,﹣4)【分析】根据关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A (2,4)关于x 轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛解析:(2,﹣4)【分析】根据关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A (2,4)关于x 轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛】此题主要考查了关于x 轴对称的点的坐标,关键是掌握点的坐标的变化规律. 十一、填空题11.【分析】设D (x ,y ),由点在第一象限的角平分线上,可得,由待定系数法得直线AB的解析式为,由,可设,把代入, 得,进而可求得,再由待定系数法求得直线AD 的解析式为,令x=0时,得,即可求得点E 解析:20,3⎛⎫⎪⎝⎭ 【分析】设D (x ,y ),由点D 在第一象限的角平分线上,可得x y =,由待定系数法得直线AB 的解析式为24y x =+,由//CD AB ,可设2CD y x b =+,把()0,1C -代入, 得21CD y x =-,进而可求得1(1)D ,,再由待定系数法求得直线AD 的解析式为1233y x =+,令x =0时,得23y =,即可求得点E 的坐标. 【详解】解:设D (x ,y ),点D 在第一象限的角平分线上,∴x y =,//CD AB ,()20A -,,()04B , ∴设直线AB 的解析式为:4y kx =+,把()20A -,,代入得: k =2,24AB y x ∴=+,2CD y x b ∴=+,把()0,1C -代入,得b =-1,21CD y x ∴=-,点D 在21CD y x =-上,(11)D ∴,,设直线AD 的解析式为:11y k x b =+,可得1111120k b k b +=⎧⎨-+=⎩, 111323k b ⎧=⎪⎪∴⎨⎪=⎪⎩, 1233AD y x ∴=+, 当x =0时,23y =, 2(0)3E ∴,, 故答案为:2(0)3, 【点睛】此题考查了一次函数的性质,掌握待定系数法求一次函数的解析式是解答此题的关键. 十二、填空题12.130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵E解析:130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵EF∥AB,∴∠ADE+∠DEF=180°(两直线平行,同旁内角互补),∴∠DEF=180°﹣50°=130°.故答案为:130°.【点睛】本题考查了平行线线段的性质,熟练掌握平行线的性质定理是解题关键.十三、填空题13.36【分析】根据平行线的性质、折叠的性质即可解决.【详解】∵AB∥CD,如图∴∠GEC=∠1=108゜由折叠的性质可得:∠2=∠FED∵∠2+∠FED+∠GEC=180゜∴∠2=解析:36【分析】根据平行线的性质、折叠的性质即可解决.【详解】∵AB∥CD,如图∴∠GEC=∠1=108゜由折叠的性质可得:∠2=∠FED∵∠2+∠FED+∠GEC=180゜∴∠2=11(180)(180108)3622GEC ︒-∠=⨯︒-︒=︒ 故答案为:36【点睛】本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质. 十四、填空题14.-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,解析:-9【分析】直接利用已知运算法则计算得出答案.【详解】(﹣2)⊙6=﹣2×(﹣2+6)﹣1=﹣2×4﹣1=﹣8﹣1=﹣9.故答案为﹣9.【点睛】此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.十五、填空题15.(-4,1)【分析】根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案.【详解】解:∵,∴a=3,b=4,∴A(0,3),B(4,0),C(4,6),∴△ABC的面积解析:(-4,1)【分析】根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案.【详解】解:∵()2340a b-+-=,∴a=3,b=4,∴A(0,3),B(4,0),C(4,6),∴△ABC的面积=12×6×4=12,四边形ABOP的面积=△AOP的面积+△AOB的面积=12×3×(-m)+12×3×4=6-32m,由题意得,6-32m=12,解得,m=-4,∴点P的坐标为(-4,1),故答案为:(-4,1).【点睛】本题考查的是坐标与图形性质,非负数的性质,掌握点的坐标与图形的关系是解题的关键.十六、填空题16.【分析】由题目中所给的点运动的特点找出规律,即可解答.【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,解析:()19,20【分析】由题目中所给的点运动的特点找出规律,即可解答.【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x ,y )到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(6,0)用36秒,到(6,6)时用36+6=42秒…,可得在x 轴上,横坐标为偶数时,所用时间为x 2秒,在y 轴上时,纵坐标为奇数时,所用时间为y 2秒,∵20×20=400∴第421秒时这个点所在位置的坐标为(19,20),故答案为:(19,20).【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律是解决问题的关键. 十七、解答题17.(1);(2)x=【分析】(1)先算乘方、绝对值和开方,再算乘法,最后算加减;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:(1)==解析:(1)19-;(2)x =79【分析】(1)先算乘方、绝对值和开方,再算乘法,最后算加减;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:(1)()312123-+-⨯- =()181273-+-⨯- =847---=19-;(2)123123x x +--=,去分母,可得:3(x+1)-6=2(2-3x),去括号,可得:3x+3-6=4-6x,移项,可得:3x+6x=4-3+6,合并同类项,可得:9x=7,系数化为1,可得:x=79.【点睛】此题主要考查了实数的混合运算,解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.十八、解答题18.(1)x=±9;(2);(3)x=﹣1.【分析】(1)式子整理后,利用平方根的定义求解即可;(2)式子整理后,利用平方根的定义求解即可;(3)利用立方根的定义求解即可.【详解】解:(1)解析:(1)x=±9;(2)x=±3)x=﹣1.【分析】(1)式子整理后,利用平方根的定义求解即可;(2)式子整理后,利用平方根的定义求解即可;(3)利用立方根的定义求解即可.【详解】解:(1)x2﹣81=0,x2=81,x=±9;(2)2x2﹣16=0,2x2=16,x2=8,x=±(3)(x﹣2)3=﹣27,x﹣2=﹣3,x=2﹣3,x=﹣1.【点睛】本题主要考查了平方根与立方根的定义:求a的立方根,实际上就是求哪个数的立方等于a ,熟记相关定义是解答本题的关键.十九、解答题19.已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B ;∠DFE+∠EFG =180∘;等量代换【分析】根据同位角相等,两直线平行推出ED ∥BC ,通过两直线平行,内错角相等推出∠解析:已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B ;∠DFE +∠EFG =180∘;等量代换【分析】根据同位角相等,两直线平行推出ED ∥BC ,通过两直线平行,内错角相等推出∠DEF =∠EHC ,再运用等量代换得到∠EHC =∠B ,最后推出BD ∥EH ,∠BDG =∠DFE ,再利用邻补角的意义推出结论,据此回答问题.【详解】解:∵∠AED =∠C (已知)∴ED ∥BC (同位角相等,两直线平行)∴∠DEF =∠EHC (两直线平行,内错角相等)∵∠DEF =∠B (已知)∴∠EHC =∠B (等量代换)∴BD ∥EH (同位角相等,两直线平行)∴∠BDG =∠DFE (两直线平行,内错角相等)∵∠DFE +∠EFG =180∘(邻补角的意义)∴∠EFG +∠BDG =180∘(等量代换).【点睛】本题主要考查平行线的判定和性质,属于综合题,难度一般,熟练掌握平行线的判定和性质是解题关键.二十、解答题20.(1),;(2)见解析;(3)向右5个单位,再向上5个单位【分析】(1)观察平面直角坐标系得:公交车站在 轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离 轴2个单位,距离 轴3个单位,即解析:(1)()100,0-,()300,200-;(2)见解析;(3)向右5个单位,再向上5个单位【分析】(1)观察平面直角坐标系得:公交车站在x 轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离x 轴2个单位,距离y 轴3个单位,即可求解;(2)公园在第二象限内,距离x 轴2个单位,距离y 轴3个单位;书店在第一象限内,距离x 轴1个单位,距离y 轴1个单位;即可解答;(3)将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置,即可.【详解】解:(1)观察平面直角坐标系得:公交车站在x 轴负半轴距离坐标原点1个单位,故公交车站的坐标是()100,0-;宠物店在第四象限内,距离x 轴2个单位,距离y 轴3个单位,故宠物店的坐标是()300,200-;(2)∵公园()300,200-,书店()100,100∴公园在第二象限内,距离x 轴2个单位,距离y 轴3个单位;书店在第一象限内,距离x 轴1个单位,距离y 轴1个单位;位置如图所示:(3))将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置.【点睛】本题主要考查了平面直角坐标系,用坐标来表示点的位置,根据位置写出点的坐标,熟练掌握平面直角坐标系内每个象限内点的坐标的特征是解题的关键.二十一、解答题21.(1)2,;(2)﹣3,;(3);(4)3【分析】(1)先估算的大小,再依据定义分别取整数部分和小数部分即可;(2)先估算的大小,再依据定义分别取整数部分和小数部分即可;(3)先估算的大小,解析:(1)272;(2)﹣3,373)774)3【分析】(17(2)先估算7-的大小,再依据定义分别取整数部分和小数部分即可;(3)先估算3的大小,分别求得,m n 的值,再代入绝对值中计算即可;(4)根据前三问的结果,代入代数式求值,最后求立方根即可.【详解】(1)∴23<,a b =+,2,2a b ∴==,故答案为:22,;(2)23<32∴-<<-, 7c d -=+,3,(3)3c d ∴=-=-=故答案为:﹣3,3;(3)23<,536∴<+,3m n =+,∴5,352m n ==,∴5m =,2n =,∴)527m n -=-=(4)5,2,2,3m a b d ====∴()2522327a m a b d ++=+⨯+=, 27的立方根为3,即()a m a b d ++的立方根为3.【点睛】本题考查了实数的运算,无理数的估算,绝对值计算,立方根,理解题意是解题的关键. 二十二、解答题22.(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:32x y x y =⎧⎨+=⎩, 解得: 1.50.5x y =⎧⎨=⎩, ∴长是1.5m,宽是0.5m.(2)∵正方形的面积为7平方米,∴米,∵∴他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.二十三、解答题23.(1)∠B ,EF ,CD ,∠D ;(2)①65°;②180°﹣【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E 作EF ∥AB ,当点B 在点A 的左侧时,根据∠ABC =60°,解析:(1)∠B ,EF ,CD ,∠D ;(2)①65°;②180°﹣1122a β+ 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E 作EF ∥AB ,当点B 在点A 的左侧时,根据∠ABC =60°,∠ADC =70°,参考小亮思考问题的方法即可求∠BED 的度数;②如图2,过点E 作EF ∥AB ,当点B 在点A 的右侧时,∠ABC =α,∠ADC =β,参考小亮思考问题的方法即可求出∠BED 的度数.【详解】解:(1)过点E 作EF ∥AB ,则有∠BEF =∠B ,∵AB ∥CD ,∴EF ∥CD ,∴∠FED =∠D ,∴∠BED =∠BEF +∠FED =∠B +∠D ;故答案为:∠B ;EF ;CD ;∠D ;(2)①如图1,过点E 作EF ∥AB ,有∠BEF =∠EBA .∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =∠EBA +∠EDC .即∠BED =∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =30°,∠EDC =12∠ADC =35°,∴∠BED =∠EBA +∠EDC =65°.答:∠BED 的度数为65°;②如图2,过点E 作EF ∥AB ,有∠BEF +∠EBA =180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD , ∴EF ∥CD . ∴∠FED =∠EDC . ∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.二十四、解答题24.(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解;(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF 的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.【详解】解:(1)平行.理由如下:如图1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(内错角相等,两直线平行);(2)如图2:∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,∴∠1=∠2,∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=1×50°=25°,2∴MN与水平线的夹角为:25°+40°=65°,即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底;(3)存在.如图①,AB与CD在EF的两侧时,∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠ACD=∠BAC,即115-3t=105-t,解得t=5;如图②,CD旋转到与AB都在EF的右侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠DCF=∠BAC,即295-3t=105-t,解得t=95;如图③,CD旋转到与AB都在EF的左侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,则∠DCF=∠BAC,即3t-295=t-105,解得t=95,此时t>105,∴此情况不存在.综上所述,t为5秒或95秒时,CD与AB平行.【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论.二十五、解答题25.(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE=14°,证明详见解析.【分析】(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE解析:(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.【分析】(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE的度数.(2)求出∠ADE的度数,利用∠DFE=90°-∠ADE即可求出∠DAE的度数.(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的证明.【详解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE⊥BC,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)DAE∠=14°∠的大小不变.DAE理由:∵ AD平分∠ BAC,AE平分∠BEC∴∠BAC=2∠BAD,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C =360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键.。

2022—2023年人教版七年级数学下册期末试卷及完整答案

2022—2023年人教版七年级数学下册期末试卷及完整答案

2022—2023年人教版七年级数学下册期末试卷及完整答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知243m -m-10m -m -m 2=+,则计算:的结果为( ).A .3B .-3C .5D .-52.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.若多项式32281x x x -+-与多项式323253x mx x +-+的差不含二次项,则m 等于( )A .2B .-2C .4D .-44.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB =6.下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负整数解集有有限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解7.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2 8.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩9.将一副三角板按图中方式叠放,则角α等于( )A .30°B .45°C .60°D .75°10.下列判断正确的是( )A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a|≥0”是不可能事件二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:34x x -=________.2.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A ′的位置,则点A ′表示的数是_______.3.已知80AOB ∠=,40BOC ∠= ,射线OM 是AOB ∠平分线,射线ON 是BOC ∠ 平分线,则MON ∠=________ .4.如图,AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =a °.有下列结论:①∠BOE =12(180-a)°;②OF 平分∠BOD ;③∠POE =∠BOF ;④∠POB =2∠DOF.其中正确的结论是________(填序号).5.若一个多边形的内角和是900º,则这个多边形是________边形.6.若关于x,y的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程236x y+=的解,则k的值为____________.三、解答题(本大题共6小题,共72分)1.解方程31571 46x x---=2.已知A=3x2+x+2,B=﹣3x2+9x+6.(1)求2A﹣13 B;(2)若2A﹣13B与32C-互为相反数,求C的表达式;(3)在(2)的条件下,若x=2是C=2x+7a的解,求a的值.3.如图①,在三角形ABC中,点E,F分别为线段AB,AC上任意两点,EG交BC于点G,交AC的延长线于点H,∠1+∠AFE=180°.(1)证明:BC∥EF;(2)如图②,若∠2=∠3,∠BEG=∠EDF,证明:DF平分∠AFE.4.如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了______条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、A5、C6、C7、A8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2).2、-4π3、60°或20°4、①②③5、七6、3 4三、解答题(本大题共6小题,共72分)1、x=﹣12、(1)7x2﹣x+2;(2)﹣14x2+2x﹣1;(3)﹣5773、(1)略;(2) 略.4、(1)略;(2)4.5、()117、20;()22次、2次;()372;()4120人.6、(1)8;(2)答案见解析:(3)200000立方厘米。

人教版七年级数学下册期末测试题+答案解析(共四套)

人教版七年级数学下册期末测试题+答案解析(共四套)

⼈教版七年级数学下册期末测试题+答案解析(共四套)B ′C ′D ′O ′A ′O DC BA(第8题图)⼀、选择题(每⼩题3分,计24分,请把各⼩题答案填到表格内)题号 1 2 3 4 5 6 78 总分答案1.如图所⽰,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业⽣的中考数学成绩,从中抽取500名学⽣的数学成绩进⾏统计分析,那么样本是 A .某市5万名初中毕业⽣的中考数学成绩 B .被抽取500名学⽣(第1题图)C .被抽取500名学⽣的数学成绩D .5万名初中毕业⽣ 5.有⼀个两位数,它的⼗位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个D .⽆数个 7.下列事件属于不确定事件的是A .太阳从东⽅升起B .2010年世博会在上海举⾏C .在标准⼤⽓压下,温度低于0摄⽒度时冰会融化D .某班级⾥有2⼈⽣⽇相同 8.请仔细观察⽤直尺和圆规.....作⼀个⾓∠A ′O ′B ′等于已知⾓∠AOB 的⽰意图,请你根据所学的图形的全等这⼀章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AASD .SSS⼆、填空题(每⼩题3分,计24分)9.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为0.0000002cm .这个数量⽤科学记数法可表⽰为 cm . 10.将⽅程2x+y=25写成⽤含x 的代数式表⽰y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的⼤⼩是 °. 12.三⾓形的三个内⾓的⽐是1:2:3,则其中最⼤⼀个内⾓的度数是 °.13.掷⼀枚硬币30次,有12次正⾯朝上,则正⾯朝上的频率为 .14.不透明的袋⼦中装有4个红球、3个黄球和5个蓝球,每个球除颜⾊不同外其它都相同,从中任意摸出⼀个球,则摸出球的可能性最⼩. 15.下表是⾃18世纪以来⼀些统计学家进⾏抛硬币试验所得的数据:试验者试验次数n 正⾯朝上的次数m正⾯朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正⾯朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某⼀个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出⼀个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,⽅格纸中的△ABC 的三个顶点分别在⼩正⽅形的顶点(格点)上,称为格点三⾓形.请在⽅格纸上按下列要求画图.在图①中画出与△ABC 全等且有⼀个公共顶点的格点△C B A ''';在图②中画出与△ABC 全等且有⼀条公共边的格点△C B A ''''''.20.解⽅程组:(每⼩题5分,本题共10分)(1)=+-=300342150y x yx (2)=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y 的⽅程组=+=+73ay bx by ax 的解是==12y x ,求a b +的值.OAC P P′(第16题图)(第16题图)22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)⼩王某⽉⼿机话费中的各项费⽤统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整. (3)扇形统计图中,表⽰短信费的扇形的圆⼼⾓是多少度?24.(本题4+8=12分)上海世博会会期为2010年5⽉1⽇⾄2010年10⽉31⽇。

2024年人教版七7年级下册数学期末解答题考试试卷附答案

2024年人教版七7年级下册数学期末解答题考试试卷附答案

2024年人教版七7年级下册数学期末解答题考试试卷附答案一、解答题1.(1)如图1,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______cm ;(2)若一个圆的面积与一个正方形的面积都是22πcm ,设圆的周长为C 圆.正方形的周长为C 正,则C 圆______C 正(填“=”,或“<”,或“>”)(3)如图2,若正方形的面积为2900cm ,李明同学想沿这块正方形边的方向裁出一块面积为2740cm 的长方形纸片,使它的长和宽之比为5:4,他能裁出吗?请说明理由?2.如图1,用两个边长相同的小正方形拼成一个大的正方形.(1)如图2,若正方形纸片的面积为12dm ,则此正方形的对角线AC 的长为 dm . (2)如图3,若正方形的面积为162cm ,李明同学想沿这块正方形边的方向裁出一块面积为122cm 的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由. 3.已知足球场的形状是一个长方形,而国际标准球场的长度a 和宽度b (单位:米)的取值范围分别是100110a ≤≤,6475b ≤≤.若某球场的宽与长的比是1:1.5,面积为7350平方米,请判断该球场是否符合国际标准球场的长宽标准,并说明理由.4.如图用两个边长为18cm 的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为3:2,且面积为30cm 2请说明理由.5.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究. (1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a ,b 的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.二、解答题6.已知,AB∥DE,点C在AB上方,连接BC、CD.(1)如图1,求证:∠BCD+∠CDE=∠ABC;(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.7.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.(1)根据图1填空:∠1=°,∠2=°;(2)现把三角板绕B点逆时针旋转n°.①如图2,当n=25°,且点C恰好落在DG边上时,求∠1、∠2的度数;②当0°<n<180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由.8.已知AB∥CD,线段EF分别与AB,CD相交于点E,F.(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P 在线段EF 上时,已知∠A =35°,∠C =62°,求∠APC 的度数; 解:过点P 作直线PH ∥AB , 所以∠A =∠APH ,依据是 ; 因为AB ∥CD ,PH ∥AB , 所以PH ∥CD ,依据是 ; 所以∠C =( ),所以∠APC =( )+( )=∠A +∠C =97°. (2)当点P ,Q 在线段EF 上移动时(不包括E ,F 两点): ①如图2,∠APQ +∠PQC =∠A +∠C +180°成立吗?请说明理由;②如图3,∠APM =2∠MPQ ,∠CQM =2∠MQP ,∠M +∠MPQ +∠PQM =180°,请直接写出∠M ,∠A 与∠C 的数量关系. 9.已知//AB CD ,点E 在AB 与CD 之间. (1)图1中,试说明:BED ABE CDE ∠=∠+∠;(2)图2中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请利用(1)的结论说明:2BED BFD ∠=∠.(3)图3中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请直接写出BED ∠与BFD ∠之间的数量关系.10.问题情境:(1)如图1,//AB CD ,128PAB ∠=︒,119PCD ∠=︒.求APC ∠度数.小颖同学的解题思路是:如图2,过点P 作//PE AB ,请你接着完成解答. 问题迁移:(2)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,PCE β∠=∠.试判断CPD ∠、α∠、β∠之间有何数量关系?(提示:过点P 作//PF AD ),请说明理由;(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你猜想CPD ∠、α∠、β∠之间的数量关系并证明.三、解答题11.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交又照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度.假定主道路是平行的,即//PQ MN ,且:3:2BAM BAN ∠∠=.(1)填空:BAN ∠=_________;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作ACD ∠交PQ 于点D ,且126ACD ∠=︒,则在转动过程中,请探究BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由. 12.已知//PQ MN ,将一副三角板中的两块直角三角板如图1放置,90ACB EDF ∠=∠=︒,45ABC BAC ∠=∠=︒,30DFE ∠=︒,60DEF ∠=︒.(1)若三角板如图1摆放时,则α∠=______,β∠=______.(2)现固定ABC 的位置不变,将DEF 沿AC 方向平移至点E 正好落在PQ 上,如图2所示,DF 与PQ 交于点G ,作FGQ ∠和GFA ∠的角平分线交于点H ,求GHF ∠的度数; (3)现固定DEF ,将ABC 绕点A 顺时针旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF 的一条边平行时,请直接写出BAM ∠的度数. 13.问题情境(1)如图1,已知//, 125155AB CD PBA PCD ︒︒∠=∠=,,求BPC ∠的度数.佩佩同学的思路:过点P 作//PN AB ,进而//PN CD ,由平行线的性质来求BPC ∠,求得BPC ∠︒;问题迁移(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合90,//,ACB DF CG AB ︒∠=与FD 相交于点E ,有一动点P 在边BC 上运动,连接, PE PA ,记,PED PAC αβ∠=∠∠=∠.①如图2,当点P 在,C D 两点之间运动时,请直接写出APE ∠与,αβ∠∠之间的数量关系;②如图3,当点P 在,B D 两点之间运动时,APE ∠与,αβ∠∠之间有何数量关系?请判断并说明理由.14.课题学习:平行线的“等角转化”功能. 阅读理解:如图1,已知点A 是BC 外一点,连接AB ,AC ,求∠BAC +∠B +∠C 的度数. (1)阅读并补充下面推理过程 解:过点A 作ED ∥BC , ∴∠B =∠EAB ,∠C =又∵∠EAB+∠BAC+∠DAC=180°∴∠B+∠BAC+∠C=180°解题反思:从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB)深化拓展:(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°,点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.15.如图1,D是△ABC延长线上的一点,CE//AB.(1)求证:∠ACD=∠A+∠B;(2)如图2,过点A作BC的平行线交CE于点H,CF平分∠ECD,FA平分∠HAD,若∠BAD=70°,求∠F的度数.(3)如图3,AH//BD,G为CD上一点,Q为AC上一点,GR平分∠QGD交AH于R,QN 平分∠AQG交AH于N,QM//GR,猜想∠MQN与∠ACB的关系,说明理由.四、解答题16.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC 的面积记为S2.则S1=S2.解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为 .拓展延伸:(1)如图3,在△ABC 中,点D 在边BC 上,且BD =2CD ,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1与S 2之间的数量关系为 .(2)如图4,在△ABC 中,点D 、E 分别在边AB 、AC 上,连接BE 、CD 交于点O ,且BO =2EO ,CO =DO ,若△BOC 的面积为3,则四边形ADOE 的面积为 .17.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,我们把形如图1的图形称之为“8字形”.如图2,∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,并且与CD 、AB 分别相交于M 、N .试解答下列问题:(1)仔细观察,在图2中有 个以线段AC 为边的“8字形”; (2)在图2中,若∠B=96°,∠C=100°,求∠P 的度数;(3)在图2中,若设∠C=α,∠B=β,∠CAP=13∠CAB ,∠CDP=13∠CDB ,试问∠P 与∠C 、∠B 之间存在着怎样的数量关系(用α、β表示∠P ),并说明理由; (4)如图3,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .18.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒;(1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.19.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍. (1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________(2)如图1,已知∠MON =60°,在射线OM 上取一点A ,过点A 作AB ⊥OM 交ON 于点B ,以A 为端点作射线AD ,交线段OB 于点C (点C 不与O 、B 重合),若∠ACB =80°.判定△AOB 、△AOC 是否是“梦想三角形”,为什么?(3)如图2,点D 在△ABC 的边上,连接DC ,作∠ADC 的平分线交AC 于点E ,在DC 上取一点F ,使得∠EFC +∠BDC =180°,∠DEF =∠B .若△BCD 是“梦想三角形”,求∠B 的度数.20.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明; (2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.【参考答案】一、解答题1.(1);(2)<;(3)不能,理由见解析 【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的解析:(122)<;(3)不能,理由见解析 【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可; 【详解】解:(1)∵小正方形的边长为1cm , ∴小正方形的面积为1cm 2, ∴两个小正方形的面积之和为2cm 2, 即所拼成的大正方形的面积为2 cm 2, 设大正方形的边长为x cm , ∴22x = , ∴x∴; (2)设圆的半径为r , ∴由题意得22r ππ=, ∴r = ∴=22C r π=圆 设正方形的边长为a ∵22a π=, ∴a∴=4C a =正∴1C C ===<圆正 故答案为:<;(3)解:不能裁剪出,理由如下: ∵正方形的面积为900cm 2, ∴正方形的边长为30cm∵长方形纸片的长和宽之比为5:4, ∴设长方形纸片的长为5x ,宽为4x , 则54740x x ⋅=, 整理得:237x =,∴22(5)252537925900x x ==⨯=>, ∴22(5)30x >, ∴530x >,∴长方形纸片的长大于正方形的边长, ∴不能裁出这样的长方形纸片. 【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.2.(1);(2)不能,理由见解析 【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】 解:解析:(1)2)不能,理由见解析 【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可. 【详解】解:(1)∵正方形纸片的面积为21dm , ∴正方形的边长1AB BC dm ==, ∴AC =.(2)不能;根据题意设长方形的长和宽分别为3xcm 和2xcm . ∴长方形面积为:2?312x x =,解得:x =∴长方形的长边为.∵4, ∴他不能裁出. 【点睛】本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键.3.符合,理由见解析 【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案. 【详解】解:符合,理由如下:设宽为b 米,则长为1.5b 米,由题意得, 1.5b×b解析:符合,理由见解析 【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案. 【详解】解:符合,理由如下:设宽为b 米,则长为1.5b 米,由题意得, 1.5b×b=7350,∴b=70,或b=-70(舍去),即宽为70米,长为1.5×70=105米,∵100≤105≤110,64≤70≤75,∴符合国际标准球场的长宽标准.【点睛】本题考查算术平方根的意义,列出方程求出长和宽是得出正确答案的前提.4.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.【详解】解:不能,因为大正方形纸解析:不能截得长宽之比为3:2,且面积为30cm2的长方形纸片,见解析【分析】根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.【详解】解:不能,2+2=36(cm2),所以大正方形的边长为6cm,设截出的长方形的长为3b cm,宽为2b cm,则6b2=30,所以b所以3b所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片.【点睛】本题考查了算术平方根,理解算术平方根的意义是正确解答的关键.5.(1)长为,宽为;(2)正确,理由见解析【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程解析:(1)长为,宽为2)正确,理由见解析【分析】(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a 即可得到大正方形的面积.【详解】解:(1)设长为3x ,宽为2x ,则:3x •2x =30,∴x∴3x =,2x =答:这个长方形纸片的长为(2)正确.理由如下:根据题意得:()()2504230a b a b a b ⎧⎡⎤++=⎪⎣⎦⎨+-=⎪⎩, 解得:105a b =⎧⎨=⎩, ∴大正方形的面积为102=100.【点睛】本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.二、解答题6.(1)证明见解析;(2);(3).【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒.【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CF DE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE ,CF DE ∴,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠,BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE ,CG DE ∴,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒,F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠,ABC F BCF ∴∠-∠=∠,CF BC ⊥,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE ,GM DE ∴,MGN DFG ∴∠=∠, BH 平分ABC ∠,FN 平分CFD ∠, 11,22ABH AB D C CF DFG ∴∠=∠∠∠=, 由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠∠-==∴︒, 又BGD MGH MGD CGF DGN MGN MGD ∠=∠+∠⎧⎨∠=∠=∠+∠⎩, 45MGH BGD GF MGN C ∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.7.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE ,再根据两直线平行,同位角相 解析:(1)120,90;(2)①∠1=120°-n °,∠2=90°+n °;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE ,再根据两直线平行,同位角相等可得∠1=∠ABE ,根据两直线平行,同旁内角互补求出∠BCG ,然后根据周角等于360°计算即可得到∠2; ②结合图形,分A B 、B C 、AC 三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n=90°时,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);当n=120°时,∴AB⊥DE(GF).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.8.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.解析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.【详解】解:过点P作直线PH∥AB,所以∠A=∠APH,依据是两直线平行,内错角相等;因为AB∥CD,PH∥AB,所以PH∥CD,依据是平行于同一条直线的两条直线平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:过点P作直线PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如图3,过点P作直线PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【点睛】考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.9.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED =360°-2∠BFD .【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.10.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC= 解析:(1)见解析;(2)180CPD αβ∠=∠+︒-∠,理由见解析;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC =113°; (2)过过P 作//PF AD 交CD 于F ,,推出////AD PF BC ,根据平行线的性质得出180BCP ,即可得出答案;(3)画出图形(分两种情况:①点P 在BA 的延长线上,②当P 在BO 之间时(点P 不与点B ,O 重合)),根据平行线的性质即可得出答案.【详解】解:(1)过P 作//PE AB ,//AB CD ,////PE AB CD ∴,=180APE PAB ,180CPE PCD ∠+∠=︒,128PAB ∠=︒,119PCD ∠=︒52APE ∴∠=︒,61CPE ∠=︒,5261113APC ∴∠=︒+︒=︒;(2)180CPD αβ∠=∠+︒-∠,理由如下:如图3,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠又ADP α∠=∠=180CPD DPF CPF ;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠; 理由:如图4,过P 作//PF AD 交CD 于F , //AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠, 180BCP PCE ∠+∠=︒,PCE β∠=∠, 180BCP β∴∠=︒-∠,又ADP α∠=∠,180CPD CPF DPF αβ∴∠=∠-∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠. 理由:如图5,过P 作//PF AD 交CD 于F , //AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠, 180BCP PCE ∠+∠=︒,PCE β∠=∠, 180BCP β∴∠=︒-∠,又ADP α∠=∠180CPD DPF CPF αβ∴∠=∠-∠=∠+∠-︒.【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.三、解答题11.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【详解】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,∴∠BAN=180°×2=72°,5故答案为:72;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t-180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°-2t,∴∠BAC=72°-(180°-2t)=2t-108°,又∵∠ABC=108°-t,∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.12.(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当BC∥DE时,当BC∥EF时,当BC∥DF时,三种情况进行解答即可.【详解】解:(1)作EI∥PQ,如图,∵PQ∥MN,则PQ∥EI∥MN,∴∠α=∠DEI,∠IEA=∠BAC,∴∠DEA=∠α+∠BAC,∴α= DEA -∠BAC=60°-45°=15°,∵E、C、A三点共线,∴∠β=180°-∠DFE=180°-30°=150°;故答案为:15°;150°;(2)∵PQ∥MN,∴∠GEF=∠CAB=45°,∴∠FGQ=45°+30°=75°,∵GH,FH分别平分∠FGQ和∠GFA,∴∠FGH=37.5°,∠GFH=75°,∴∠FHG=180°-37.5°-75°=67.5°;(3)当BC∥DE时,如图1,∵∠D=∠C=90 ,∴AC∥DF,∴∠CAE =∠DFE =30°,∴∠BAM +∠BAC =∠MAE +∠CAE ,∠BAM =∠MAE +∠CAE -∠BAC =45°+30°-45°=30°;当BC ∥EF 时,如图2,此时∠BAE =∠ABC =45°,∴∠BAM =∠BAE +∠EAM =45°+45°=90°;当BC ∥DF 时,如图3,此时,AC ∥DE ,∠CAN =∠DEG =15°,∴∠BAM =∠MAN -∠CAN -∠BAC =180°-15°-45°=120°.综上所述,∠BAM 的度数为30°或90°或120°.【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.13.(1)80;(2)①;②【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数; (2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;解析:(1)80;(2)①APE αβ∠=∠+∠;②APE βα∠=∠-∠【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;②过P作PQ∥DF,依据平行线的性质可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ-∠EPQ=∠β-∠α.【详解】解:(1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°,又∵∠PBA=125°,∠PCD=155°,∴∠BPC=360°-125°-155°=80°,故答案为:80;(2)①如图2,过点P作FD的平行线PQ,则DF∥PQ∥AC,∴∠α=∠EPQ,∠β=∠APQ,∴∠APE=∠EPQ+∠APQ=∠α+∠β,∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β;②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β-∠α;理由:过P作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ-∠EPQ=∠β-∠α.【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.14.(1)∠DAC;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;解析:(1)∠DAC;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.【详解】解:(1)过点A作ED∥BC,∴∠B=∠EAB,∠C=∠DCA,又∵∠EAB+∠BAC+∠DAC=180°,∴∠B+∠BAC+∠C=180°.故答案为:∠DAC;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°;(3)如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°.【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.15.(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析.【分析】(1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案;(2)首先根据角解析:(1)证明见解析;(2)∠F=55°;(3)∠MQN=12∠ACB;理由见解析.【分析】(1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案;(2)首先根据角平分线的定义得出∠FCD=12∠ECD,∠HAF=12∠HAD,进而得出∠F=12(∠HAD+∠ECD),然后根据平行线的性质得出∠HAD+∠ECD的度数,进而可得出答案;(3)根据平行线的性质及角平分线的定义得出12QGR QGD∠=∠,12NQG AQG∠=∠,180MQG QGR∠+∠=︒,再通过等量代换即可得出∠MQN=12∠ACB.【详解】解:(1)∵CE//AB,∴∠ACE=∠A,∠ECD=∠B,∵∠ACD=∠ACE+∠ECD,∴∠ACD=∠A+∠B;(2)∵CF平分∠ECD,FA平分∠HAD,∴∠FCD=12∠ECD,∠HAF=12∠HAD,∴∠F=12∠HAD+12∠ECD=12(∠HAD+∠ECD),∵CH//AB,∴∠ECD=∠B,∵AH//BC,∴∠B+∠HAB=180°,∵∠BAD=70°,110B HAD ∴∠+∠=︒,∴∠F =12(∠B+∠HAD )=55°;(3)∠MQN =12∠ACB ,理由如下: GR 平分QGD ∠,12QGR QGD ∴∠=∠. GN 平分AQG ∠,12NQG AQG ∴∠=∠. //QM GR ,180MQG QGR ∴∠+∠=︒ .∴∠MQN =∠MQG ﹣∠NQG=180°﹣∠QGR ﹣∠NQG=180°﹣12(∠AQG+∠QGD )=180°﹣12(180°﹣∠CQG+180°﹣∠QGC ) =12(∠CQG+∠QGC ) =12∠ACB .【点睛】本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键. 四、解答题16.解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE ,根据操作示例得到S △ADE=S △BDE ,S △ABE=S △AEC ,从而得到结论;拓展延伸:(1)解析:解决问题:6; 拓展延伸:(1)S 1=2S 2 (2)10.5【解析】试题分析:解决问题:连接AE ,根据操作示例得到S △ADE =S △BDE ,S △ABE =S △AEC ,从而得到结论;拓展延伸:(1)作△ABD 的中线AE ,则有BE =ED =DC ,从而得到△ABE 的面积=△AED 的面积=△ADC 的面积,由此即可得到结论;(2)连接AO .则可得到△BOD 的面积=△BOC 的面积,△AOC 的面积=△AOD 的面积,△EOC 的面积=△BOC 的面积的一半, △AOB 的面积=2△AOE 的面积.设△AOD 的面积=a ,△AOE 的面积=b ,则a +3=2b ,a =b +1.5,求出a 、b 的值,即可得到结论. 试题解析:解:解决问题。

最新人教版七年级下册数学《期末检测试卷》(附答案)

最新人教版七年级下册数学《期末检测试卷》(附答案)

人教版七年级下学期期末测试数学试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题4分,共40分)1.如果一个角等于它的余角的2倍,那么这个角是它补角的()A. 2倍B. 0.5倍C. 5倍D. 0.2倍2.如图所示,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,小明走下面()线路不能到达学校.A. (0,4)→(0,0)→(4,0)B. (0,4)→(4,4)→(4,0)C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)D. (0,4)→(3,4)→(4,2)→(4,0)3.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A. (-2a,2b)B. (-2a,-2b)C. (-2b,-2a)D. (-2a,-b)4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A. 300名学生是总体B. 每名学生是个体C. 50名学生是所抽取的一个样本D. 这个样本容量是505. 如图所示,AB∥CD,AD,BC交于O,∠A=35°,∠BOD=76°,则∠C的度数是()A. 31°B. 35°C. 41°D. 76°6.方程组23x yx y+=⎧⎨+=⎩●的解为2xy=⎧⎨=⎩▲,则被●和▲遮盖的两个数分别为( )A. 5,1B. 1,3C. 2,3D. 2,47.为了改善住房条件,小亮的父母考察了某小区的A B、两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是().A. B.1.10.9 {24x y x y=-=C.0.9 1.1{24x yx y=-=D.1.10.9{24x yy x=-=8.小明的作业本上有以下四题①42164a a=;②51052a a a⋅=;③211a a aa a=⋅=;④32a a a-=.其中做错误的是()A. ①B. ②C. ③D. ④9. 如图,在△ABC中,三边a、b、c的大小关系是( )A. a<b<cB. c<a<bC. c<b<aD. b<a<c10.如图,天平右盘中每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A. B. C. D. 二、填空题(每题4分,共40分) 11.如图,a∥b,则∠A=______.12.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a-1,a+1),另一点B的坐标为(a+3,a-5),则点B的坐标是___________.13.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第 20 个正方形(实线)四条边上的整点个数共有____个.14.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.15.如图,将一副直角三角扳叠在一起,使直角顶点重合于O点,则∠AOB+∠DOC=_____16.若一个二元一次方程的解为2{1xy==-,则这个方程可以是______(只要求写出一个).17.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=_____.18.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c 满足:23410250a b c c -+-+-+=请你判断△ABC 的形状是_______________19.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有__________人.20.若关于x 的不等式组0321xa x -≥⎧⎨->-⎩的整数解恰有5个,求a 的范围. 三、解答题(每题10分,共70分)21.如图,MN ,EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠2. (1)用尺规作图作出镜面BC 经镜面EF 反射后的反射光线CD ;(2)试判断AB 与CD 的位置关系;(3)你是如何思考的?22.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE 对称的图案(只画图,不写作法);(3)以G 为原点,GE 所在直线为x 轴,GB 所在直线为y 轴,小正方形边长为单位长度建立直角坐标系,可得点A 的坐标是(_______,_______).23. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?24.织里某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元. (1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?25. 情系灾区.5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套,一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?答案与解析一、选择题(每题4分,共40分)1.如果一个角等于它的余角的2倍,那么这个角是它补角的()A. 2倍B. 0.5倍C. 5倍D. 0.2倍【答案】B【解析】分析:两角互余和为90°,互补和为180°,根据一个角等于它余角的2倍,建立方程,即可求出这个角,进而求出它的补角即可.详解:设这个角为α,则它的余角为90°-α,∵这个角等于它余角的2倍,∴α=2(90°-α),解得,α=60°,∴这个角的补角为180°-60°=120°,∴这个角是它的补角的60120︒︒=12.故选B.点睛:本题考查了余角和补角的概念.利用题中的数量关系:一个角等于它余角的2倍,建立方程是解题的关键.2.如图所示,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,小明走下面()线路不能到达学校.A. (0,4)→(0,0)→(4,0)B. (0,4)→(4,4)→(4,0)C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)D. (0,4)→(3,4)→(4,2)→(4,0)【答案】D【解析】【分析】根据题意,在给出的图形中画一下四个选项的行走路线即可得出小明不能到达学校的路线.【详解】A. (0,4)→(0,0)→(4,0),能到达学校,故不符合题意;B. (0,4)→(4,4)→(4,0),能到达学校,故不符合题意;C. (0,4)→(1,4)→(1,1)→(4,1)→(4,0),能到达学校,故不符合题意;D. (0,4)→(3,4)→(4,2)→(4,0),不能到达学校,故符合题意,故选D.【点睛】本题考查了利用坐标确定位置,也考查了数学在生活中的应用,结合题意,自己动手操作一下即可更准确地得到结论.3. 某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A.(-2a,2b)B. (-2a,-2b)C. (-2b,-2a)D. (-2a,-b)【答案】B【解析】根据图形易得,小鱼与大鱼的位似比是1︰2,所以点(a,b)的对应点是(-2a,-2b).故选B.4.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A. 300名学生是总体B. 每名学生是个体C. 50名学生是所抽取的一个样本D. 这个样本容量是50【答案】D【解析】【详解】A、300名学生的视力情况是总体,故此选项错误;B、每个学生的视力情况是个体,故此选项错误;C、50名学生的视力情况是抽取的一个样本,故此选项错误;D、这组数据的样本容量是50,故此选项正确.故选D.5. 如图所示,AB∥CD,AD,BC交于O,∠A=35°,∠BOD=76°,则∠C的度数是()A. 31°B. 35°C. 41°D. 76°【答案】C【解析】本题主要考查了三角形的外角性质和平行线的性质∵AB∥CD,∴∠D=∠A=35°. ∠DOC=180°-∠BOD=180°-76°=104°,在△COD中,∠C=180°-∠D-∠DOC=180°-35°-104°=41°6.方程组23x yx y+=⎧⎨+=⎩●的解为2xy=⎧⎨=⎩▲,则被●和▲遮盖的两个数分别为( )A. 5,1B. 1,3C. 2,3D. 2,4【答案】A【解析】分析:把x代入方程组中的第2个方程即可求出y,把x、y同时代入第一个方程即可求出被遮盖的数.详解:23x yx y+=⎧⎨+=⎩口①②,把x=2代入②,得2+y=3,∴y=1.把x=2,y=1代入①,得方程2x+y=5.故选A.点睛:本题考查了二元一次方程组的解.先把x的值代入方程组中的第二个方程是解题的关键.7.为了改善住房条件,小亮的父母考察了某小区的A B、两套楼房,A套楼房在第3层楼,B套楼房在第5层楼,B套楼房的面积比A套楼房的面积大24平方米,两套楼房的房价相同,第3层楼和第5层楼的房价分别是平均价的1.1倍和0.9倍.为了计算两套楼房的面积,小亮设A套楼房的面积为x平方米,B套楼房的面积为y平方米,根据以上信息列出了下列方程组.其中正确的是().A. B. 1.10.9{24x y x y =-= C. 0.9 1.1{24x y x y =-= D. 1.10.9{24x y y x =-= 【答案】D【解析】【分析】可设平均价为1.关键描述语是:B 套楼房的面积比A 套楼房的面积大24平方米;两套楼房的房价相同,即为平均价1.等量关系为:B 套楼房的面积-A 套楼房的面积=24;0.9×1×B 套楼房的面积=1.1×1×A 套楼房的面积,设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,可列方程组为1.10.9{24x y y x =-=.故选D . 【详解】解:设A 套楼房的面积为x 平方米,B 套楼房的面积为y 平方米,可列方程组为1.10.9{24x y y x =-=. 故选D .8.小明的作业本上有以下四题42164a a =;51052a a a =③211a a a a =⋅=32a a a =) A. ①B. ②C. ③D. ④【答案】D【解析】【分析】分别利用二次根式的性质及其运算法则计算即可判定.【详解】①和②是正确;在③中,由式子可判断a >0,从而③正确;在④中,左边两个不是同类二次根式,不能合并,故错误.故选D . 2a =|a |.同时二次根式的加减运算实质上是合并同类二次根式.9. 如图,在△ABC 中,三边a 、b 、c 的大小关系是( )A. a<b<cB. c<a<bC. c<b<aD. b<a<c【答案】D【解析】试题分析:先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.根据勾股定理,得,,,,,故选D.考点:本题考查的是勾股定理点评:解答本题的关键是认真分析格点的特征,熟练运用勾股定理进行计算.10.如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A. B.C. D.【答案】A【解析】∵由图可知,1g<m<2g,∴在数轴上表示为:.故选A..二、填空题(每题4分,共40分)11.如图,a∥b,则∠A=______.【答案】22°【解析】分析:如下图,过点A作AD∥b,则由已知可得AD∥a∥b,由此可得∠DAC=∠ACE=50°,∠DAB=∠ABF=28°,从而由∠BAC=∠DAC-∠DAB即可求得∠BAC的度数.详解:如下图,过点A作AD∥b,∵a//b,∴AD∥a∥b,∴∠DAC=∠ACE=50°,∠DAB=∠ABF=28°,∴∠BAC=∠DAC-∠DAB=50°-28°=22°.故答案为:22°.点睛:作出如图所示的辅助线,熟悉“平行线的性质:两直线平行,内错角相等”是正确解答本题的关键.12.在平面直角坐标系中,点A是y轴上一点,若它的坐标为(a-1,a+1),另一点B的坐标为(a+3,a-5),则点B的坐标是___________.【答案】(4,-4)【解析】分析:根据点在y轴上,则其横坐标是0,可求出a的值,进而即可求出B点坐标.详解:∵点A(a−1,a+1)是y轴上一点,∴a−1=0,解得a=1,∴a+3=1+3=4,a−5=1−5=−4,∴点B的坐标是(4,−4).故答案为(4,−4).点睛:本题考查了平面直角坐标系中点的坐标特征.熟练掌握y轴上的点的横坐标为0是解题的关键.13.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点,观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第 20 个正方形(实线)四条边上的整点个数共有____个.【答案】80【解析】从内到外的正方形依次编号为1,2,3,……,n,则有:正方形的序号正方形四边上的整点的个数1 2×4-4=4;2 3×4-4=8;3 4×4-4=12;…………n 4(n+1)-4=4n.由里向外第 20 个正方形(实线)四条边上的整点个数共有4×20=80.故答案为80.14.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成不同的三角形的个数为_____.【答案】2【解析】分析:根据“在三角形中任意两边之和大于第三边,任意两边之差小于第三边”,以及各边都是整数进行一一分析即可.详解:根据周长为7,以及三角形的三边关系,只有两种不同的三角形,边长为2,2,3或3,3,1.其它的组合都不能满足三角形中三边的关系.故答案为2.点睛:本题考查了三角形三边间的关系. 利用三角形三边间的关系来判断组合是否成立是解题的关键. 15.如图,将一副直角三角扳叠在一起,使直角顶点重合于O 点,则∠AOB+∠DOC=_____【答案】180°【解析】∵∠AOD+∠COD=90°,∠COD+∠BOC=90°,∠BOD=∠COD+∠BOC ,∠AOD+∠BOD=∠AOB ,∴∠AOD+∠COD+∠COD+∠BOC=180°,∴∠AOD+2∠COD+∠BOC=180°,∴∠AOB+∠COD=180°16.若一个二元一次方程的解为2{1x y ==-,则这个方程可以是______(只要求写出一个). 【答案】1x y +=【解析】分析: 根据二元一次方程的解的定义,比如把x 与y 的值相加得1,即x+y=1是一个符合条件的方程. 详解:一个二元一次方程的解为21x y =⎧⎨=-⎩, 这个方程可以是 1.x y +=故答案 1.x y +=点睛:本题是一道有关二元一次方程的解的题目,关键是掌握二元一次方程的解的定义.17.如图,正方形是由k 个相同的矩形组成,上下各有2个水平放置的矩形,中间竖放若干个矩形,则k=_____.【答案】8【解析】分析:通过理解题意及看图可知本题存在等量关系,即矩形长的2倍=矩形宽的2倍+矩形的长,矩形长的2倍=(中间竖的矩形-4)宽的和,根据这两个等量关系,可列出方程组,再求解即可.详解:设矩形的长为x ,矩形的宽为y ,中间竖的矩形为(k −4)个,即(k −4)个矩形的宽正好等于2个矩形的长, ∵由图形可知:x +2y =2x ,2x =(k −4)y ,则可列方程组()2224x y x x k y +=⎧⎨=-⎩, 解得k =8.故答案为8.点睛:本题考查了二元一次方程组的应用.分析图形并得出对应的相等关系是解题的关键.18.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c2410250b c c -+-+=请你判断△ABC 的形状是_______________【答案】直角三角形【解析】分析:根据非负数的性质解得各边的长,再根据勾股定理的逆定理判定是否直角三角形即可.24(5)0b c -+-=,根据非负数的性质知,a =3,b =4,c =5,∵32+42=52,∴以为a 、b 、c 为三边的△ABC 是直角三角形.故答案为直角三角形.点睛:本题考查了非负数的性质和勾股定理的逆定理.将题中的21025c c -+转化为完全平方式2(5)c -是解题的关键. 19.东方旅行社,某天有空客房10间,当天接待了一个旅游团,当每个房间住3人时,只有一个房间不空也不满,试问旅游团共有__________人.【答案】28或29【解析】分析:根据有空客房10间,每个房间住3人时,只有一个房间不空也不满,即:9间客房住满了,而最后一个房间不空也不满即这间客房住了1个人或2个人,分两种情况列出算式即可求出旅客的总人数.详解:由题可知,前9个房间住的人数是9×3=27人; 最后1间客房(不空也不满的房间)的人数有两种情况:(1)当有1个人时:游客总数为:27+1=28人;(2)当有2个人时:游客总数为:27+2=29人,所以旅游团共有28或29人.故答案为28或29.点睛:本题考查了一元一次不等式的应用.根据题中的不等关系确定不空也不满的房间人数是解题的关键.20.若关于x 的不等式组0321x a x -≥⎧⎨->-⎩的整数解恰有5个,求a 的范围. 【答案】43a -<≤-【解析】试题分析:先分别解两个不等式得到不等式组的解集为a≤x<2,则可确定不等式组的5个整数解为1,0,-1,-2,-3,于是可得到a 的取值范围.0321x a x -≥⎧⎨->-⎩①②解①得,x a ≥;解②得,2x <;∴不等式组的5个整数解为1,0,-1,-2,-3,∴43a -<≤-.点睛:本题考查了一元一次不等式组的整数解,已知解集(整数解)求字母的取值.一般思路为:先把题目中除未知数外的字母当做常数看待求出不等式组的解集,然后再根据题目中对结果的限制的条件得到有关字母的值.三、解答题(每题10分,共70分)21.如图,MN ,EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠2. (1)用尺规作图作出镜面BC 经镜面EF 反射后的反射光线CD ;(2)试判断AB 与CD 的位置关系;(3)你是如何思考的?【答案】(1)只要作出∠5=∠6;(2)CD∥AB;(3)见解析【解析】分析:(1)掌握尺规作图的基本方法,作入射角等于反射角即∠5=∠6即可;(2)AB与CD平行;(3)由平行线的性质和反射的性质可得∠1=∠2=∠3=∠4,利用平角的定义可得∠ABC=∠BCD,由平行线的判定可得AB与CD平行.详解:(1)只要作出的光线BC经镜面EF反射后的反射角等于入射角即∠5=∠6即可.(2)CD∥AB.(3)如图,作图可知∠5=∠6,∠3+∠5=90°,∠4+∠6=90°,∴∠3=∠4;∵EF∥MN,∴∠2=∠3,∵∠1=∠2,∴∠1=∠2=∠3=∠4;∵∠ABC=180°﹣2∠2,∠BCD=180°﹣2∠3,∴∠ABC=∠BCD,∴CD∥AB.点睛:本题考查了平行线的性质和判定. 结合图形并利用平行线的性质和判定进行证明是解题的关键.22.下面的方格纸中,画出了一个“小猪”的图案,已知每个小正方形的边长为1.(1)“小猪”所占的面积为多少?(2)在上面的方格纸中作出“小猪”关于直线DE对称的图案(只画图,不写作法);(3)以G为原点,GE所在直线为x轴,GB所在直线为y轴,小正方形的边长为单位长度建立直角坐标系,可得点A的坐标是(_______,_______).【答案】(1). -4 (2). 1【解析】分析:(1)将“小猪”所占的面积转化为三角形和四边形面积的和来解答;(2)根据直线DE在网格中作出小猪的轴对称图形即可;(3)按要求建立平面直角坐标系即可得出A点坐标.详解:(1)4×4×12+8×3×12+1×1×12=32.5;(2)画图如下,(3)(-4,1).点睛:本题考查了网格中的面积、轴对称、平面直角坐标系等知识.求面积时合理地进行图形的移动和变换是解题的关键.23. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施.某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度.求只将温度调高1℃后两种空调每天各节电多少度?【答案】只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度.【解析】根据题目给出的条件,找出合适的等量关系,列出方程组,再求解24.织里某童装加工企业今年五月份工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分二部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元.(1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?【答案】(1)该企业每套至少应奖励2.78元;(2)小张在六月份应至少加工200套.【解析】分析:(1)最低工资应考虑最不熟练地工人的工资.关系式为:基本工资200+150×60%×每件奖励钱≥最低工资标准450元,列不等式,解之即可;(2)根据关系式:基本工资200+5×小张加工童装套数≥1200,列不等式,解之即可.详解:(1)设企业每套奖励x元,由题意得:200+60%·150x≥450 ,解得:x≥2.78 ,因此,该企业每套至少应奖励2.78元.(2)设小张在六月份加工y套,由题意得:200+5y≥1200 ,解得:y≥200.答:小张在六月份应至少加工200套.点睛:本题考查了一元一次不等式的应用.找出题中的不等关系并建立不等式是解题的关键.25.情系灾区.5月12日我国四川汶川县发生里氏8.0级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套,一辆乙货车可装床架10个和课桌凳10套.(1)学校如何安排甲、乙两种货车可一次性把这些物资运到灾区?有几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?【答案】(1)可安排甲种货车2辆,乙种货车6辆或甲种货车3辆,乙种货车5辆或甲种货车4辆,乙种货车4辆共3种方案;(2)甲种货车2辆,乙种货车6辆运费最少,最少运费是8400元.【解析】试题分析:(1)关系式为:甲种货车可装的床架数+乙种货车可装的床架数≥60;甲种货车可装的课桌凳数+乙种货车可装的课桌凳数≥100,把相关数值代入求得整数解的个数即可;(2)算出每种方案的总运费,比较即可.解:(1)设安排甲种货车x辆,则安排乙种货车(8﹣x)辆.,解得2≤x≤4,∴x可取2,3,4,∴可安排甲种货车2辆,乙种货车6辆或甲种货车3辆,乙种货车5辆或甲种货车4辆,乙种货车4辆共3种方案;(2)甲种货车2辆,乙种货车6辆运费为:2×1200+6×1000=8400元;甲种货车3辆,乙种货车5辆运费为3×1200+5×1000=8600元;甲种货车4辆,乙种货车4辆运费为4×1200+4×1000=8800元;∴甲种货车2辆,乙种货车6辆运费最少,最少运费是8400元.。

人教版七年级下学期期末数学试卷(含解析)

人教版七年级下学期期末数学试卷(含解析)

人教版七年级第二学期期末数学试卷及答案一、选择题(共10小题).1.(3分)在平面直角坐标系中,点(﹣2,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)4的平方根是()A.2 B.﹣2 C.±2 D.163.(3分)一个正方形的面积等于30,则它的边长a满足()A.4<a<5 B.5<a<6 C.6<a<7 D.7<a<84.(3分)在同一平面内,两条直线的位置关系可能是()A.相交或垂直或平行B.相交或垂直C.垂直或平行D.平行或相交5.(3分)如图,由下列条件,不能判断AB∥CD的是()A.∠1=∠4 B.∠2=∠3C.∠B+∠BCD=180°D.∠BAD+∠D=180°6.(3分)方程组的解是()A .B .C .D .7.(3分)空气是由多种气体混合而成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是()A.条形图B.折线图C.扇形图D.直方图8.(3分)一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成()A.10组B.9组C.8组D.7组9.(3分)小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物 4 3 93第二次购物 6 6 162 若小明需要购买3个商品A和2个商品B,则她要花费()A.64元B.65元C.66元D.67元10.(3分)如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°②OF平分∠BOD③∠POE=∠BOF④∠POB=2∠DOF其中正确的结论的个数为()A.4 B.3 C.2 D.1二、填空题(每小题3分,共30分)11.(3分)请写出一个负无理数.12.(3分)实数﹣64的立方根是.13.(3分)命题:“平行于同一条直线的两条直线平行”的题设是,结论是.14.(3分)如图,AB∥CD,∠CDE=140°,则∠A的度数为.15.(3分)我们可以用直尺和三角尺画平行线,如图,在这一过程中,所用到的判断两直线平行的方法是.16.(3分)如图所示是由截面为同一种矩形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10cm,两块横放的墙砖比两块竖放的墙砖低40cm,则每块墙砖的截面面积是.17.(3分)若方程组的解x,y满足0<x+y<1,则k的取值范围是.18.(3分)如图是记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整):根据图中信息,该足球队全年比赛胜了场.19.(3分)在等式y=ax2+bx+c中,当x=﹣1时,y=0;当x=2时,y=3;当x=5时,y=60.则a+b+c=.20.(3分)如图,A、B两点的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP的面积为6,则点P的坐标为.三、解答题(共60分)21.(14分)完成下面的证明:如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.证明:∵BE平分∠ABD()∴∠ABD=2∠α ()∵DE平分∠BDC(已知)∵∠BDC=()∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)()∵∠α+∠β=90°(已知)∴∠ABD+∠BDC=()∴AB∥CD()22.(10分)解下列方程组(1);(2).23.(6分)x取哪些整数值时,不等式5x+2>3(x﹣1)与x﹣1≤7﹣都成立?24.(10分)列方程组解应用题现有甲、乙两种型号的钢板,准备用这两种钢板制成A型零件15个,制成B型零件18个.已知一块甲型钢板可制成2个A型零件和1个B型零件;一块乙型钢板可制成1个A型零和2个B型零件.问:恰好需要甲型钢板和乙型钢板各几块?25.(10分)九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:月均用水量x(t)频数(户)频率0<x≤5 6 0.125<x≤100.2410<x≤1516 0.3215<x≤2010 0.2020<x≤25 425<x≤30 2 0.04(1)把上面的频数分布表和频数分布直方图补充完整;(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?26.(10分)平面直角坐标系中,有一点M(a﹣1,2a+7),试求满足下列条件的a的值.(1)点M在x轴上;(2)点M在第二象限;(3)点M到y轴距离是1.参考答案一、选择题(每小题3分,共30分)1.(3分)在平面直角坐标系中,点(﹣2,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限解:∵点的坐标为(﹣2,﹣2),∴点在第三象限,故选:C.2.(3分)4的平方根是()A.2 B.﹣2 C.±2 D.16解:∵(±2)2=4,∴4的平方根是±2.故选:C.3.(3分)一个正方形的面积等于30,则它的边长a满足()A.4<a<5 B.5<a<6 C.6<a<7 D.7<a<8解:∵<<,∴5<<6.故选:B.4.(3分)在同一平面内,两条直线的位置关系可能是()A.相交或垂直或平行B.相交或垂直C.垂直或平行D.平行或相交解:在同一个平面内,两条直线只有两种位置关系,即平行或相交.故选:D.5.(3分)如图,由下列条件,不能判断AB∥CD的是()A.∠1=∠4 B.∠2=∠3C.∠B+∠BCD=180°D.∠BAD+∠D=180°解:A、根据内错角相等,两直线平行即可证得,故选项错误;B、∠2和∠3是AD和BC被AC所截形成的角,因而不能证明AB∥CD,故选项正确;C、根据同旁内角互补,两直线平行,即可证得,故选项错误;D、根据同旁内角互补,两直线平行,即可证得,故选项错误.故选:B.6.(3分)方程组的解是()A .B .C .D .解:,①+②得:3x=6,解得:x=2,把x=2代入①得:y=1,则方程组的解为,故选:B.7.(3分)空气是由多种气体混合而成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是()A.条形图B.折线图C.扇形图D.直方图解:根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:C.8.(3分)一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成()A.10组B.9组C.8组D.7组解:在样本数据中最大值为143,最小值为50,它们的差是143﹣50=93,已知组距为10,那么由于=,故可以分成10组.故选:A.9.(3分)小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物 4 3 93 第二次购物 6 6 162 若小明需要购买3个商品A和2个商品B,则她要花费()A.64元B.65元C.66元D.67元解:设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为12元,商品B的标价为15元;所以3×12+2×15=66元,故选:C.10.(3分)如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°②OF平分∠BOD③∠POE=∠BOF④∠POB=2∠DOF其中正确的结论的个数为()A.4 B.3 C.2 D.1解:∵AB∥CD,∴∠ABO=∠BOD=40°,∴∠BOC=180°﹣40°=140°,∵OE平分∠BOC,∴∠BOE=×140°=70°,所以①正确;∵OF⊥OE,∴∠EOF=90°,∴∠BOF=90°﹣70°=20°,∴∠BOF=∠BOD,所以②正确;∵OP⊥CD,∴∠COP=90°,∴∠POE=90°﹣∠EOC=20°,∴∠POE=∠BOF,所以③正确;∴∠POB=70°﹣∠POE=50°,而∠DOF=20°,所以④错误.综上所述,正确的结论为①②③.故选:B.二、填空题(每小题3分,共30分)11.(3分)请写出一个负无理数﹣(答案不唯一).解:由无理数的定义可知,﹣、﹣…是负无理数.故答案为:﹣(答案不唯一).12.(3分)实数﹣64的立方根是﹣4.解:∵(﹣4)3=﹣64,∴﹣64的立方根为﹣4,故答案为:﹣413.(3分)命题:“平行于同一条直线的两条直线平行”的题设是两条直线平行于同一条直线,结论是这两条直线平行.解:命题:“平行于同一条直线的两条直线平行”的题设是两条直线平行于同一条直线,结论是这两条直线平行.14.(3分)如图,AB∥CD,∠CDE=140°,则∠A的度数为40.解:∵∠CDE=140°,∴∠CDA=180°﹣∠CDE=180°﹣140°=40°,∵AB∥CD,∴∠A=∠CDA=180°﹣40°=40°,故答案为:40.15.(3分)我们可以用直尺和三角尺画平行线,如图,在这一过程中,所用到的判断两直线平行的方法是同位角相等,两直线平行.解:如图,∵∠DPF=∠BMF,∴AB∥CD(同位角相等,两直线平行).16.(3分)如图所示是由截面为同一种矩形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10cm,两块横放的墙砖比两块竖放的墙砖低40cm,则每块墙砖的截面面积是525cm2.解:设每块墙砖的长为xcm,宽为ycm,根据题意得:,解得:,则每块墙砖的截面面积是35×15=525(cm2).故答案为:525cm2.17.(3分)若方程组的解x,y满足0<x+y<1,则k的取值范围是﹣4<k<0.解:,①+②得:4(x+y)=k+4,即x+y=,代入已知不等式得:0<<1,解得:﹣4<k<0,故答案为:﹣4<k<018.(3分)如图是记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整):根据图中信息,该足球队全年比赛胜了30场.解:10÷20%=50场,50×(1﹣20%﹣20%)=30场,故答案为:30.19.(3分)在等式y=ax2+bx+c中,当x=﹣1时,y=0;当x=2时,y=3;当x=5时,y=60.则a+b+c=﹣4.解:把x=﹣1,y=0;x=2,y=3;x=5,y=60代入得:,解得:,则a+b+c=3﹣2﹣5=﹣4.故答案为:﹣4.20.(3分)如图,A、B两点的坐标分别为(2,4),(6,0),点P是x轴上一点,且△ABP的面积为6,则点P的坐标为(3,0)或(9,0).解:如图,设P点坐标为(x,0),根据题意得•4•|6﹣x|=6,解得x=3或9,所以P点坐标为(3,0)或(9,0).故答案为:(3,0)或(9,0).三、解答题(共60分)21.(14分)完成下面的证明:如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.证明:∵BE平分∠ABD(已知)∴∠ABD=2∠α (角平分线的定义)∵DE平分∠BDC(已知)∵∠BDC=2∠β(角平分线的定义)∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°(已知)∴∠ABD+∠BDC=(等量代换)∴AB∥CD(同旁内角互补两直线平行)【解答】证明:BE平分∠ABD(已知),∴∠ABD=2∠α(角平分线的定义).∵DE平分∠BDC(已知),∴∠BDC=2∠β (角平分线的定义)∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(等量代换)∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°(等量代换).∴AB∥CD(同旁内角互补两直线平行).故答案为:已知,角平分线的定义,2∠β,角平分线的定义,等量代换,等量代换,同旁内角互补两直线平行.22.(10分)解下列方程组(1);(2).解:(1)①+②×2得:7x=14,解得:x=2,把x=2代入①得:y=,则方程组的解为;(2)①+②得:5x+2y=16④,②+③得:3x+4y=18⑤,④×2﹣⑤得:7x=14,解得:x=2,把x=2代入④得:y=3,把x=2,y=3代入①得:z=1,则方程组的解为.23.(6分)x取哪些整数值时,不等式5x+2>3(x﹣1)与x﹣1≤7﹣都成立?解:,解①得x>﹣,解②得x≤4,所以不等式组的解集为﹣<x≤4,所以不等式组的整数解为﹣2,﹣1,0,1,2,3,4,即x取整数﹣2,﹣1,0,1,2,3,4时,不等式5x+2>3(x﹣1)与x﹣1≤7﹣都成立.24.(10分)列方程组解应用题现有甲、乙两种型号的钢板,准备用这两种钢板制成A型零件15个,制成B型零件18个.已知一块甲型钢板可制成2个A型零件和1个B型零件;一块乙型钢板可制成1个A型零和2个B型零件.问:恰好需要甲型钢板和乙型钢板各几块?解:设需要甲型钢板x块,乙型钢板y块,根据题意得:,解得:,答:恰好需要甲型钢板4块,乙型钢板7块.25.(10分)九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:月均用水量x(t)频数(户)频率0<x≤5 6 0.125<x≤10120.2410<x≤1516 0.3215<x≤2010 0.2020<x≤25 4 0.0825<x≤30 2 0.04(1)把上面的频数分布表和频数分布直方图补充完整;(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?解:(1)如图所示:根据0<x≤5中频数为6,频率为0.12,则6÷0.12=50,50×0.24=12户,4÷50=0.08,故表格从上往下依次是:12和0.08;(2)×100%=68%;(3)1000×(0.08+0.04)=120户,答:该小区月均用水量超过20t的家庭大约有120户.26.(10分)平面直角坐标系中,有一点M(a﹣1,2a+7),试求满足下列条件的a的值.(1)点M在x轴上;(2)点M在第二象限;(3)点M到y轴距离是1.解:(1)要使点M在x轴上,a应满足2a+7=0,解得a=,所以,当a=时,点M在x轴上;(2)要使点M在第二象限,a应满足,解得,所以,当时,点M在第二象限;(3)要使点M到y轴距离是1,a应满足|a﹣1|=±1,解得a=2或a=0,所以,当a=2或a=0时,点M到y轴距离是1.。

新人教版七年级数学下册期末考试卷及答案【完整版】

新人教版七年级数学下册期末考试卷及答案【完整版】

新人教版七年级数学下册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在菱形ABCD 中,2,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a+1)2+|b+5|=b+5,且|2a-b-1|=1,则ab=___________.2.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.正五边形的内角和等于______度.4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.2的相反数是________.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:1314(1)(5) 243x x x⎡⎤--=+⎢⎥⎣⎦.2.已知x、y满足方程组52251x yx y-=-⎧⎨+=-⎩,求代数式()()()222x y x y x y--+-的值.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、C7、B8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、40°3、5404、-405、﹣2.6、2或-8三、解答题(本大题共6小题,共72分)1、1x2、3 53、(1)S=ab﹣a﹣b+1;(2)矩形中空白部分的面积为2;4、(1)略;(2)略.5、(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。

最新人教版七年级数学下册期末考试试题

最新人教版七年级数学下册期末考试试题

七年级数学下册期末考试试题一、选择题(每小题2分,共16分)1.点A(﹣2,﹣3)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.下列各数中的无理数是()A.B.C.3.D.3.下列事件中,调查方式选择合理的是()A.为了解某批智能手机操作系统的性能,选择全面调查B.为了解北京市某年龄段人群的网购意向,选择全面调查C.为审查某文章中的错别字,选择抽样调查D.为了解某班学生的身高情况,选择全面调查4.已知a<b,下列不等式变形不正确的是()A.a+2<b+2B.3a<3b C.﹣2a<﹣2b D.2a﹣1<2b﹣1 5.如图,AB∥CD,点E在直线CD上,若∠B=57°,∠AED=38°,则∠AEB的度数为()A.38°B.57°C.85°D.95°6.如图,将北京市地铁部分线路图置于正方形网格中,若崇文门站的坐标为(0,﹣1),西单站的坐标为(﹣5,0),则雍和宫站的坐标为()A.(4,0)B.(﹣4,0)C.(0,﹣4)D.(0,4)7.在平面直角坐标系xOy中,直线l经过点A(﹣1,0),点A1,A2,A3,A4,A5,……按如图所示的规律排列在直线l上.若直线l上任意相邻两个点的横坐标都相差1,纵坐标也都相差1,若点A n(为正整数)的纵坐标为﹣2022,则n的值为()A.4042B.4043C.4044D.40458.从A地到B地有驾车、公交、地铁三种出行方式,为了选择适合的出行方式,对6:00﹣10:00时段这三种出行方式不同出发时刻所用时长(从A地到B地)进行调查、记录与整理,数据如图所示.根据统计图提供的信息,下列推断合理的是()A.若8:00出发,驾车是最快的出行方式B.地铁出行所用时长受出发时刻影响较小C.若选择公交出行且需要30分钟以内到达,则7:30之前出发均可D.同一时刻出发,不同出行方式所用时长的差最长可达30分钟二、填空题(每题2分,共16分)9.81的平方根是.10.计算:=.11.下列四个命题:①同一平面内,过一点有且只有一条直线与已知直线垂直;②过一点有且只有一条直线与已知直线平行;③两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;④从直线外一点作这条直线的垂线段叫点到直线的距离.其中是真命题的是.12.如图,一块边长为8米的正方形土地,在上面修了三条道路,宽都是1米,其余部分种上各种花草,则种植花草的面积是平方米.13.已知关于x,y的方程x2m﹣n﹣2+4y2n﹣m+2=0是二元一次方程,则m+n的值为.14.如图,在平面直角坐标系xOy中,A(﹣1,0),B(﹣3,﹣3),若BC∥OA,且BC=4OA,直接写出点C的坐标.15.某品牌触屏笔记本的成本为6800元,售价为9999元,6.18活动期间,该商家准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的触屏笔记本打x折销售,请列出不等式表示该商家的促销方式:.16.已知:如图,数轴上两点A、B对应的数分别是﹣1,1,点P是线段AB上一动点,给出如下定义:对于数轴上任意一点Q,如果在线段AB上存在点P,满足PQ=2,那么我们把这样的点Q表示的数称为线段AB的连动数,特别地,当点Q表示的数是整数时我们称为线段AB的连动整数.(1)﹣3,0是线段AB的连动数的是;(2)当不等式组的解集恰好有线段AB的3个连动整数时,a的取值范围是.三、解答题(第17题18分,第18题12分,第19~22题每题6分,第23、24每题7分,共68分)17.(18分)(1)计算:;(2)求等式中x的值:36x2=9;(3)解二元一次方程组:.18.(12分)(1)解不等式2x﹣5<4(x+1)﹣3,并写出它的负整数解;(2)解不等式组,并把它的解集在数轴上表示出来.19.(6分)如图,点C在∠MON的一边OM上,过点C的直线AB∥ON,CD平分∠ACM.当∠DCM=60°时,求∠O的度数.解:∵CD平分∠ACM,∴∠ACM=.∵∠DCM=60°,∴∠ACM=°.∵直线AB与OM交于点C,∴∠OCB=∠ACM=°(),∵AB∥ON,∴∠O+∠OCB=180°(),∴∠O=°.20.(6分)如图,平行四边形ABCO四个顶点的坐标分别是A(1,2),B(4,2),C(3,0),O(0,0).将这个平行四边形向左平移4个单位长度,向上平移3个单位长度,得到平行四边形A'B'C'O',点A,B,C,O的对应点分别是点A',B',C',O'.(1)画出平移后的平行四边形A'B'C'O',并写出A'、B'的坐标;(2)直接写出平行四边形A'B'C'O'的面积;(3)若点N是x轴上的一个动点,直接写出线段O'N的最小值:,数学依据是:.21.(6分)如图,点A、C在∠MON的一边OM上,AB⊥ON于点B,CD⊥OM交射线ON 于点D.按要求画图并猜想证明:(1)过点C画ON的垂线段CE,垂足为点E;(2)过点E画EF∥OC,交CD于点F.请你猜想∠OAB与∠CEF的数量关系,并证明你的结论.22.(6分)镇政府想了解李家庄130户家庭的经济情况,从中随机抽取了部分家庭进行调查,获得了他们的年收入(单位:万元),并对数据(年收入)进行整理、描述和分析.下面给出了部分信息.a.被抽取的部分家庭年收入的频数分布直方图和扇形统计图如下(数据分组:0.9≤x<1.3,1.3≤x<1.7,1.7≤x<2.1,2.1≤x<2.5,2.5≤x<2.9,2.9≤x<3.3)b.家庭年收入在1.3≤x<1.7这一组的是:1.3 1.3 1.4 1.5 1.6 1.6根据以上信息,完成下列问题:(1)将两个统计图补充完整;(2)估计李家庄有多少户家庭年收入不低于1.5万元且不足2.1万元?23.(7分)某电器超市销售每台进价分别为200元,170元的A、B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.(7分)已知直线AB∥CD,点E,F分别在直线AB,CD上,∠EFD=α.点P是直线AB上的动点(不与E重合),连接PF,∠PEF和∠PFC的平分线所在直线交于点H.(1)如图1,若EF⊥CD,点P在射线EB上.则当∠EPF=40°时,∠EHF=°;(2)如图2,若α=120°,点P在射线EA上.①补全图形;②探究∠EPF与∠EHF的数量关系,并证明你的结论.(3)如图3,若0°<α<90°,直接写出∠EPF与∠EHF的数量关系(用含α的式子表示).四、选做题(共10分,每题5分)25.(5分)在用计算机程序求一元方程的解时,常用“二分法”的算法思路.借鉴这种思路,小明编写了一个程序来求一个正数a的算术平方根.以a=10为例,要求,相当于求方程x2﹣10=0的正数解,他设计的程序是这样的:第一步:输入一个比小的正数L1,一个比大的正数R1,则L12﹣10<0,R12﹣10>0.取M1=(L1+R1),计算M12﹣10,可能有以下三种结果:①如果M12﹣10=0,那么方程的解为M1,输出结果,程序运行结束;②如果M12﹣10<0,那么记L2=M1,R2=R1:③如果M12﹣10>0,那么记L2=L1,R2=M1.第二步:取M2=(L2+R2),计算M22﹣10,并根据M22﹣10与0的大小关系继续为L3、R3赋值或输出结果.第三步:取M3=(L3+R3),计算M32﹣10,…………第N步:取M n=(L n+R n),输出方程的(近似)解M n,程序运行结束.当程序求出方程的解,或者运行到指定的步数时(不能无限进行),均输出结果,结束运行.小明运行程序,当指定步数不超过4时,得到了下面的过程和结果:L i R i M i M i2﹣10i=1输入:3输入:4>0i=2赋值:3赋值: 3.250i=3赋值:赋值:3.25 3.125<0i=4赋值:赋值:输出:/(1)请补全如表中空缺的过程和结果;(2)如果要计算23的算术平方根,在输入L1=4,R1=5的情况下,请写出程序运行两步后的结果:M2=.26.(5分)在平面直角坐标系中,如果点P的坐标为(x,y),那么把点Q(kx,ky)(其中k≠0)称为点P的“[k]位置点”.已知,点A(﹣1,2),B(3,2).(1)若点A′,B′分别是点A,B的“[2]位置点”,则线段A′B′=;(2)点M是线段AB上一点,点N是点M的一个“[k]位置点“.①当M在线段AB上运动时,若点M,N之间的距离的最小值为5,求k的值;②如图,点E(﹣2,3),F(﹣2,6),G(﹣5,6),H(﹣5,3),如果在线段AB上能找到至少一个点M,使点N在正方形EFGH的内部或边上,直接写出k的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A. ﹣ 2, 3
B. 2,﹣ 3
C. 3,﹣ 2
9.( 2012?绵阳)已知 a> b, c≠0,则下列关系一定成立的是(

B.
C.
A .ac> bc
c﹣ a> c﹣ b
10.( 2013?呼伦贝尔)下列调查工作适合采用全面调查方式的是(

A .学 校在给学生订做校服前进行的尺寸大小的调查
B . 电 视台对正在播出的某电视节目收视率的调查 C. 质 检部门对各厂家生产的电池使用寿命的调查 D .环 保部门对某段水域的水污染情况的调查
精品文档
七年级数学下册期末复习试卷
姓名 ________班级 ________得分 _________
一:选择题(每题 3 分,共 12 题)
1.下列各图中,∠ 1 与∠ 2 是对顶角的为(

A.
B.
C.
D.
2.如图,要使 AD ∥ BC ,那么可以选择下列条件中的(

A .∠ 1=∠ 4
B. ∠ 2=∠ 3
15.( 2011?玉溪)不等式组
的解集是 _________ .
16.( 2001?哈尔滨)单项式
3x
m+2n 8
y
与﹣
2x
2 3m+4n
y
是同类项,则
m+n=
_________ .
17.( 2011?湘潭)如图, a∥ b,若∠ 2=130 °,则∠ 1= _________ 度.
18. 已知点 O( 0, 0), B( 1,2)点 A 在坐标轴上,且 S△OAB=2,则 A 的坐标 ____________________________
1950 元.
购票人数
1~ 50 人
51~ 100 人
100 人以上
每人门票价
20 元
18 元
15 元
( 1)若两班学生合在一起作为一个团体购票,则最多可以节省门票多少元?
( 2)求两班各有多少名学生?
26.( 2012?营口) 2012 年 4 月 23 日是第 17 个世界读书日, 《教育导报》记者就四川省农村中小学教师阅读状况进
C.4
) C. 第 二象限
6.( 2012?镇江)二元一次方程组
的解是(

A.
B.
C.
D .∠ B= ∠D D. D .5 D .第 三象限
D.
7.( 2011?枣庄)已知 A .﹣ 1
是二元一次方程组 B.1
的解,则 a﹣b 的值为(

C.2
D .3
8.( 2012?随州)如不等式组
解集为 2< x<3,则 a,b 的值分别为(

A .( 14, 0)
B. ( 14,﹣ 1)
二.填空题(共 4 小题,每题 3 分)
13.( 2013?盐城) 16 的平方根是 _________ .
14. 同旁内角互补 ,改写成如果……那么……的形式
C. ( 14,1)
D .( 14, 2)
பைடு நூலகம்
_____________________________________
3.( 2012?莆田)下列各数中,最小的数是(
A .﹣ l
B.O
C. ∠ 1+∠ B=180 ° )
C.1
4.( 2009?肇庆)实数﹣ 2, 0.3, , ,﹣ π中,无理数的个数是(

A .2
B.3
2
5.已知点 P 的坐标为(﹣ 2, a +1 ),则点 P 一定在(
A .第 一或第三象限
B. 第 二或第四象限
精品文档
) D .﹣3,2
c+a> c+b D.
精品文档
11.(2012 ?武汉)在数轴上表示不等式 x﹣1< 0 的解集,正确的是(

A.
B.
C.
D.
12.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中
“→方”向排列,如( 1,0),( 2,0),(2,1),( 3,
1),( 3, 0),( 3,﹣ 1) …根据这个规律探索可得,第 100 个点的坐标为(
三.解答题(共 46 分,其中 19— 21 每题 5 分 22— 25,每题 6 分, 26 题 7 分) 19.求下列各式中 x 值:( 1)49x 2﹣ 16=0;
20.( 2013?张家港市二模)解方程组:

21.( 2011?扬州)解不等式组 精品文档
,并写出它的所有整数解.
精品文档
22.如图,在网格图中,平移 △ABC 使点 A 平移到点 D . ( 1)画出平移后的 △ DEF ; ( 2)求 △ ABC 的面积.
24.如图,点 D、E 分别在 △ ABC 的边 AB 、AC 上,点 F 在 DC 上,且∠ 1+∠ 2=180°,∠ 3=∠ B.求证: DE∥ BC .
精品文档
精品文档
25.某市热带植物园的门票价格规定如下表所列、某校七年级(
1)、(2)两个班学生共 103 人去该园参观,其中七
( 1)班人数不少于 30 人且不多于 50 人、经预算,若两班都以班为单位分别购票,则总共付
行了一次问卷调查,并根据调查结果绘制了教师每年阅读书籍数量的统计图(不完整)
.设 x 表示阅读书籍的数量
( x 为正整数,单位:本) .其中 A : 1≤x≤3; B:4≤x≤6; C: 7≤x≤9;D : x≥10.请你根据两幅图提供的信息解答
下列问题:
( 1)本次共调查了多少名教师? ( 2)补全条形统计图; ( 3)计算扇形统计图中扇形 D 的圆心角的度数.
精品文档
23.根据图形填空: 已知: AD 是线段 BA 的延长线, AE 平分∠ DAC , AE ∥BC,那么∠ B 与∠ C 相等吗? 解:∵ AE 平分∠ DAC ( _________ ) ∴∠ DAE= ∠ CAE ( _________ ) ∵ AE ∥ BC ( _________ ) ∴∠ DAE= ∠ B ( _________ ) ∠ CAE= ∠ C ( _________ ) ∴∠ B=∠ C ( _________ )
相关文档
最新文档