天津市2017届高三数学理一轮复习专题突破训练:函数 Word版含答案
天津市2017届高三数学理一轮复习专题突破训练:函数 含答案

天津市2017届高三数学理一轮复习专题突破训练函数一、选择、填空题1、(2016年天津市高考)已知函数f (x )=2(4,0,log (1)13,03)a x a x a x x x ⎧+<⎨++≥-+⎩(a 〉0,且a ≠1)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )(A )(0,23] (B)[23,34] (C )[13,23]{34}(D )[13,23){34}2、(2016年天津市高考)已知f (x )是定义在R 上的偶函数,且在区间(—∞,0)上单调递增。
若实数a满足1(2)(a f f ->,则a 的取值范围是______。
3、(2015年天津市高考)已知定义在R 上的函数()21x mf x -=- (m为实数)为偶函数,记()()0.52(log 3),log 5,2a f b f c f m === ,则,,a b c 的大小关系为(A )a b c << (B )a c b << (C )c a b << (D)c b a << 4、(2015年天津市高考)已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩函数()()2g x b f x =--,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是(A)7,4⎛⎫+∞ ⎪⎝⎭(B )7,4⎛⎫-∞ ⎪⎝⎭(C )70,4⎛⎫ ⎪⎝⎭(D )7,24⎛⎫⎪⎝⎭5、(天津市八校2016届高三12月联考)设13log 2a =,2log 3b =,0.31()2c =,则( ).A .a b c >>B .b a c >>C .c b a >>D .b c a >>6、(天津市八校2016届高三12月联考)已知函数25()2x f x x +=+,定义在R 上的函数()g x 周期为2,且满足,则函数()()()h x f x g x =-在区间[5,1]-上的所有零点之和为( ).A .4-B .6-C .7-D .8- 7、(和平区2016届高三第四次模拟)设函数2log 1y x =-与22x y -=的图象的交点为()0,x y ,则0x 所在的区间是( )A .()0,1B .()1,2C .()2,3D .()3,48、(和平区2016届高三第四次模拟)已知函数()3232f x xx =-+,函数则关于x 的方程()()00g f x a a -=>⎡⎤⎣⎦的实根个数取得最大值时,实数a 的取值范围是( )A .51,4⎛⎤ ⎥⎝⎦B .51,4⎛⎫ ⎪⎝⎭C .51,4⎡⎤⎢⎥⎣⎦D .50,4⎡⎤⎢⎥⎣⎦9、(河北区2016届高三总复习质量检测(三))已知函数10()ln 0kx x f x x x +⎧=⎨>⎩,≤,,则下列关于函数[()]1y f f x =+的零点个数的判断 正确的是(A )当0k >时,有3个零点,当0k <时,有2个零点 (B )当0k >时,有4个零点,当0k <时,有1个零点 (C )无论k 为何值,均有2个零点 (D )无论k 为何值,均有4个零点10、(河北区2016届高三总复习质量检测(一))已知函数ln ()=e xf x ,若12x x ≠且12()()f x f x =,则下列结论一定不成立的是(A)21()1x f x > (B )21()1x f x <(C )21()1x f x = (D )2112()()x f x x f x <11、(河北区2016届高三总复习质量检测(一))已知函数2ln 0()410x x >f x =x +x+x ⎧⎪⎨⎪⎩,,,≤,若关于x 的方程2()()0fx bf x +c =-(b c ∈R,)有8个不同的实数根,则b+c 的取值范围是(A)(3)∞-, (B )(03],(C )[03], (D )(03),12、(河东区2016届高三第二次模拟)已知函数x x f ln )(=与ex x g =)(,则它们的图象交点个数为( )A .0B .1C .2D .不确定13、(河东区2016届高三第二次模拟)已知函数()a a x x f +-=,()24x x g -=,若存在R x ∈使()()g x f x ≥学科网,则a 的取值范围是____________.(A)31(,)32 (B )31(-,)32(C)31(,)34 (D )31(-,)3415、(河西区2016届高三第二次模拟)函数⎩⎨⎧>≤-=1,ln 1,1)(2x x x x x f ,若方程21)(-=mx x f 恰有四个不相等的实数根,则实数m的取值范围是 .16、(河西区2016届高三下学期总复习质量调查(一))已知函数)(x f 在R 上是单调函数,且满足对任意R x ∈,3)2)((=-xx f f ,则)3(f 的值是(A )3 (B)7(C )9 (D )1217、(河西区2016届高三下学期总复习质量调查(一))已知kxx x x f ++-=221)(在0(,)2上有两个零点,则实数k 的取值范围是18、(红桥区2016届高三上学期期末考试)已知函数()xf x a = (a >0且a ≠1),其关于y x=对称的函数为()g x .若f (2)=9,则1()(3)9g f +的值是 .19、(红桥区2016届高三上学期期中检测)设0.30.33log 2,log 2,2,a b c ===则这三个数的大小关系是( ) (A )b c a >>(B )a c b >> (C )a b c >> (D )c b a >>20、(红桥区2016届高三上学期期中检测)已知()f x 是定义在R 上的奇函数,对任意x ∈R ,都有(4)()f x f x +=,若(1)2f =,则(2015)f = . 21、(天津市六校2016届高三上学期期末联考)已知定义在R 上的函数,当[]0,2x ∈时,()()811f x x =--,且对任意的实数122,22nn x +⎡⎤∈--⎣⎦(*N n ∈,且2n ≥),都有()1122x f x f ⎛⎫=- ⎪⎝⎭,若方程|log|)(x x f a=有且仅有四个实数解,则实数a 的取值范围为 A .B .C .()2,10D .[]2,1022、(天津市十二区县重点高中2016届高三毕业班第一次联考)已知()f x 为偶函数,当0x ≥时,()(24),(0)f x m x x m =-+->,若函数[]()4y f f x m =-恰有4个零点,则实数m 的取值范围A .10,6⎛⎫ ⎪⎝⎭B .1550,,662⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭C .1550,,442⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭D .10,4⎛⎫⎪⎝⎭23、(天津市十二区县重点学校2016届高三下学期毕业班联考(二))若函数1+=kx y 的图象与函数|1||1|xx xx y --+=的图象恰有五个交点,则实数k 的取值范围是________.24、(武清区2016届高三5月质量调查(三))已知2.1424.0,6log ,3log -===c b a ,则( )(A )c b a >> (B )c a b >> (C )b a c >> (D )a b c >>25、(武清区2016届高三5月质量调查(三))已知函数()()()221+-+--=x e x ax x f 恰有两个零点,则实数a 的取值范围是( )(A )0>a (B)21-≥a(C )021<<-a (D)021≤<-a5、D6、C7、C8、A9、B 10、B 11、D 12、B13、⎥⎦⎤ ⎝⎛∞-817, 14、A 15、21(,)ee16、C17、127-<<-k 18、25 19、D 20、-221、A 22、B 23、11,00,88⎛⎫⎛⎫-⋃⎪ ⎪⎝⎭⎝⎭24、C 25、A二、解答题1、(红桥区2016届高三上学期期中检测) (I )设函数12log 0()60x x f x x x >⎧⎪=⎨⎪+⎩≤,计算((4))f f -的值; (Ⅱ)计算:2log 151log 25lg2100++; (Ⅲ)计算:20.5123910()(3)0.75(2)1627---+-÷-.2、(红桥区2016届高三上学期期中检测) 已知函数2()(0)f x axbx c a =++≠,满足(0)2,(1)()21f f x f x x =+-=-(Ⅰ)求函数()f x 的解析式;(Ⅱ)当[]1,2x ∈-时,求函数的最大值和最小值.(Ⅲ)若函数()()g x f x mx =-的两个零点分别在区间(1,2)-和(2,4)内,求m 的取值范围.3、(红桥区2016届高三上学期期中检测) 已知:1()lg 1ax f x x+=-,a ∈R 且1a ≠-(Ⅰ)若函数()f x 为奇函数,求实数a 的值; (Ⅱ)求函数()f x 的定义域;(Ⅲ)若函数()f x 在[10,+∞)上是单调增函数,求a 的取值范围.参考答案一、填空、选择题 1、【答案】C考点:函数性质综合应用 2、【答案】13(,)223、【答案】C 【解析】试题分析:因为函数()21x mf x -=-为偶函数,所以0m =,即()21xf x =-,所以221log log 330.521(log 3)log 2121312,3a f f ⎛⎫===-=-=-= ⎪⎝⎭()()2log 502log 5214,2(0)210b f c f m f ==-====-=所以c a b <<,故选C 。
高中数学一轮复习训练:函数(Ⅱ) Word版含答案

高三数学单元练习题:函数(Ⅱ)一、填空题: 1、函数y =的定义域为 ▲ 。
2、已知全集U =AB 中有m 个元素,()()u uC A C B ⋃中有n 个元素.若A B ⋂非空,则A B ⋂的元素个数为 ▲ 个。
3、设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为 ▲ 。
4、函数)86(log 221+-=x x y 的单调递增区间是 ▲ 。
5、函数21)(++=x ax x f 在区间()+∞-,2上是增函数,那么a 的取值范围是 ▲ 。
6、已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是▲ 。
7、()(21),f x a x b R =-+设函数是上的减函数则a 的范围为 . 8、已知二次函数f(x)=4x2-2(p -2)x -2p2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f(c)>0,则实数p 的取值范围是 ▲ 。
9、二次函数f(x)的二次项系数为正,且对任意实数x 恒有f(2+x)=f(2-x),若 f(1-2x2)<f(1+2x -x2),则x 的取值范围是 ▲ 。
10、函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点 ▲ 个。
11、设函数()0)f x a =<的定义域为D ,若所有点(,())(,)s f t s t D ∈构成一个正方形区域,则a 的值为 ▲ 。
12、(2)k x ≤+[],a b ,且2b a -=,则k = ▲ 。
二、解答题:13、设函数()x e f x x=(1)求函数()f x 的单调区间; (2)若0k >,求不等式()(1)()0f x k x f x '+->的解集。
《高考调研》大一轮复习(新课标,数学理)题组训练第二章函数与基本初等函数题组4 Word版含解析

题组层级快练(四)1.下列表格中的x与y能构成函数的是()A.B.C.D.答案 C解析A中0既是非负数又是非正数;B中0又是偶数;D中自然数也是整数,也是有理数.2.下列图像中不能作为函数图像的是()答案 B解析B项中的图像与垂直于x轴的直线可能有两个交点,显然不满足函数的定义.故选B.3.已知f(x 5)=lgx ,则f(2)等于( ) A .lg2 B .lg32 C .lg 132D.15lg2 答案 D解析 令x 5=t ,则x =t 15(t>0), ∴f(t)=lgt 15=15lgt.∴f(2)=15lg2,故选D.4.(2016·江南十校联考)设函数f(x)=⎩⎪⎨⎪⎧-x ,x ≤0,x 2,x>0.若f(a)=4,则实数a =( )A .-4或-2B .-4或2C .-2或4D .-2或2 答案 B解析 当a>0时,有a 2=4,∴a =2;当a ≤0时,有-a =4,∴a =-4,因此a =-4或a =2.5.设f ,g 都是由A 到A 的映射,其对应法则如下表(从上到下): 表1 映射f 的对应法则表2 映射g 的对应法则则与f[g(1)]相同的是( ) A .g[f(1)] B .g[f(2)] C .g[f(3)] D .g[f(4)]答案 A解析 f[g(1)]=f(4)=1,g[f(1)]=g(3)=1.故选A.6.若二次函数g(x)满足g(1)=1,g(-1)=5,且图像过原点,则g(x)的解析式为( ) A .g(x)=2x 2-3x B .g(x)=3x 2-2x C .g(x)=3x 2+2x D .g(x)=-3x 2-2x答案 B解析 用待定系数法,设g(x)=ax 2+bx +c(a ≠0), ∵g(1)=1,g(-1)=5,且图像过原点,∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3b =-2,c =0,∴g(x)=3x 2-2x ,选B. 7.(2016·山东临沂一中月考)如图所示是张校长晨练时所走的离家距离(y)与行走时间(x)之间的函数关系的图像.若用黑点表示张校长家的位置,则张校长散步行走的路线可能是( )答案 D解析 由y 与x 的关系知,在中间时间段y 值不变,只有D 符合题意.8.已知A ={x|x =n 2,n ∈N },给出下列关系式:①f(x)=x ;②f(x)=x 2;③f(x)=x 3;④f(x)=x 4;⑤f(x)=x 2+1,其中能够表示函数f :A →A 的个数是( ) A .2 B .3 C .4 D .5答案 C解析 对⑤,当x =1时,x 2+1∉A ,故⑤错误,由函数定义可知①②③④均正确. 9.(2014·江西理)已知函数f(x)=5|x|,g(x)=ax 2-x(a ∈R ).若f[g(1)]=1,则a =( ) A .1 B .2 C .3 D .-1答案 A解析 由已知条件可知:f[g(1)]=f(a -1)=5|a -1|=1,∴|a -1|=0,得a =1.故选A. 10.已知f :x →2sinx 是集合A(A ⊆[0,2π])到集合B 的一个映射,若B ={0,1,2},则A 中的元素个数最多为( ) A .6 B .5 C .4 D .3答案 A解析 ∵A ⊆[0,2π],由2sinx =0,得x =0,π,2π;由2sinx =1,得x =π6,5π6;由2sinx=2,得x =π2.故A 中最多有6个元素.故选A.11.已知f(x -1x )=x 2+1x 2,则f(3)=______.答案 11解析 ∵f(x -1x )=(x -1x )2+2,∴f(x)=x 2+2(x ∈R ),∴f(3)=32+2=11. 12.已知x ∈N *,f(x)=⎩⎪⎨⎪⎧x 2-35,x ≥3,f (x +2),x<3,其值域设为D.给出下列数值:-26,-1,9,14,27,65,则其中属于集合D 的元素是________.(写出所有可能的数值) 答案 -26,14,65解析 注意函数的定义域是N *,由分段函数解析式可知,所有自变量的函数值最终都是转化为大于等于3的对应自变量函数值计算的f(3)=9-35=-26,f(4)=16-35=-19,f(5)=25-35=-10,f(6)=36-35=1,f(7)=49-35=14,f(8)=64-35=29,f(9)=81-35=46,f(10)=100-35=65.故正确答案应填-26,14,65. 13.已知f(1-cosx)=sin 2x ,则f(x)=________. 答案 -x 2+2x(0≤x ≤2)解析 令1-cosx =t(0≤t ≤2),则cosx =1-t. ∴f(1-cosx)=f(t)=sin 2x =1-cos 2x =1-(1-t)2=-t 2+2t. 故f(x)=-x 2+2x(0≤x ≤2).14.(2016·沧州七校联考)已知函数f(x)=⎩⎪⎨⎪⎧(12)x -2,x ≤0,f (x -2)+1,x >0,则f(2 016)=________.答案 1 007解析 根据题意:f(2 016)=f(2 014)+1=f(2 012)+2=…=f(2)+1 007=f(0)+1 008=1 007. 15.(2016·衡水调研卷)具有性质:f(1x )=-f(x)的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x<1,0,x =1,-1x ,x>1.其中满足“倒负”变换的函数是________.答案 ①③解析 对于①,f(x)=x -1x ,f(1x )=1x -x =-f(x),满足;对于②,f(1x )=1x+x =f(x),不满足;对于③,f(1x)=⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f(1x)=⎩⎪⎨⎪⎧1x ,x>1,0,x =1,-x ,0<x<1.故f(1x)=-f(x),满足.综上可知,满足“倒负”变换的函数是①③.16.(2015·浙江理)已知函数f(x)=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x<1,则f(f(-3))=________,f(x)的最小值是________. 答案 0 22-3解析 ∵-3<1,∴f(-3)=lg[(-3)2+1]=lg10=1, ∴f(f(-3))=f(1)=1+21-3=0.当x ≥1时,f(x)=x +2x -3≥22-3(当且仅当x =2时,取“=”);当x<1时,x 2+1≥1,∴f(x)=lg(x 2+1)≥0.又∵22-3<0,∴f(x)min =22-3.17.一个圆柱形容器的底面直径为d cm ,高度为h cm ,现以S cm 3/s 的速度向容器内注入某种溶液,求容器内溶液高度y(cm)与注入时间t(s)的函数关系式及定义域. 答案 y =4Sπd2·t , [0,πhd 24S ]解析 依题意,容器内溶液每秒升高4Sπd 2 cm.于是y =4Sπd2·t.又注满容器所需时间h÷(4Sπd 2)=πhd 24S (秒),故函数的定义域是 [0,πhd 24S].18.已知函数f(x)=⎩⎪⎨⎪⎧cx +1,0<x<c ,2-x c2+1,c ≤x<1满足f(c 2)=98. (1)求常数c 的值; (2)解不等式f(x)>28+1. 答案 (1)12 (2)⎩⎨⎧⎭⎬⎫x|24<x<58解析 (1)∵0<c<1,∴c 2<c.由f(c 2)=98,即c 3+1=98,∴c =12.(2)由(1)得f(x)=⎩⎨⎧12x +1,0<x<12,2-4x+1,12≤x<1.由f(x)>28+1,得当0<x<12时,解得24<x<12. 当12≤x<1时,解得12≤x<58. ∴f(x)>28+1的解集为⎩⎨⎧⎭⎬⎫x|24<x<58.1.(2016·浙江杭州质检)已知函数f(x)=⎩⎪⎨⎪⎧2x -1(x>0),1-2x (x ≤0),则f(1)+f(-1)的值是( )A .0B .2C .3D .4答案 D解析 由已知得,f(1)=1,f(-1)=3,则f(1)+f(-1)=4.故选D.2.下列各图中,不可能表示函数y =f(x)的图像的是( )答案 B解析 B 中一个x 对应两个函数值,不符合函数定义. 3.若定义x ⊙y =3x -y ,则a ⊙(a ⊙a)等于( ) A .-a B .3a C .a D .-3a答案 C解析 由题意知:a ⊙a =3a -a ,则a ⊙(a ⊙a)=3a -(a ⊙a)=3a -(3a -a)=a.选C.4.已知函数f(x)=⎩⎪⎨⎪⎧2x ,x>0,x +1,x ≤0.若f(a)+f(1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3答案 A解析 方法一:当a>0时,由f(a)+f(1)=0,得2a +2=0,可见不存在实数a 满足条件;当a<0时,由f(a)+f(1)=0,得a +1+2=0,解得a =-3,满足条件,故选A.方法二:由指数函数的性质可知:2x >0,又因为f(1)=2,所以a<0,所以f(a)=a +1,即a +1+2=0,解得a =-3,故选A.方法三:验证法,把a =-3代入f(a)=a +1=-2,又因为f(1)=2,所以f(a)+f(1)=0,满足条件,从而选A.。
高三数学(理)一轮复习:阶段检测卷三 word版含解析

阶段检测三数列与不等式一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若a,b,c为实数,且a<b<0,则下列结论正确的是()A.ac2<bc2B.<C.>D.a2>ab>b22.若集合A={x|x(x-2)<3},B={x|(x-a)(x-a+1)=0},且A∩B=B,则实数a的取值范围是()A.-1<a<3B.0<a<3C.0<a<4D.1<a<43.已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.844.已知{a n}是等差数列,a5=15,a10=-10,记数列{a n}的第n项到第n+5项的和为T n,则|T n|取得最小值时的n的值为()A.5或6B.4或5C.6或7D.9或105.设变量x,y 满足约束条件则目标函数z=y-2x的最小值为()A.-7B.-4C.1D.26.已知函数f(x)=若数列{a n}(n∈N*)的前n项和为S n,且a1=,a n+1=f(a n),则S2016=()A.895B.896C.897D.8987.已知定义在R上的函数f(x)对任意x1,x2∈R,x1≠x2,都有(x1-x2)f(x1)-f(x2)]>0,若函数f(x+1)为奇函数,则不等式f(1-x)>0的解集为()A.(-∞,-1)B.(-∞,0)C.(0,+∞)D.(1,+∞)8.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.(-10,+∞)B.(-∞,-10)C.(-∞,+∞)D.(-∞,-8)9.已知点P(m,n)到点A(0,4)和B(-8,0)的距离相等,则+的最小值为()A.-3B.3C.16D.410.函数y=f(x)为定义在R上的减函数,函数y=f(x-1)的图象关于点(1,0)对称,若x,y满足不等式f(x2-2x)+f(2y-y2)≤0,M(1,2),N(x,y),O为坐标原点,则当1≤x≤4时,·的取值范围为()A.12,+∞)B.0,3]C.3,12]D.0,12] 11.已知数列{a n}是等差数列,数列{b n}满足b n=a n a n+1a n+2(n∈N*),设S n为{b n}的前n项和,若a12=a5>0,则当S n取得最大值时n 的值为()A.15B.16C.17D.1812.在数列{a n}中,对于任意n∈N*,若存在常数λ1,λ2,…,λk,使得a n+k=λ1a n+k-1+λ2a n+k-2+…+λk a n(λi≠0,i=1,2,…,k)恒成立,则称数列{a n}为k阶数列.现给出下列三个结论:①若a n=2n,则数列{a n}为1阶数列;②若a n=2n+1,则数列{a n}为2阶数列;③若a n=n2,则数列{a n}为3阶数列.其中正确结论的序号是()A.①②B.①③C.②③D.①②③1 2 3 4 5 6 7 8 9 10 11 12 得分二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.已知集合A={x|x2-2x-3≤0},B={x|log2(x2-x)>1},则A∩B=.14.已知正实数m,n满足m+n=1,且使+取得最小值.若曲线y=x a过点P,则a的值为.15.在数列{a n}中,已知a1=1,a n+1-a n=sin,记S n为数列{a n}的前n项和,则S2016=.16.已知公差为2的等差数列{a n}及公比为2的等比数列{b n}满足a1+b1>0,a2+b2<0,则a3+b3的取值范围是.三、解答题(共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设数列{a n}的前n项和为S n,已知a2=2,S4=4,a n+a n+2=2a n+1对任意n∈N*恒成立.(1)求数列{a n}的通项公式;(2)在平面直角坐标系中,设u=(4,S2),v=(4k,-S3),若u∥v,求实数k的值.18.(本小题满分12分)已知关于x的不等式ax2-3x+2>0的解集为{x|x<1或x>b}.(1)求a,b的值;(2)当c∈R时,解关于x的不等式ax2-(ac+b)x+bc<0(用c表示).19.(本小题满分12分)设数列{a n}满足a1=2,a2+a4=8,且对任意n∈N*,函数f(x)=(a n-a n+1+a n+2)x+a n+1cosx-a n+2sinx满足f'=0.(1)求数列{a n}的通项公式;(2)若b n =2,求数列{b n}的前n项和S n. 20.(本小题满分12分)经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.在2015年“双十一”网购狂欢节前,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量p万件与促销费用x万元满足p=3-(其中0≤x≤a,a为正常数).已知生产该产品还需投入成本(10+2p)万元(不含促销费用),产品的销售价格定为元/件,假定厂家的生产能力能满足市场的销售需求.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润.21.(本小题满分12分)已知正项数列{a n},{b n},{c n}满足b n=a2n-1,c n=a2n,n∈N*,数列{b n}的前n项和为S n,(b n+1)2=4S n,数列{c n}的前n项和T n=3n-1.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和A n.22.(本小题满分12分)已知等差数列{a n}的前n项和为S n,a2=2,S5=15,数列{b n}满足:b1=,b n+1=b n(n∈N*),数列{b n}的前n 项和为T n.(1)求数列{a n}的通项公式及前n项和;(2)求数列{b n}的通项公式及前n项和;(3)记集合M=,若M的子集个数为16,求实数λ的取值范围.阶段检测三数列与不等式一、选择题1.D因为a<b<0,所以>,<1,>1,故<,>均不成立;当c2=0时,ac2<bc2不成立.故选D.2.B因为集合A={x|x(x-2)<3}={x|-1<x<3},B={x|(x-a)(x-a+1)=0}={a,a-1},且A∩B=B,所以B⊆A,即B中的两个元素a,a-1都在集合A中,则-1<a<3且-1<a-1<3,那么a的取值范围是0<a<3.3.B由于a1+a3+a5=a1(1+q2+q4)=21,a1=3,所以q4+q2-6=0,所以q2=2(q2=-3舍去),所以a3=6,a5=12,a7=24,所以a3+a5+a7=42.故选B.4.A 由得从而等差数列{a n}的通项公式为a n=40-5n,得T n=(40-5n)+…+(15-5n)=165-30n,因为|T n|≥0,且n∈N*,故当n=5或6时,|T n|取得最小值15.5.A解法一:将z=y-2x化为y=2x+z,作出可行域和直线y=2x(如图所示),当直线y=2x向右下方平移时,直线y=2x+z 在y轴上的截距z减小,数形结合知当直线y=2x+z经过点B(5,3)时,z取得最小值3-10=-7.故选A.解法二:易知平面区域的三个顶点坐标分别为(1,3),(2,0),(5,3),分别代入z=y-2x得z的值为1,-4,-7,故z的最小值为-7.故选A.6.B a1=,a2=f =,a3=f =-3=-,a4=,……,可得数列{a n}是周期为3的数列,一个周期内的三项之和为,又2016=672×3,所以S2016=672×==896.7.B令x1<x2,因为(x1-x2)f(x1)-f(x2)]>0,所以f(x1)<f(x2),故f(x)在R上是增函数.由f(x+1)为奇函数,得f(x)的图象关于点(1,0)对称,由不等式f(1-x)>0,得1-x>1,即x<0.8.A解法一:不等式2x+m+>0可化为2(x-1)+>-m-2,∵x>1,∴2(x -1)+≥2×2=8,当且仅当x=3时取等号.∵不等式2x+m+>0对一切x∈(1,+∞)恒成立,∴-m-2<8,解得m>-10,故选A.解法二:不等式2x+m+>0对一切x∈(1,+∞)恒成立可化为m>,x∈(1,+∞),令f(x)=-2x-,x∈(1,+∞),则f(x)=--2≤-2-2=-2×4-2=-10,当且仅当x=3时取等号,∴m>-10,故选A.9.C因为点P(m,n)到点A(0,4)和B(-8,0)的距离相等,所以=,即2m+n=-6,又>0,>0,所以+≥2=2=2=16,当且仅当即2m=n=-3时取等号.10.D由题意得函数y=f(x)的图象关于点(0,0)对称,则函数y=f(x)为奇函数,由f(x2-2x)+f(2y-y2)≤0,得f(x2-2x)≤f(-2y+y2),又y=f(x)为定义在R上的减函数,所以x2-2x≥-2y+y2,即(x-y)(x+y-2)≥0.作出不等式组表示的平面区域,如图中阴影部分所示,易得·=x+2y,设t=x+2y.易知当直线t=x+2y过点C(4,-2)时,t取得最小值0,当直线过点B(4,4)时,t取得最大值12,即·的取值范围为0,12].11.B设{a n}的公差为d,由a12=a5>0,得a1=-d,d<0,所以a n =d,从而当1≤n≤16时,a n>0,当a≥17时,a n<0,所以当1≤n≤14时,b n>0,b15=a15a16a17<0,b16=a16a17a18>0,当n≥17时,b n<0,故S14>S13>…>S1,S14>S15,S15<S16,S16>S17>S18>….因为a15=-d>0,a18=d<0,所以a15+a18=-d+d=d<0,所以b15+b16=a16a17(a15+a18)>0,所以S16>S14,故当S n取得最大值时n=16.12.D①∵a n=2n,∴∃k=1,λ=2,使a n+k=λa n+k-1成立,∴{a n}为1阶数列,故①正确;②∵a n=2n+1,∴∃k=2,λ1=2,λ2=-1,使a n+k=λ1a n+k-1+λ2a n+k-2成立,∴{a n}为2阶数列,故②正确;③∵a n=n2,∴∃k=3,λ1=3,λ2=-3,λ3=1,使a n+k=λ1a n+k-1+λ2a n+k-2+λ3a n+k-3成立,∴{a n}为3阶数列,故③正确.二、填空题13.答案(2,3]解析因为A={x|x2-2x-3≤0}=-1,3],B={x|log2(x2-x)>1}={x|x2-x>2}=(-∞,-1)∪(2,+∞),所以A∩B=(2,3]. 14.答案解析+=(m+n)=17++≥17+2=25,当且仅当n=4m=时取等号,故点P,由于曲线y=x a过点P,所以=,从而可得a=.15.答案1008解析由a n+1-a n =sin⇒a n+1=a n +sin,∴a2=a1+sinπ=1+0=1,a3=a2+sin=1+(-1)=0,a4=a3+sin2π=0+0=0,a5=a4+sin=0+1=1,如此继续可得a n+4=a n(n∈N*),数列{a n}是一个以4为周期的数列,而2016=4×504,因此S2016=504×(a1+a2+a3+a4)=504×(1+1+0+0)=1008.16.答案(-∞,-2)解析由题意可得该不等式组在平面直角坐标系a1Ob1中表示的平面区域如图中阴影部分所示.当直线a3+b3=a1+4+4b1经过点(2,-2)时a3+b3取得最大值-2,又(2,-2)不在平面区域内,则a3+b3<-2.三、解答题17.解析(1)∵a n+a n+2=2a n+1对任意n∈N*恒成立,∴数列{a n}是等差数列.设数列{a n}的公差为d,∵a2=2,S4=4,∴解得∴a n=a1+(n-1)d=-2n+6.(2)S n =·n=·n=-n2+5n,∴S2=6,S3=6,∴u=(4,6),v=(4k,-6),∵u∥v,∴4×(-6)=6×4k,∴k=-1.18.解析(1)由已知得1,b是方程ax2-3x+2=0的两个实数根,且b≥1,a>0,所以解得(2)由(1)得原不等式可化为x2-(2+c)x+2c<0,即(x-2)(x-c)<0,所以当c>2时,所求不等式的解集为{x|2<x<c},当c<2时,所求不等式的解集为{x|c<x<2},当c=2时,所求不等式的解集为⌀.19.解析(1)由题设可得f'(x)=a n-a n+1+a n+2-a n+1sinx-a n+2·cosx.对任意n∈N*,f'=a n-a n+1+a n+2-a n+1=0,即a n+1-a n=a n+2-a n+1,故{a n}为等差数列.由a1=2,a2+a4=8,求得{a n}的公差d=1,所以a n=2+(n-1)×1=n+1.(2)b n =2=2=2n++2,故S n=b1+b2+…+b n=2n+2·+=n2+3n+1-.20.解析(1)由题意知y=p-x-(10+2p),将p=3-代入,化简得y=16--x(0≤x≤a).(2)由(1)知y=17-,当a≥1时,y≤17-2=13,当且仅当=x+1,即x=1时取等号.所以促销费用投入1万元时,厂家的利润最大,最大利润为13万元.当a<1时,函数y=17-在0,a]上单调递增,所以当x=a时,函数有最大值,所以促销费用投入a万元时,厂家的利润最大,最大利润为万元.综上,当a≥1时,促销费用投入1万元,厂家的利润最大,且最大利润为13万元;当a<1时,促销费用投入a万元,厂家的利润最大,且最大利润为万元.21.解析(1)由(b n+1)2=4S n,得(b1+1)2=4b1,∴b1=1.又(b n-1+1)2=4S n-1,n≥2,则(b n+1)2-(b n-1+1)2=4S n-4S n-1=4b n,n≥2,化简得-=2(b n+b n-1),n≥2,又b n>0,所以b n-b n-1=2,n≥2,则数列{b n}是首项为1,公差为2的等差数列,所以b n=1+2(n-1)=2n-1=a2n-1,所以当n为奇数时,a n=n.由T n=3n-1得c1=2,T n-1=3n-1-1,n≥2,则c n=3n-3n-1=2×3n-1,n≥2,当n=1时,上式也成立,所以c n=2×3n-1=a2n,所以当n为偶数时,a n =2×.所以a n =(2)①当n为偶数时,A n 中有个奇数项,个偶数项,奇数项的和为=,偶数项的和为=-1,所以A n =+-1;②当n为奇数时,n+1为偶数,A n=A n+1-a n+1=+-1-2×=+-1.综上,可得A n =22.解析(1)设数列{a n}的公差为d,由题意得解得所以a n=n,S n =.(2)由题意得=·,当n≥2时,b n =··…··b1=·=,又b1=也满足上式,故b n =.故T n =+++…+①,T n =+++…++②,①-②得T n =+++…+-=-=1-,所以T n =2-.(3)由(1)(2)知=,令f(n)=,n∈N*,则f(1)=1,f(2)=,f(3)=,f(4)=,f(5)=.因为f(n+1)-f(n)=-=,所以当n≥3时,f(n+1)-f(n)<0,f(n+1)<f(n),因为集合M的子集个数为16,所以M中的元素个数为4,所以不等式≥λ,n∈N*的解的个数为4,所以<λ≤1.。
【数学】天津市2017届高三毕业班联考一数学理试题Word版含答案

【关键字】数学2017年天津市十二重点中学高三毕业班联考(一)数学(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷选择题(共40分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应的答案标号涂黑;参考公式:·如果事件、互斥,那么柱体的体积公式. 其中表示柱体的底面积,表示柱体的高.一、选择题:本大题共8小题,每小题5分,满分40分.1.已知集合,,则= ()A. B. C. D.2.设变量满足线性约束条件则目标函数的最小值是()A.B.C. D.3.阅读右边程序框图,当输入的值为时,运行相应程序,则输出的值为()A.B.C.D.4.下列命题中真命题的个数是()①若是假命题,则都是假命题;②命题“”的否定是“”;③若则是的充分不必要条件.A.B.C.D.5. 已知数列为等差数列,且满足.若展开式中项的系数等于数列的第三项,则的值为()A.B.C.D.6.设的内角所对边的长分别为.若,,则的面积为()A.B.C.D.7.已知函数是定义在上的偶函数,且在上单调递加,若对于任意,恒成立,则的取值范围是()A.B.C.D.8.已知函数其中,对于任意且,均存在唯一实数,使得,且,若有4个不相等的实数根,则的取值范围是()A.B.C.D.第Ⅱ卷非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡中的相应横线上. 9.为虚数单位,则复数的模为.10. 向如图所示的边长为的正方形区域内任投一点,则该点落入阴影部分的概率为.11. 已知直线的参数方程为(为参数),圆的极坐标方程为,则圆上的点到直线的最大距离为.12. 一个几何体的三视图如图所示(单位:),则该几何体的体积为.13. 设抛物线()的焦点为,准线为.过焦点的直线分别交抛物线于两点,分别过作的垂线,垂足.若,且三角形的面积为,则的值为.14.如图,直角梯形中,∥,.在等腰直角三角形中,,点分别为线段上的动点,若,则的取值范围是.三、解答题:本大题6小题,共80分.解答应写出必要的文字说明,证明过程或演算步骤.15.(本小题满分13分)设函数.(Ⅰ)求的定义域及最小正周期;(Ⅱ)求在区间上的最值.16.(本小题满分13分)某厂生产的产品在出厂前都要做质量检测,每件一等品都能通过检测,每件二等品通过检测的概率为12.现有10件产品,其中6件是一等品,4件是二等品.(Ⅰ)随机选取3件产品,设至少有一件通过检测为事件A ,求事件A 的概率; (Ⅱ)随机选取3件产品,其中一等品的件数记为X ,求X 的分布列及数学期望EX .17.(本小题满分13分)如图,已知菱形ABCD 与直角梯形ABEF 所在的平面互相垂直,其中BE AF ∥ ,AB AF ⊥,122AB BE AF ===,3CBA π∠=,P 为DF 的中点.(Ⅰ)求证:PE ∥平面ABCD ; (Ⅱ)求二面角D EF A --的余弦值;(Ⅲ)设G 为线段AD 上一点,AG AD λ=, 若直线FG 与平面ABEF 所成角的正弦值AG 的长.18.(本小题满分13分)已知等比数列{}n a 的公比1q >,且2031=+a a ,82=a . (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n n a n b =,n S 是数列{}n b 的前n 项和,对任意正整数n 不等式a nS n n n ⋅->++)1(21恒成立,求实数a 的取值范围.19.(本小题满分14分)已知椭圆:E 22221x y a b+=的焦点在x 轴上,椭圆E 的左顶点为A ,斜率为(0)k k >的直线交椭圆E 于,A B 两点,点C 在椭圆E 上,AB AC ⊥,直线AC 交y 轴于点D .(Ⅰ)当点B 为椭圆的上顶点,ABD ∆的面积为2ab 时,求椭圆的离心率;(Ⅱ)当b AB AC ==时,求k 的取值范围.20.(本小题满分14分)设函数()2ln f x x a x =-,()g x =()2a x -.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()()()F x f x g x =-有两个零点12,x x .(1)求满足条件的最小正整数a 的值;F EP EDEC DB AA C(2)2017年天津市十二重点中学高三毕业班联考(一)数学理科参考答案一、选择题:每小题5分,满分40分二、填空题:每小题5分,共30分.10.18;11.12.1;;14. 1⎤-⎥⎣⎦.三、解答题:本大题6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)………2分………4分由()42xk k Zππ≠+∈得()f x的定义域为(){}|24x x k k Zππ≠+∈………6分(k Z∈占1分)故()f x的最小正周期为2412Tππ==……7分(Ⅱ)0xπ-≤≤23266xπππ∴-≤-≤-……8分2,,()26326xx f xπππππ⎡⎤⎡⎤∴-∈--∈--⎢⎥⎢⎥⎣⎦⎣⎦,即,单调递减……9分0,()26266xx f xππππ⎡⎤⎡⎤∴-∈-∈-⎢⎥⎢⎥⎣⎦⎣⎦,-,即,单调递增……10分min()()6f x fπ∴=-=……11分而3(0)()2f f π∴=-=- ……12分max ()(0)2f x f ∴==-. ……13分 (注:结果正确,但没写单调区间扣2分)16.(本小题满分13分)解:(Ⅰ) 3343101239(A)1()2240C P C =-⋅=所以随机选取3件产品,至少有一件通过检测的概率为239240. ……5分 (Ⅱ)由题可知X 可能取值为0,1,2,3. ……6分30463101(0)30C C P X C ===,21463103(1)10C C P X C ===,12463101(2)2C C P X C ===,03463101(3)6C C P X C ===. ……10分则随机变量X 的分布列为……11分1311901233010265EX =⨯+⨯+⨯+⨯= ……13分 17.(本小题满分13分)解:(Ⅰ)取AD 的中点Q ,连接PQ BQ ,,则PQ ∥AF ∥BE ,且12PQ AF BE ==,所以四边形BEPQ 为平行四边形 ……2分所以PE ∥BQ ,又BQ ⊂平面ABCD ,PE ⊄ 平面ABCD ,则PE ∥平面ABCD . ……3分(Ⅱ)取AB 中点O ,连接CO ,则CO AB ⊥, 因为平面ABCD ⊥平面ABEF ,交线为AB ,则CO ⊥平面ABEF……4分作OM ∥AF ,分别以,,OB OM OC 所在直线为,,x y z 轴建立空间直角坐标系,则((1,4,0),E(1,2,0)D F -- ……5分于是(1,4,3),(2,2,0)DF EF =-=- ,设平面DEF 的法向量(,,)m x yz = ,则{4022x y x +-=-+令1x =,则1,y z == ……6分平面AEF 的法向量(0,0,1)n = ……7分所以3cos ,3131m n == (8)分又因为二面角D EF A --. ……9分 (Ⅲ)(1,0,0),(1,0,3),(),A AD AG λ-=-=-则()G λ-- ,(,)FG λ=-- ,而平面ABEF 的法向量为(0,0,1)m =,设直线FG与平面ABEF 所成角为θ,于是sinθ==……11分于是λ=AG = . ……13分 18.(本小题满分13分)解:(Ⅰ)设数列{}n a 的公比为q ,则⎩⎨⎧==+820)1(121q a q a ,……1分 ∴02522=+-q q …2分∵1q >,∴⎩⎨=21q ,∴数列{}n a 的通项公式为12+=n n a .……5分(Ⅱ)解:12+=n n n b∴14322232221+++++=n n nS =n S 21 21432212221+++-+++n n nn ∴2143222121212121++-+++=n n n nS ……7分 ∴1321221212121+-+++=n n n n S =1112212212121++++-=--n n n n n ……9分∴n n a 211)1(-<⋅-对任意正整数n 恒成立,设n n f 211)(-=,易知)(n f 单调递增. ……10分n 为奇数时,)(n f 的最小值为21,∴21<-a 得21->a , ……11分n 为偶数时,)(n f 的最小值为43,∴43<a , ……12分综上,4321<<-a ,即实数a 的取值范围是)43,21(-. ……13分19.(本小题满分14分) 解:直线AB 的方程为by x b a=+ 直线AC 的方程为()ay x a b =-+,令0x =,2a y b =- ……2分21()22ABDa Sb a ab b∆=⋅+⋅= ……3分于是2224a b b += ,223,e c a b a === ……5分(Ⅱ)直线AB 的方程为()y k x a =+,联立()213a y k x a +=⎪⎨⎪=+⎩并整理得,()222324223230a k x a k x a k a +++-=解得x a =-或322233a k a x a k -=-+, ……7分2263a AB a a k==+所以 ……8分263aAC a k k=+同理 ……9分 因为2AB AC =22266233aaa a kk k=++所以,整理得,223632k k a k -=-. ……11分因为椭圆E 的焦点在x 轴,所以23a >,即236332k kk ->-,……13分整理得()()231202kk k +-<-2k <<.……14分20.(本小题满分14分)解:……1分当0a ≤时, ()'0f x >在()0,+∞上恒成立,所以函数()f x 单调递增区间为()0,+∞, 此时()f x 无单调减区间. ……2分 当0a >时,由()'0f x >,()'0f x <,得所以函数()f x……3分 (Ⅱ)(1因为函数()F x 有两个零点,所以0a >,此时函数()f x 在,2a ⎛⎫+∞ ⎪⎝⎭单调递增,在0,2a ⎛⎫⎪⎝⎭单调递减. ……4分 所以()F x 的最小值244ln 02a a a a -+-<. ……5分 因为0a >,所以4ln 402aa +->. 令()4ln42ah a a =+-,显然()h a 在()0,+∞上为增函数,且 ()()381220,34ln 1ln 10216h h =-<=-=->,所以存在()()002,3,0a h a ∈=.…6分当0a a >时,()0h a >;当00a a <<时,()0h a <,所以满足条件的最小正整数3a =. ……7分又当3a =时,()()()332ln30,F 10F =->=,所以3a =时,()f x 有两个零点. 综上所述,满足条件的最小正整数a 的值为3. ……8分(2)证明 :不妨设120x x <<,于是()()22111222-2ln -2ln ,x a x a x x a x a x --=-- 即()()221112222ln 2ln 0x a x a x x a x a x ----+-+=,()2211221122112222ln ln ln ln x x x x ax a x ax a x a x x x x +--=+--=+--.所以221122112222ln ln +--+--x x x x a x x x x =. ……10分0,2a x ⎛⎫∈ ⎪⎝⎭时,()0F x '<,当,2a x ⎛⎫∈+∞ ⎪⎝⎭时,()F'0x >, 2a 即可,即证明22112211221222ln ln +--+--x x x x x x x x x x +>, ……11分即证()()22221212121122ln ln 22x x x x x x x x x x -++-<+--,也就是证11221222ln-+x x x x x x <. ……12分 设()1201x t t x =<<.因为0t >,所以()0m t '≥, ……13分 当且仅当1t =时,()0m t '=, 所以()m t 在()0,+∞上是增函数.又()10m =,所以当()()0,1,m 0m t ∈<总成立,所以原题得证. ……14分此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
天津市和平区2017届高三总复习质量检测数学(理)试题Word版含解析

天津市和平区2017届高三总复习质量检测数学(理)试题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x 2﹣3x <0,x ∈R},B={x||x|>2,x ∈R},则A∩B=( )A .(2,3)B .(﹣2,0)C .(﹣2,3)D .(0,2)2.若复数z=是纯虚数(i 是虚数单位),则实数a 的值为( )A .B .﹣1C .1D .3.某空间几何体的三视图如图所示,则该几何体的体积为( )A .16+2πB .16+πC .8+2πD .8+π4.设a ,b ∈R ,则“2a +2b =2a+b ”是“a+b≥2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知双曲线的中心在原点,焦点在x 轴上,若其渐近线与圆x 2+y 2﹣4y+3=0相切,则此双曲线的离心率等于( )A .B .C .D .26.实数x ,y 满足不等式组为常数),且x+3y 的最大值为12,则实数k=( )A .9B .﹣9C .﹣12D .127.已知函数y=f (x )是R 上的偶函数,当x 1,x 2∈(0,+∞)时,都有(x 1﹣x 2)•[f (x 1)﹣f (x 2)]<0.设,则( )A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )8.若存在至少一个x (x≥0)使得关于x 的不等式x 2≤4﹣|2x ﹣m|成立,则实数m 的取值范围为( )A .[﹣4,5]B .[﹣5,5]C .[4,5]D .[﹣5,4]二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.执行如图所示的程序框图,则输出的结果是 .10.如图,切线PA切圆O于点A,割线PBC与圆O交于点B,C,且PC=2PA,D为线段PC的中点,AD的延长线交圆O于点E.若PB=,则AD•DE的值为.11.(x﹣)6的展开式中常数项为.12.由曲线y=3x2与直线y=3所围成的封闭图形的面积是.13.设x,y是正实数,且x+y=1,则的最小值是.14.在△ABC中,||=3,||=5,M是BC的中点, =λ(λ∈R),若=+,则△ABC的面积为.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.已知函数f(x)=4cosωx•sin(ωx+)+a(ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.(Ⅰ)求a和ω的值;(Ⅱ)求函数f(x)在[0,π]上的单调递减区间.16.已知盒中有4个红球,4个黄球,4个白球,且每种颜色的四个球均按A ,B ,C ,D 编号.现从中摸出4个球(除颜色与编号外球没有区别).(Ⅰ)求恰好包含字母A ,B ,C ,D 的概率;(Ⅱ)设摸出的4个球中出现的颜色种数为X ,求随机变量X 的分布列和期望E (X ).17.如图,在四棱锥S ﹣ABCD 中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA=AB ,点M 是SD 的中点,AN ⊥SC ,且交SC 于点N .(Ⅰ)求证:SB ∥平面ACM ;(Ⅱ)求证:平面SAC ⊥平面AMN ;(Ⅲ)求二面角D ﹣AC ﹣M 的余弦值.18.设数列{a n }的前n 项和为S n ,a 1=1,a n+1=λS n +1(n ∈N *,λ≠﹣1),且a 1、2a 2、a 3+3为等差数列{b n }的前三项.(Ⅰ)求数列{a n }、{b n }的通项公式;(Ⅱ)求数列{a n b n }的前n 项和.19.在平面直角坐标系xoy 中,椭圆的焦距为2,一个顶点与两个焦点组成一个等边三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)椭圆C 的右焦点为F ,过F 点的两条互相垂直的直线l 1,l 2,直线l 1与椭圆C 交于P ,Q 两点,直线l 2与直线x=4交于T 点.(i )求证:线段PQ 的中点在直线OT 上;(ii )求的取值范围.20.已知关于x 函数g (x )=﹣alnx (a ∈R ),f (x )=x 2+g (x )(Ⅰ)试求函数g (x )的单调区间;(Ⅱ)若f (x )在区间(0,1)内有极值,试求a 的取值范围;(Ⅲ)a >0时,若f (x )有唯一的零点x 0,试求[x 0].(注:[x]为取整函数,表示不超过x 的最大整数,如[0.3]=0,[2.6]=2[﹣1.4]=﹣2;以下数据供参考:ln2=0.6931,ln3=1.099,ln5=1.609,ln7=1.946)天津市和平区2017届高三总复习质量检测数学(理)试题参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2﹣3x<0,x∈R},B={x||x|>2,x∈R},则A∩B=()A.(2,3)B.(﹣2,0)C.(﹣2,3)D.(0,2)【考点】交集及其运算.【分析】求出A与B中不等式的解集确定出A与B,找出A与B的交集即可.【解答】解:由A中不等式变形得:x(x﹣3)<0,解得:0<x<3,即A=(0,3),由B中不等式解得:x>2或x<﹣2,即B=(﹣∞,﹣2)∪(2,+∞),则A∩B=(2,3),故选:A.2.若复数z=是纯虚数(i是虚数单位),则实数a的值为()A.B.﹣1 C.1 D.【考点】复数代数形式的乘除运算;复数的基本概念.【分析】直接利用复数代数形式的乘除运算化简,再由实部为0且虚部不为0求得a值.【解答】解:∵z==是纯虚数,∴,解得:a=﹣1.故选:B.3.某空间几何体的三视图如图所示,则该几何体的体积为()A.16+2πB.16+πC.8+2πD.8+π【考点】棱柱、棱锥、棱台的体积.【分析】根据三视图可知几何体下部为长方体,上部为两个半圆柱,代入体积公式计算即可.【解答】解:由三视图可知几何体由一个长方体和两个半圆柱组成.长方体的棱长分别为4,2,1,半圆柱的底面半径为1,高为2,∴几何体的体积V=4×2×1+π×12×2=8+2π.故选:C.4.设a,b∈R,则“2a+2b=2a+b”是“a+b≥2”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合不等式的性质进行判断即可.【解答】解:若a=0,b=3,满足a+b≥2但2a+2b=1+8=9,2a+b=8,则2a+2b=2a+b不成立,若2a+2b=2a+b,则2a+b=2a+2b,即(2a+b)2≥4(2a+b),解得2a+b≥4或2a+b≤0(舍去),即a+b≥2成立,即“2a+2b=2a+b”是“a+b≥2”的充分不必要条件,故选:A5.已知双曲线的中心在原点,焦点在x轴上,若其渐近线与圆x2+y2﹣4y+3=0相切,则此双曲线的离心率等于()A.B.C.D.2【考点】双曲线的简单性质.【分析】利用双曲线(a>0,b>0)的一条渐近线y=x与圆x2+y2﹣4y+3=0相切⇔圆心(0,2)到渐近线的距离等于半径r,利用点到直线的距离公式和离心率的计算公式即可得出.【解答】解:取双曲线(a>0,b>0)的一条渐近线y=x,即bx﹣ay=0.由圆x2+y2﹣4y+3=0化为x2+(y﹣2)2=1.圆心(0,2),半径r=1.∵渐近线与圆x2+y2﹣4y+3=0相切,∴ =1化为3a2=b2.∴该双曲线的离心率e===2.故选:D.6.实数x,y满足不等式组为常数),且x+3y的最大值为12,则实数k=()A.9 B.﹣9 C.﹣12 D.12【考点】简单线性规划.【分析】作出不等式组对于的平面区域,设z=x+3y,利用数形结合即可得到结论.【解答】解:作出不等式组对于的平面区域如图:设z=x+3y,则z的最大值为12,即x+3y=12,且y=,则直线y=的截距最大时,z 也取得最大值,则不等式组对应的平面区域在直线y=的下方,由,解得,即A (3,3),此时A 也在直线2x+y+k=0上,即6+3+k=0,解得k=﹣9,故选:B .7.已知函数y=f (x )是R 上的偶函数,当x 1,x 2∈(0,+∞)时,都有(x 1﹣x 2)•[f (x 1)﹣f (x 2)]<0.设,则( )A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )【考点】函数奇偶性的性质.【分析】根据已知条件便可判断f (x )在(0,+∞)上单调递减,f (x )是偶函数,所以f (x )=f (|x|),所以根据对数的运算,及对数的取值比较|a|,|b|,|c|的大小即可得出f (a ),f (b ),f (c )的大小关系.【解答】解:根据已知条件便知f (x )在(0,+∞)上是减函数;且f (a )=f (|a|),f (b )=f (|b|),f (c )=f (|c|);|a|=ln π>1,b=(ln π)2>|a|,c=;∴f (c )>f (a )>f (b ).故选:C .8.若存在至少一个x (x≥0)使得关于x 的不等式x 2≤4﹣|2x ﹣m|成立,则实数m 的取值范围为( )A .[﹣4,5]B .[﹣5,5]C .[4,5]D .[﹣5,4]【考点】函数的最值及其几何意义.【分析】不等式可化为|2x ﹣m|≤﹣x 2+4;先求对任意x≥0,都有|2x ﹣m|>﹣x 2+4;作函数图象,由数形结合求实数m 的取值范围.【解答】解:不等式x2≤4﹣|2x﹣m|可化为|2x﹣m|≤﹣x2+4;若对任意x≥0,都有|2x﹣m|>﹣x2+4,作函数y=|2x﹣m|与y=﹣x2+4的图象如下,结合图象可知,当m>5或m<﹣4时,对任意x≥0,都有|2x﹣m|>﹣x2+4;故实数m的取值范围为[﹣4,5];故选A.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.执行如图所示的程序框图,则输出的结果是20 .【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得S=0,n=1执行循环体,S=3,n=2不满足条件S≥15,执行循环体,S=9,n=3不满足条件S≥15,执行循环体,S=20,n=4满足条件S≥15,退出循环,输出S的值为20.故答案为:20.10.如图,切线PA切圆O于点A,割线PBC与圆O交于点B,C,且PC=2PA,D为线段PC的中点,AD的延长线交圆O于点E.若PB=,则AD•DE的值为.【考点】与圆有关的比例线段.【分析】利用切割线定理,可得PA,利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2,即可得出结论【解答】解:∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,PB=,∴PA2=•2PA,∴PA=.∵PA2=PB•PC,PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD=,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2=.故答案为:.11.(x﹣)6的展开式中常数项为﹣.【考点】二项式系数的性质.【分析】利用二项展开式的通项公式求出二项展开式的第r+1项,令x的指数为0得常数项.【解答】解:展开式的通项公式为T r+1=(﹣)r C 6r x 6﹣2r ,令6﹣2r=0得r=3,得常数项为C 63(﹣)3=﹣.故答案为:﹣.12.由曲线y=3x 2与直线y=3所围成的封闭图形的面积是 4 .【考点】定积分.【分析】联立,解得x=±1.曲线y=3x 2与直线y=3所围成的封闭图形的面积S=,解出即可得出.【解答】解:联立,解得x=±1.曲线y=3x 2与直线y=3所围成的封闭图形的面积S===4.故答案为:4.13.设x ,y 是正实数,且x+y=1,则的最小值是 . 【考点】基本不等式.【分析】该题是考查利用基本不等式求最值问题,但直接运用基本不等式无从下手,可考虑运用换元思想,把要求最值的分母变为单项式,然后利用“1”的代换技巧转化为能利用基本不等式求最值得问题.【解答】解:设x+2=s ,y+1=t ,则s+t=x+y+3=4, 所以==.因为所以.故答案为.14.在△ABC中,||=3,||=5,M是BC的中点, =λ(λ∈R),若=+,则△ABC的面积为.【考点】平面向量的基本定理及其意义.【分析】在△ABC的顶点A作边BC的垂线BO,垂足为O,这样可表示出cosB=,cosC=,从而得到,而根据已知条件及中线向量的表示即可得到,所以便得出O是BC的中点,即M,O重合.所以在Rt△ABM中可以求出sinB,所以根据三角形的面积公式可求出△ABC 的面积.【解答】解:如图所示,过A作边BC的垂线,垂足为O,则:cosB=,cosC=;∴;根据题意知λ≠0;∴;∴;∴;即O是边BC的中点,M与O重合;∴在Rt△ABM中,;∴;∴.故答案为:.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.已知函数f(x)=4cosωx•sin(ωx+)+a(ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.(Ⅰ)求a和ω的值;(Ⅱ)求函数f(x)在[0,π]上的单调递减区间.【考点】正弦函数的单调性;两角和与差的正弦函数.【分析】(Ⅰ)根据条件确定函数最值和周期,利用三角函数的公式进行化简即可求a和ω的值;(Ⅱ)根据三角函数的单调性即可求出函数的单调递减区间.【解答】解:(Ⅰ)==.当时,f(x)取得最大值2+1+a=3+a又f(x)最高点的纵坐标为2,∴3+a=2,即a=﹣1.又f(x)图象上相邻两个最高点的距离为π,∴f(x)的最小正周期为T=π故,ω=1(Ⅱ)由(Ⅰ)得由.得.令k=0,得:.故函数f(x)在[0,π]上的单调递减区间为16.已知盒中有4个红球,4个黄球,4个白球,且每种颜色的四个球均按A,B,C,D编号.现从中摸出4个球(除颜色与编号外球没有区别).(Ⅰ)求恰好包含字母A,B,C,D的概率;(Ⅱ)设摸出的4个球中出现的颜色种数为X,求随机变量X的分布列和期望E(X).【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【分析】(Ⅰ)记事件“恰好包含字母A,B,C,D”为E,利用古典概型的概率公式计算即可;(Ⅱ)由题意可得随机变量X的取值可能为:1,2,3,分别求其概率,可得分布列为,进而可得数学期望.【解答】(本小题满分13分)解:(Ⅰ)记事件“恰好包含字母A,B,C,D”为E,则P(E)==.…(Ⅱ)随机变量X的所有可能取值为1,2,3.…∵P(X=1)==,P(X=2)==,P(X=3)==,…∴随机变量X的分布列为:1 2 3∴EX=1×=.…17.如图,在四棱锥S﹣ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB,点M是SD的中点,AN⊥SC,且交SC于点N.(Ⅰ)求证:SB∥平面ACM;(Ⅱ)求证:平面SAC⊥平面AMN;(Ⅲ)求二面角D﹣AC﹣M的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定;平面与平面垂直的判定.【分析】(Ⅰ)连结BD交AC于E,连结ME,由△DSB的中位线定理,得ME∥SB,由此能证明SB∥平面ACM.(Ⅱ)法一:由DC⊥SA,DC⊥DA,得DC⊥平面SAD,从而AM⊥DC,由等腰三角形性质得AM⊥SD,从而AM ⊥平面SDC,进而SC⊥AM,由SC⊥AN,能证明平面SAC⊥平面AMN.法二:以A为坐标原点,建立空间直角坐标系O﹣xyz,利用向量法能证明平面SAC⊥平面AMN.(Ⅲ)法一:取AD中点F,则MF∥SA.作FQ⊥AC于Q,连结MQ,由已知得∠FQM为二面角D﹣AC﹣M的平面角,由此能求出二面角D﹣AC﹣M的余弦值.法二:分别求出平面ABCD的一个法向量和平面ACM的一个法向量,由此利用向量法能求出二面角D﹣AC﹣M 的余弦值.【解答】(选修2一1第109页例4改编)(Ⅰ)证明:连结BD交AC于E,连结ME,∵ABCD是正方形,∴E是BD的中点.∵M是SD的中点,∴ME是△DSB的中位线.∴ME∥SB.…又ME⊂平面ACM,SB⊄平面ACM,∴SB∥平面ACM.…(Ⅱ)证法一:由条件有DC⊥SA,DC⊥DA,∴DC⊥平面SAD,且AM⊂平面SAD,∴AM⊥DC.又∵SA=AD,M是SD的中点,∴AM⊥SD.∴AM⊥平面SDC.SC⊂平面SDC,∴SC⊥AM.…由已知SC⊥AN,∴SC⊥平面AMN.又SC⊂平面SAC,∴平面SAC⊥平面AMN.…(Ⅱ)证法二:如图,以A为坐标原点,建立空间直角坐标系O﹣xyz,由SA=AB,可设AB=AD=AS=1,则.∵,,∴,∴,即有SC⊥AM…又SC⊥AN且AN∩AM=A.∴SC⊥平面AMN.又SC⊂平面SAC,∴平面SAC⊥平面AMN.…(Ⅲ)解法一:取AD中点F,则MF∥SA.作FQ⊥AC于Q,连结MQ.∵SA⊥底面ABCD,∴MF⊥底面ABCD.∴FQ为MQ在平面ABCD内的射影.∵FQ⊥AC,∴MQ⊥AC.∴∠FQM为二面角D﹣AC﹣M的平面角.…设SA=AB=a,在Rt△MFQ中,,∴.∴二面角D﹣AC﹣M的余弦值为.…(Ⅲ)解法二:∵SA⊥底面ABCD,∴是平面ABCD的一个法向量,.设平面ACM 的法向量为,,则即,∴令x=﹣1,则.…,由作图可知二面角D ﹣AC ﹣M 为锐二面角∴二面角D ﹣AC ﹣M 的余弦值为.…18.设数列{a n }的前n 项和为S n ,a 1=1,a n+1=λS n +1(n ∈N *,λ≠﹣1),且a 1、2a 2、a 3+3为等差数列{b n }的前三项.(Ⅰ)求数列{a n }、{b n }的通项公式;(Ⅱ)求数列{a n b n }的前n 项和.【考点】数列的求和;数列递推式.【分析】(1)由a n+1=λS n +1(n ∈N *,λ≠﹣1),当n≥2时,a n =λS n ﹣1+1,可得a n+1=(1+λ)a n ,利用等比数列的通项公式可得a 3,再利用等差数列的通项公式即可得出;(2)利用“错位相减法”、等比数列的前n 项和公式即可得出.【解答】解:(1)∵a n+1=λS n +1(n ∈N *,λ≠﹣1),∴当n≥2时,a n =λS n ﹣1+1,∴a n+1﹣a n =λa n ,即a n+1=(1+λ)a n ,又a 1=1,a 2=λa 1+1=λ+1,∴数列{a n }为以1为首项,公比为λ+1的等比数列,∴a 3=(λ+1)2,∵a 1、2a 2、a 3+3为等差数列{b n }的前三项.∴4(λ+1)=1+(λ+1)2+3,整理得(λ﹣1)2=0,解得λ=1.∴a n =2n ﹣1,b n =1+3(n ﹣1)=3n ﹣2.(2)a n b n =(3n ﹣2)•2n ﹣1,∴数列{a n b n }的前n 项和T n =1+4×2+7×22+…+(3n ﹣2)•2n ﹣1,2T n =2+4×22+7×23+…+(3n ﹣5)×2n ﹣1+(3n ﹣2)×2n ,∴﹣T n =1+3×2+3×22+…+3×2n ﹣1﹣(3n ﹣2)×2n =﹣(3n ﹣2)×2n =(5﹣3n )×2n ﹣5,∴T n =(3n ﹣5)×2n +5.19.在平面直角坐标系xoy 中,椭圆的焦距为2,一个顶点与两个焦点组成一个等边三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)椭圆C 的右焦点为F ,过F 点的两条互相垂直的直线l 1,l 2,直线l 1与椭圆C 交于P ,Q 两点,直线l 2与直线x=4交于T 点.(i )求证:线段PQ 的中点在直线OT 上;(ii )求的取值范围.【考点】椭圆的简单性质.【分析】(Ⅰ)根据条件求出a ,b ,c 即可求椭圆C 的标准方程;(Ⅱ)设PQ 的方程为:x=my+1代入椭圆方程,利用根与系数之间的关系求出OG 和OT 的斜率,利用直线和椭圆相交的相交弦公式进行求解即可.【解答】解:(Ⅰ)由椭圆得,解得a=2,c=1,b=,故所求椭圆的标准方程为.(Ⅱ)(i )设直线PQ 的方程为:x=my+1,代入椭圆方程得(3m 2+4)y 2+6my ﹣9=0,则判别式△=36m 2+4×9(3m 2+4)>0,设P (x 1,y 1),Q (x 2,y 2),PQ 的中点G (x 0,y 0),则y 1+y 2=,y 1y 2=,则y 0=(y 1+y 2)=,x 0=my 0+1=,即G (,),k OG ==﹣,设直线FT 的方程为:y=﹣m (x ﹣1),得T 点坐标为(4,﹣3m ),∵k OT =﹣,∴k OG =k OT ,即线段PQ 的中点在直线OT 上;(ii )当m=0时,PQ 的中点为F ,T (4,0),则|TF|=3,|PQ|=,,当m≠0时,|TF|==,|PQ|====12,则==(3+),设t=,则t >1,则y=3+=3t+=3(t+)在(1,+∞)为增函数,则y >3+1=4,则(3+),综上≥1,故求的取值范围是[1,+∞).20.已知关于x 函数g (x )=﹣alnx (a ∈R ),f (x )=x 2+g (x )(Ⅰ)试求函数g (x )的单调区间;(Ⅱ)若f (x )在区间(0,1)内有极值,试求a 的取值范围;(Ⅲ)a >0时,若f (x )有唯一的零点x 0,试求[x 0].(注:[x]为取整函数,表示不超过x 的最大整数,如[0.3]=0,[2.6]=2[﹣1.4]=﹣2;以下数据供参考:ln2=0.6931,ln3=1.099,ln5=1.609,ln7=1.946)【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(I )g (x )=﹣alnx (x >0),g′(x )==﹣,对a 分类讨论:当a≥0时,当a <0时,即可得出单调性;(II )f (x )=x 2+g (x ),其定义域为(0,+∞).f′(x )=2x+g′(x )=,令h (x )=2x 3﹣ax ﹣2,x ∈[0,+∞),h′(x )=6x 2﹣a ,当a <0时,可得:函数h (x )在(0,1)内至少存在一个变号零点x 0,且x 0也是f′(x )的变号零点,此时f (x )在区间(0,1)内有极值.当a≥0时,由于函数f (x )单调,因此函数f (x )无极值.(III )a >0时,由(II )可知:f (1)=3知x ∈(0,1)时,f (x )>0,因此x 0>1.又f′(x )在区间(1,+∞)上只有一个极小值点记为x 1,由题意可知:x 1即为x 0.得到,即,消去a 可得:,a >0,令t 1(x )=2lnx (x >1),,分别研究单调性即可得出x 0的取值范围.【解答】解:(I )g (x )=﹣alnx (x >0),g′(x )==﹣,(i )当a≥0时,g′(x )<0,∴(0,+∞)为函数g (x )的单调递减区间;(ii )当a <0时,由g′(x )=0,解得x=﹣.当x ∈时,g′(x )<0,此时函数g (x )单调递减;当x ∈时,g′(x )>0,此时函数g (x )单调递增.(II )f (x )=x 2+g (x ),其定义域为(0,+∞).f′(x )=2x+g′(x )=,令h (x )=2x 3﹣ax ﹣2,x ∈[0,+∞),h′(x )=6x 2﹣a ,当a <0时,h′(x )≥0恒成立,∴h (x )为(0,+∞)上的增函数,又h (0)=﹣2<0,h (1)=﹣a >0,∴函数h (x )在(0,1)内至少存在一个变号零点x 0,且x 0也是f′(x )的变号零点,此时f (x )在区间(0,1)内有极值.当a≥0时,h (x )=2(x 3﹣1)﹣ax <0,即x ∈(0,1)时,f′(x )<0恒成立,函数f (x )无极值.综上可得:f (x )在区间(0,1)内有极值的a 的取值范围是(﹣∞,0). (III )∵a >0时,由(II )可知:f (1)=3知x ∈(0,1)时,f (x )>0, ∴x 0>1.又f′(x )在区间(1,+∞)上只有一个极小值点记为x 1,且x ∈(1,x 1)时,函数f (x )单调递减,x ∈(x 1,+∞)时,函数f (x )单调递增, 由题意可知:x 1即为x 0.∴,∴,消去a 可得:,a >0,令t 1(x )=2lnx (x >1),, 则在区间(1,+∞)上t 1(x )单调递增,t 2(x )单调递减.t 1(2)=2ln2<2×0.7==t 2(2),t 1(3)=2ln3>2>=t 2(3). ∴2<x 0<3,∴[x 0]=2.。
高考数学(理)大一轮复习习题:第二章 函数的概念与基本初等函数ⅰ word版含答案

第二章⎪⎪⎪函数的概念与基本初等函数Ⅰ第一节函数及其表示 突破点(一) 函数的定义域基础联通 抓主干知识的“源”与“流”1.函数与映射的概念 函数映射两集合A ,B设A ,B 是两个非空的数集 设A ,B 是两个非空的集合 对应关系f :A →B如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应名称 称f :A →B 为从集合A 到集合B 的一个函数称对应f :A →B 为从集合A 到集合B 的一个映射记法y =f (x ),x ∈A对应f :A →B(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.考点贯通 抓高考命题的“形”与“神”求给定解析式的函数的定义域(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R. (4)y =x 0的定义域是{x |x ≠0}.(5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R. (6)y =log a x (a >0且a ≠1)的定义域为(0,+∞).(7)y =tan x 的定义域为⎩⎨⎧ x ⎪⎪⎭⎬⎫x ≠k π+π2,k ∈Z .[例1] y =x -12x-log 2(4-x 2)的定义域是( ) A .(-2,0)∪(1,2) B .(-2,0]∪(1,2) C .(-2,0)∪[1,2)D .[-2,0]∪[1,2][解析] 要使函数有意义,必须⎩⎪⎨⎪⎧x -12x ≥0,x ≠0,4-x 2>0,∴x ∈(-2,0)∪[1,2).即函数的定义域是(-2,0)∪[1,2). [答案] C [易错提醒](1)不要对解析式进行化简变形,以免定义域发生变化.(2)当一个函数由有限个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集.(3)定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.求抽象函数的定义域对于抽象函数定义域的求解(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [例2] 若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________.[解析] 由题意得,⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,解得0≤x <1,即g (x )的定义域是[0,1).[答案] [0,1)[易错提醒]函数f [g (x )]的定义域指的是x 的取值范围,而不是g (x )的取值范围.已知函数定义域求参数[例3] 若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是( )A .[0,4)B .(0,4)C .[4,+∞)D .[0,4][解析] 由题意可得mx 2+mx +1≥0恒成立. 当m =0时,1≥0恒成立;当m ≠0时,则⎩⎪⎨⎪⎧m >0,Δ=m 2-4m ≤0,解得0<m ≤4. 综上可得:0≤m ≤4. [答案] D[方法技巧]已知函数定义域求参数的思想方法已知函数的定义域,逆向求解函数中参数的取值,需运用分类讨论以及转化与化归的思想方法.转化与化归的思想方法是通过某种转化过程,将一个难以解决的问题转化为一个已经解决或者比较容易解决的问题,从而获解.基础联通 抓主干知识的“源”与“流” 1.[考点一]函数y =x ln(2-x )的定义域为( ) A .(0,2) B .[0,2) C .(0,1]D .[0,2]解析:选B 由题意知,x ≥0且2-x >0,解得0≤x <2,故其定义域是[0,2). 2.[考点一](2017·青岛模拟)函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选D 由题意得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以函数的定义域为⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1.故选D. 3.[考点一]函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.解析:由题意得⎩⎪⎨⎪⎧ 1-|x -1|≥0,a x -1≠0,解得⎩⎪⎨⎪⎧0≤x ≤2,x ≠0,即0<x ≤2,故所求函数的定义域为(0,2].答案:(0,2]4.[考点二]已知函数y =f (x 2-1)的定义域为[-3, 3 ],则函数y =f (x )的定义域为________.解析:∵y =f (x 2-1)的定义域为[-3, 3 ],∴x ∈[-3, 3 ],x 2-1∈[-1,2],∴y =f (x )的定义域为[-1,2].答案:[-1,2]5.[考点三]若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.解析:函数f (x )的定义域是不等式ax 2+abx +b ≥0的解集.不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a <0,1+2=-b ,1×2=b a ,解得⎩⎪⎨⎪⎧a =-32,b =-3,所以a +b =-32-3=-92.答案:-92突破点(二) 函数的表示方法1.函数的表示方法函数的表示方法有三种,分别为解析法、列表法和图象法.同一个函数可以用不同的方法表示.2.应用三种方法表示函数的注意事项(1)解析法:一般情况下,必须注明函数的定义域;(2)列表法:选取的自变量要有代表性,应能反映定义域的特征;(3)图象法:注意定义域对图象的影响.与x 轴垂直的直线与其最多有一个公共点. 3.函数的三种表示方法的优缺点(2)求x与y的对应关系时需逐个计算,比较繁杂列表法能鲜明地显示自变量与函数值之间的数量关系只能列出部分自变量及其对应的函数值,难以反映函数变化的全貌图象法形象直观,能清晰地呈现函数的增减变化、点的对称关系、最大(小)值等性质作出的图象是近似的、局部的,且根据图象确定的函数值往往有误差考点贯通抓高考命题的“形”与“神”求函数的解析式[典例](1)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()A.y=12x3-12x2-xB.y=12x3+12x2-3xC.y=14x3-xD.y=14x3+12x2-2x(2)定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时,f(x)=x(1-x),则当-1≤x ≤0时,f (x )=________.(3)(2017·合肥模拟)已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝⎛⎭⎫1x =3x +1,则函数f (x )的解析式为________.[解析] (1)设该函数解析式为f (x )=ax 3+bx 2+cx +d ,则f ′(x )=3ax 2+2bx +c , 由题意知⎩⎪⎨⎪⎧f (0)=d =0,f (2)=8a +4b +2c +d =0,f ′(0)=c =-1,f ′(2)=12a +4b +c =3,解得⎩⎪⎨⎪⎧a =12,b =-12,c =-1,d =0,∴f (x )=12x 3-12x 2-x .(2)∵-1≤x ≤0,∴0≤x +1≤1,∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).故当-1≤x ≤0时,f (x )=-12x (x+1).(3)用1x代替3f (x )+5f ⎝⎛⎭⎫1x =3x +1中的x ,得3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ∴⎩⎨⎧3f (x )+5f ⎝⎛⎭⎫1x =3x +1, ①3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ②①×3-②×5得f (x )=1516x -916x +18(x ≠0).[答案] (1)A (2)-12x (x +1) (3)f (x )=1516x -916x +18(x ≠0)[易错提醒]1.已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x x -1,则f (x )=________. 解析:在f (x )=2f ⎝⎛⎭⎫1x x -1中,用1x 代替x ,得f ⎝⎛⎭⎫1x =2f (x )1x -1,将f ⎝⎛⎭⎫1x =2f (x )1x -1代入f (x )=2f ⎝⎛⎭⎫1x x -1中,求得f (x )=23x +13(x >0).答案:23x +13(x >0) 2.函数f (x )满足2f (x )+f (-x )=2x ,则f (x )=________.解析:由题意知⎩⎪⎨⎪⎧2f (x )+f (-x )=2x ,2f (-x )+f (x )=-2x ,解得f (x )=2x . 答案:2x3.已知f (x +1)=x +2x ,求f (x )的解析式. 解:设t =x +1,则x =(t -1)2,t ≥1,代入原式有 f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1,x ≥1.4.已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式. 解:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.5.已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式. 解:由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.突破点(三) 分段函数基础联通 抓主干知识的“源”与“流”1.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.2.分段函数的相关结论(1)分段函数虽由几个部分组成,但它表示的是一个函数.(2)分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 考点贯通 抓高考命题的“形”与“神”分段函数求值[例1] (1)设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A .-1 B.14 C.12D.32(2)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x ,x ≥4,f (x +1),x <4,则f (1+log 25)的值为( ) A.14 B.⎝⎛⎭⎫12错误!未找到引用源。
天津市宝坻区2017届高三数学理科训练4Word版含答案

天津市宝坻区2017届高三数学理科训练4一、选择题: 1. 已知集合},2|{2R x x x x A ∈-==,},1{m B =,若B A ⊆,则m 的值为( )A . 2B . 1-C . 1-或2D . 2或22.执行如题(1)图所示的程序框图,则输出的结果为( ) A .189 B .381 C .93 D .453.某几何体的三视图如题(2)图所示,则该几何体的体积为( ) A .1333π+ B .52π+ C .53π+ D .1332π+4. 将函数sin 2y x =的图象向右平移4π个单位,再向上平移1个单位,所得函数图象对应的解析式为( ) A .sin(2)14y x π=-+ B .22cos y x = C .22sin y x = D .cos 2y x =-5.设20(12)a x dx =-⎰,则二项式62a x x ⎛⎫+ ⎪⎝⎭的常数项是( )A. 240-B. 240C. 160-D. 1606. 已知等差数列{}n a 的前n 项和为n S ,满足23142,4,4,a a a a ≤≤+≥当4a 取得最大值时,数列{}n a 的公差为( )A .1B .4C .2D .37.已知函数()f x 是定义在R 上的奇函数,它的图象关于1x =对称,且() (01)f x x x =<≤.若函数1()y f x a x =--在区间[10,10]-上有10个不同零点,则实a 数的取值范围是( ) A. 44[,]55- B. 44(,)55- C. 11[,]1010- D. 11(,)1010-8. 如图,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线,AC BD ,设内层椭圆方程为22221(0)x y a b a b+=>>,若直线AC 与图(1)图(2)AOCD B y xBD 的斜率之积为14-,则椭圆的离心率为( )A . 12 B.. 34二、填空题: 9. 已知复数32iz -=+(i 为虚数单位),则||z 的值为 . 10.已知曲线C的参数方程为x ty t⎧=⎪⎨=⎪⎩ (t 为参数), C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为 .11. 如图,AB 是半圆O 的直径,延长AB 到C ,使BC =,CD 切半圆O 于点D ,DE ⊥AB ,垂足为E .若AE ∶EB =3∶1,求DE 的长 .12. O 是平面上一点,,,A B C 是平面上不共线三点,动点P 满足:(),[1,2],OP OA AB AC λλ=++∈- 已知1λ=时,||2AP =,则PA PB PA PC ⋅+⋅ 的最大值为 .13.抛物线24(0)y mx m =>的焦点为F ,点P 为该抛物线上的动点,又点A(,0)m -,则PF PA的最小值为 .14. 函数)(x f 的导函数为)(x f ',对x ∀∈R ,都有2()()f x f x '>成立,若2)4ln (=f ,则不等式2()x f x e >的解集是 . 三、解答题:15.设角A ,B ,C 是△ABC 的三个内角,已知向量m=(sin A +sin C ,sin B -sin A ), n =(sin A -sin C ,sin B ),且m ⊥n.(1)求角C 的大小;(2)若向量s =(0,-1),t =(cos A,2cos 2B 2),求|s +t |的取值范围.16.生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于 82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:(1)试分别估计元件A 、元件B 为正品的概率;(2)生产一件元件A ,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B ,若是正品可盈利100元,若是次品则亏损20元,在(1)的前提下;(i )求生产5件元件B 所获得的利润不少于300元的概率;(ii )记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望.17.如图,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,AD //BC ,∠ADC =90°,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,PA =PD =2,BC =12AD =1,CD (1)若点M 是棱PC 的中点,求证:PA // 平面BMQ ; (2)求证:平面PQB ⊥平面PAD ;(3)若二面角M-BQ-C 为30°,设PM =tMC ,试确定t 的值 .PABCDQM天津市宝坻区2017届高三数学理科训练4参考答案一、 选择题:AADCB BCC二、填空题:9.10. sin()4πρθ+=11. 3212. 2413.214. (ln 4,)+∞三、解答题:15. (1)由题意得m·n =(sin 2A -sin 2C )+(sin 2B -sin A sin B )=0,即sin 2C =sin 2A +sin 2B -sin A sin B ,设a ,b ,c 为内角A ,B ,C 所对的边长,由正弦定理得c 2=a 2+b 2-ab ,再由余弦定理得cos C =a 2+b 2-c 22ab =12,∵0<C <π,∴C =π3.(2)∵s +t =(cos A,2cos 2B2-1)=(cos A ,cos B ), ∴|s +t |2=cos 2A +cos 2B=cos 2A +cos 2(2π3-A )=1+cos2A2+1+cos(4π3-2A )2=14cos2A -34sin2A +1 =-12sin(2A -π6)+1,∵0<A <2π3,∴-π6<2A -π6<7π6,∴-12<sin(2A -π6)≤1,∴12≤|s +t |2<54,∴22≤|s +t |<52. 16. (Ⅰ)由题可知 元件A 为正品的概率为45,元件B 为正品的概率为34。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津市2017届高三数学理一轮复习专题突破训练函数一、选择、填空题1、(2016年天津市高考)已知函数f (x )=2(4,0,log (1)13,03)ax a x a x x x ⎧+<⎨++≥-+⎩(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( ) (A )(0,23] (B )[23,34] (C )[13,23]{34}(D )[13,23){34}2、(2016年天津市高考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足1(2)(2)a f f ->-,则a 的取值范围是______.3、(2015年天津市高考)已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记()()0.52(log 3),log 5,2a f b f c f m === ,则,,a b c 的大小关系为(A )a b c << (B )a c b << (C )c a b << (D )c b a <<4、(2015年天津市高考)已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是(A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭(D )7,24⎛⎫⎪⎝⎭5、(天津市八校2016届高三12月联考)设13log 2a =,2log 3b =,0.31()2c =,则( ).A .a b c >>B .b a c >>C .c b a >>D . b c a >>6、(天津市八校2016届高三12月联考)已知函数25()2x f x x +=+,定义在R 上的函数()g x 周期为2,且满足,则函数()()()h x f x g x =-在区间[5,1]-上的所有零点之和为( ). A .4-B .6-C .7-D .8-7、(和平区2016届高三第四次模拟)设函数2log 1y x =-与22xy -=的图象的交点为()00,x y ,则0x 所在的区间是( )A .()0,1B .()1,2C .()2,3D .()3,48、(和平区2016届高三第四次模拟)已知函数()3232f x x x =-+,函数则关于x 的方程()()00g f x a a -=>⎡⎤⎣⎦的实根个数取得最大值时,实数a 的取值范围是( ) A .51,4⎛⎤ ⎥⎝⎦B .51,4⎛⎫⎪⎝⎭C .51,4⎡⎤⎢⎥⎣⎦D .50,4⎡⎤⎢⎥⎣⎦9、(河北区2016届高三总复习质量检测(三))已知函数10()ln 0kx x f x x x +⎧=⎨>⎩,≤,,则下列关于函数[()]1y f f x =+的零点个数的判断正确的是(A )当0k >时,有3个零点,当0k <时,有2个零点 (B )当0k >时,有4个零点,当0k <时,有1个零点 (C )无论k 为何值,均有2个零点 (D )无论k 为何值,均有4个零点 10、(河北区2016届高三总复习质量检测(一))已知函数ln ()=e xf x ,若12x x ≠且12()()f x f x =,则下列结论一定不成立的是(A )21()1x f x > (B )21()1x f x <(C )21()1x f x = (D )2112()()x f x x f x <11、(河北区2016届高三总复习质量检测(一))已知函数2ln 0()410x x >f x =x +x+x ⎧⎪⎨⎪⎩,,,≤,若关于x 的方程2()()0f x bf x +c =-(b c ∈R ,)有8个不同的实数根,则b+c 的取值范围是(A )(3)∞-, (B )(03],(C )[03], (D )(03),12、(河东区2016届高三第二次模拟)已知函数x x f ln )(=与exx g =)(,则它们的图象交点个数为( )A .0B .1C .2D .不确定13、(河东区2016届高三第二次模拟)已知函数()a a x x f +-=,()24x x g -=,若存在R x ∈使()()g x f x ≥学科网,则a 的取值范围是____________.(A )31(,)32(B )31(-,)32(C )31(,)34(D )31(-,)3415、(河西区2016届高三第二次模拟)函数⎩⎨⎧>≤-=1,ln 1,1)(2x x x x x f ,若方程21)(-=mx x f 恰有四个不相等的实数根,则实数m 的取值范围是 .16、(河西区2016届高三下学期总复习质量调查(一))已知函数)(x f 在R 上是单调函数,且满足对任意R x ∈,3)2)((=-x x f f ,则)3(f 的值是(A )3(B )7(C )9 (D )1217、(河西区2016届高三下学期总复习质量调查(一))已知kx x x x f ++-=221)(在0(,)2上有两个零点,则实数k 的取值范围是18、(红桥区2016届高三上学期期末考试)已知函数()x f x a = (a >0且a ≠1),其关于y x =对称的函数为()g x .若f (2)=9,则1()(3)9g f +的值是 .19、(红桥区2016届高三上学期期中检测)设0.30.33log 2,log 2,2,a b c ===则这三个数的大小关系是( ) (A )b c a >>(B )a c b >> (C )a b c >> (D )c b a >>20、(红桥区2016届高三上学期期中检测)已知()f x 是定义在R 上的奇函数,对任意x ∈R ,都有(4)()f x f x +=,若(1)2f =,则(2015)f = .21、(天津市六校2016届高三上学期期末联考)已知定义在R 上的函数,当[]0,2x ∈时,()()811f x x =--,且对任意的实数122,22n n x +⎡⎤∈--⎣⎦(*N n ∈,且2n ≥),都有()1122x f x f ⎛⎫=- ⎪⎝⎭,若方程|log |)(x x f a =有且仅有四个实数解,则实数a 的取值范围为A .B .C .()2,10D .[]2,1022、(天津市十二区县重点高中2016届高三毕业班第一次联考)已知()f x 为偶函数,当0x ≥时,()(24),(0)f x m x x m =-+->,若函数[]()4y f f x m =-恰有4个零点,则实数m 的取值范围A .10,6⎛⎫ ⎪⎝⎭ B .1550,,662⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭ C .1550,,442⎛⎫⎛⎫⋃ ⎪⎪⎝⎭⎝⎭ D .10,4⎛⎫ ⎪⎝⎭23、(天津市十二区县重点学校2016届高三下学期毕业班联考(二))若函数1+=kx y 的图象与函数|1||1|xx x x y --+=的图象恰有五个交点,则实数k 的取值范围是________. 24、(武清区2016届高三5月质量调查(三))已知2.1424.0,6log ,3log -===c b a ,则( )(A )c b a >> (B )c a b >> (C )b a c >> (D )a b c >>25、(武清区2016届高三5月质量调查(三))已知函数()()()221+-+--=x e x ax x f 恰有两个零点,则实数a 的取值范围是( )(A )0>a (B )21-≥a (C )021<<-a (D )021≤<-a5、D6、C7、C8、A9、B 10、B 11、D 12、B 13、⎥⎦⎤ ⎝⎛∞-817,14、A 15、21(,)e e 16、C 17、127-<<-k 18、25 19、D 20、-2 21、A 22、B 23、11,00,88⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭24、C 25、A 二、解答题1、(红桥区2016届高三上学期期中检测)(I )设函数12log 0()6x x f x x x >⎧⎪=⎨⎪+⎩≤,计算((4))f f -的值;(Ⅱ)计算:2log 151log 25lgln 2100++; (Ⅲ)计算:20.5123910()(3)0.75(2)1627---+-÷-.2、(红桥区2016届高三上学期期中检测)已知函数2()(0)f x ax bx c a =++≠,满足(0)2,(1)()21f f x f x x =+-=- (Ⅰ)求函数()f x 的解析式;(Ⅱ)当[]1,2x ∈-时,求函数的最大值和最小值.(Ⅲ)若函数()()g x f x mx =-的两个零点分别在区间(1,2)-和(2,4)内,求m 的取值范围.3、(红桥区2016届高三上学期期中检测) 已知:1()lg1ax f x x+=-,a ∈R 且1a ≠- (Ⅰ)若函数()f x 为奇函数,求实数a 的值; (Ⅱ)求函数()f x 的定义域;(Ⅲ)若函数()f x 在[10,+∞)上是单调增函数,求a 的取值范围.参考答案一、填空、选择题 1、【答案】C考点:函数性质综合应用 2、【答案】13(,)223、【答案】C 【解析】试题分析:因为函数()21x mf x -=-为偶函数,所以0m =,即()21xf x =-,所以221log log 330.521(log 3)log 2121312,3a f f ⎛⎫===-=-=-= ⎪⎝⎭()()2log 502log 5214,2(0)210b f c f m f ==-====-=所以c a b <<,故选C.考点:1.函数奇偶性;2.指数式、对数式的运算. 4、【答案】D 【解析】试题分析:由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得 222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩,即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b <<.考点:1.求函数解析式;2.函数与方程;3.数形结合.二、解答题1、解:(Ⅰ)因为40-<,所以(4)4620f -=-+=>----------------1分 所以,12((4))(2)log 21f f f -===-. ---------------3分(Ⅱ)2log 151log 25lg2100++ 132(2)122=+-++= (每一项1分结论1分)---------------8分(Ⅲ)20.5123910()(3)0.75(2)1627---+-÷-3116943916=-÷- 339416160=--=; (每一项1分结论1分)---------------13分2、解:(Ⅰ)由(0)2,f =得2c =, 又(1)()21f x f x x +-=-得221ax a b x ++=-,故221a a b =⎧⎨+=-⎩解得:1,2a b ==-,所以2()22f x x x =-+.----------(a ,b ,c 各1分,解析式1分)-------------4分 (Ⅱ)22()22(1)1f x x x x =-+=-+,对称轴为[]11,2x =∈-, 故min ()(1)1f x f ==,又(1)5f -=,(2)2f =,所以max ()(1)5f x f =-=. -------------8分 (Ⅲ)2()(2)2g x x m x =-++,若()g x 的两个零点分别在区间(1,2)-和(2,4)内,则满足 (1)050(2)0220(4)01040g m g m g m ->+>⎧⎧⎪⎪<⇒-<⎨⎨⎪⎪>->⎩⎩ -------------12分解得:512m <<. -------------14分3、(Ⅰ)若函数()f x 为奇函数,则()()f x f x -=-,即11lg lg11ax ax x x-++=-+-, 有1111ax x x ax -+-=++,得22211a x x -=-,解得:1a =;--------------3分 (Ⅱ)当0a >时,由101ax x +>-得101x a x+>-,即1()(1)0x x a +-<. 因为11a -<,所以函数的定义域为1,1a ⎛⎫- ⎪⎝⎭-----------------5分当0a <且1a ≠-时,得101x a x+<-,即1()(1)0x x a +->. ① 1a <-时,11a -<,所以函数的定义域为()1,1,a ⎛⎫-∞-+∞ ⎪⎝⎭;② 10a -<<,11a ->,所以函数的定义域为()1,1,a ⎛⎫-∞-+∞ ⎪⎝⎭. 当0a =时,1()lg1f x x=-函数的定义域为(),1-∞-------------------8分 (Ⅲ)∵f (x )在[10,+∞)上是增函数,∴1010110a +>-,∴110a <-.----------9分又11()lglg()11ax af x a x x ++==-+--,故对任意的12,x x ,当12x x <10≤时,恒有12()()f x f x <即1211lg()lg()11a aa a x x ++-+<-+--, ∴121111a ax x ++<--,---------------------------------------------------------------------12分 ∴1211(1)()011a x x +-<--,又∵121111x x <--,∴10a +>∴1a >- 综上可知1110a -<<-.------------------------------------------------------------14分。