(人教版必修2) 第四章4.3.2
人教版高中数学必修2《四章 圆与方程 4.3空间直角坐标系 4.3.2 空间两点间的距离公式》公开课教案_14

4.3.1空间直角坐标系尊敬的各位老师:大家好!今天我说课的课题是《空间直角坐标系》第1课时。
我将以“先学后教”的思路,从教材分析、学情分析等五个方面来谈谈我对教材的理解。
一、教材分析:(一)地位和作用:《空间直角坐标系》是高中数学必修二第四章第三节内容。
本节是在学习完立体几何和直线与圆的方程后,又一重要的知识点,它是平面直角坐标系的进一步推广,是学生思维从二维到三维的过渡,与前面立体几何的内容前后呼应,更是后面运用空间向量解决立体几何问题的基础。
(二)三维目标分析1、知识目标:(1)掌握空间直角坐标系的有关概念,会由点的位置写出坐标,会由坐标描出点的位置。
(2)理解将空间问题转化为平面问题是解决空间问题的基本思想方法。
2、能力目标:培养学生类比,化归,探究的能力和空间想象能力。
3、德育目标:通过学习的过程,培养学生合作精神和勤于思考、勇于创新的意识,让每个学生都获得自己力所能及的数学知识,增强学生的自信心。
(三)教学的重点和难点:1、教学重点:(1)空间直角坐标系的有关概念;(2)由点的位置写出点的坐标;(3)由点的坐标描出点的位置2、教学难点:(1)空间直角坐标系产生的过程;(2)如何建立恰当的坐标系来确定点的位置二、学情分析:优点:高一学生求知欲望强烈。
而且第一章学习了立体几何,有了一定的空间思维能力和方法;第四章研究了直线与圆的有关问题,已有了坐标系的基础。
缺点:高一学生的思维仍然停留在二维平面上。
根据《教学大纲》的要求和学生已有的知识基础和认知能力,我确定了以下三维教学目标和教学重难点:基于上面的学生知识基础和认知能力以及教材的特点,我对我的教法及学生的学法做一个分析。
三、教法学法分析:1、教法分析:(1)情境设置法:激发学生学习欲望。
(2)启发式教学法:突出学生的主体地位。
(3)小组合作法:提高学生的实践能力。
2、学法分析:(1)课前预习,先学后教。
课前布置学生用木棍做一小长方体,课前给出问题(如:什么是空间直角运用新知 解决新情布置作业 能力迁移坐标系?如何用空间直角坐标系来表示空间中一个点的位置?……),学生带着问题去预习,在预习的过程中发现问题,激发学生的求知欲望。
4.3.2 等比数列的前n项和(1)(人教A版高中数学选择性必修第二册)(解析版)

课时同步练4.3.2 等比数列的前n 项和 (1)一、单选题1.等比数列的公比为2,且前四项之和等于1,则其前八项之和等于 ( )A .15B .21C .19D .17【答案】D【详细解析】由已知得12341a a a a +++=, 则12345678a a a a a a a a +++++++()412341234a a a a a a a a q =+++++++41217=+=.故选D.2.若a ,4,3a 为等差数列的连续三项,则0129a a a a +++⋯+的值为 ( )A .2047B .1062C .1023D .531【答案】C【详细解析】∵ a ,4,3a 为等差数列的连续三项 ∴a +3a =4a =2×4, 解得a =2,故0129a a a a +++⋯+=20+21+22+…+29=1012102312-=-.故选C .3.已知等比数列{a n }的公比q =12,且a 1+a 3+a 5+…+a 99=60,则a 1+a 2+a 3+a 4+…+a 100等于 ( ) A .100B .90C .60D .40【答案】B【详细解析】∵1359960a a a a ++++=,∴2461001359911()603022a a a a a a a a ++++=++++=⨯=,∴1234100306090a a a a a +++++=+=.故选B.4.等比数列{a n }的前n 项和为S n ,若a 1+a 2+a 3+a 4=1,a 5+a 6+a 7+a 8=2,S n =15,则项数n 为 ( )A .12B .14C .15D .16【答案】D 【详细解析】56781234a a a a a a a a ++++++=q 4=2,由a 1+a 2+a 3+a 4=1, 得a 1(1+q +q 2+q 3)=1,即a 1·411q q--=1,∴a 1=q -1,又S n =15,即()111na q q--=15,∴q n =16, 又∵q 4=2, ∴n =16. 故选D.5.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于 ( )A .2nB .3nC .122n +-D .31n -【答案】A【详细解析】设等比数列{}n a 的公比为q .因为数列{}1n a +也是等比数列,所以22213(1)(1)(1)210a a a q q +=++⇒-+=,解得:1q =,所以12n S na n ==. 故选A.6.若n S 是一个等比数列{}n a 的前n 项和,48n S =,2=60n S ,则3n S 等于 ( )A .183B .108C .75D .63【答案】D【详细解析】由题意可知,n S 、2n n S S -、32n n S S -成等比数列,即48、12、360n S -成等比数列,所以,()23486012n S ⨯-=,解得363n S =,故选D.7.设47()222f n =++1031022()n n N +*+++∈,则()f n 等于 ( ) A .()2817n- B .()12817n +- C .()32817n +- D .()42817n +- 【答案】D【详细解析】数列04710312,22,,,,22n +是首项为2,公比为328=的等比数列,共有 (n +4)项,所以()()44731042182()222281187n n n f n +++-=++++==--.故选D8.已知一个等比数列的首项为2,公比为3,第m 项至第n 项 (m n <)的和为720,那么m 等于 ( )A .3B .4C .5D .6【答案】A【详细解析】由题意可得S n ﹣S m ﹣1=a m +a m +1+…+a n =720, ∵a 1=2,q =3,由等比数列的求和公式可得,()()12132131313n m ----=--720,∴3n ﹣3m ﹣1=720,∴3m ﹣1 (3n ﹣m +1﹣1)=9×80=32×5×24, 则3m ﹣1≠5×16, ∴3m ﹣1=9, ∴m =3, 故选A9.已知数列{a n }的前n 项和为S n ,且S n =a n -2(a 为常数且a ≠0),则数列{a n } ( )A .是等比数列B .当a ≠1时是等比数列C .从第二项起成等比数列D .从第二项起成等比数列或等差数列【答案】D【详细解析】由数列{}n a 的前n 的和2nn S a =-,可得当1n =,得112a S a ==-; 当2n ≥,得11(1)n n n n a S S a a --=-=-,所以数列{}n a 的通项公式为12,1(1),2n n a n a a a n --=⎧=⎨-≥⎩,当10,2,(1),1n n a n a a a a -≠≥=-≠时等比数列,当1a =时,{}n a 是等差数列, 故选D .10.已知数列{}n a 的前n 项和为n S ,12a =,()121n n S S n N ++=-∈,则10a = ( )A .128B .256C .512D .1024【答案】B【详细解析】∵S n +1=2S n ﹣1 (n ∈N +), n ≥2时,S n =2S n ﹣1﹣1,∴a n +1=2a n . n =1时,a 1+a 2=2a 1﹣1,a 1=2,a 2=1.∴数列{a n }从第二项开始为等比数列,公比为2.则a 10822a =⨯=1×28=256. 故选B .11.在正项等比数列{}n a 中,512a =,673a a +=.则满足123123......n n a a a a a a a a ++++>的最大正整数n 的值为 ( )A .10B .11C .12D .13【答案】C【详细解析】∵正项等比数列{}n a 中,512a =,()26753a a a q q +=+=, ∴26q q +=. ∵0q >,解可得,2q =或3q =- (舍), ∴1132a =, ∵()1231122132 (1232)n nn a a a a --++++==-,∴()1221123232n n n n -->⨯.整理可得,()1152n n n ⎛⎫>-- ⎪⎝⎭, ∴112n <≤,经检验12n =满足题意, 故选C .12.已知n S 是等比数列{}n a 的前n 项和,若存在*m N ∈,满足228m m S S =,22212m m a m a m +=-,则数列{}n a 的公比为 ( ) A .12 B .13C .2D .3【答案】D【详细解析】设等比数列公比为q 当1q =时,2228mmS S =≠,不符合题意, 当1q ≠时,()()21211128,12811m mm m m a q S q q S q a q--=∴⋅=+=--, 得27m q =,又2221221,22m m m a m m q a m m ++=∴=--, 由221272m m +=-,得3m =,327,3q q ∴=∴=,故选D.二、填空题13.若数列{}n a 中,13a =,且13n n a a +=,则其前n 项和n S =______.【答案】()3312n- 【详细解析】依题意,13n na a +=,所以数列{}n a 是以3为首项,3为公比的等比数列,则3(13)3(31)132nn n S -==--.故填()3312n-. 14.若等比数列{}n a 的通项公式是()42nn a n -*=∈N ,这个数列的前5项之和为______.【答案】312【详细解析】由题意可得41128a -==,且公比为()4111421222n n n n a q a -+-+-====,因此,该数列的前5项和为()551181131211212a q q ⎛⎫⨯- ⎪-⎝⎭==--, 故填312. 15.等比数列{}n a 为非常数数列,其前n 项和是n S ,当333S a =时,则公比q 的值为_____.【答案】12-【详细解析】333S a =,则2211113a a q a q a q ++=,10a ≠,则2210q q --=,解得12q =-或1q = (舍去). 故填12-. 16.已知数列{}n a 的前n 项和为233nn S =-,则通项公式为_________. 【答案】17(1),323(2)n n n a n -⎧-=⎪=⎨⎪-⋅⎩ 【详细解析】已知数列{}n a 的前n 项和为233nn S =-, 当1n =时,11123373a S ==-=-, 当2n ≥时,11122333332n n n n n n S S a ---=--⎛⎫⎛⎫=-=-⋅⎪ ⎪-⎝⎭⎝⎭,而173a =-,不适合上式, 所以17(1),323(2)n n n a n -⎧-=⎪=⎨⎪-⋅⎩ 故填17(1),323(2)n n n a n -⎧-=⎪=⎨⎪-⋅⎩17.设S n 是等比数列{}n a 的前n 项和,若510S S =13,则20105S S S +=________.【答案】118【详细解析】设等比数列{}n a 的公比为q ,因为()()()()()()()51055201010111151021111111,11111,1a q a q a q q a q a q q qqqqS SSq---+--+====---=--,所以()()51010201051,1S S q SS q =+=+).由510S S =13,得05511113S S q ==+,解得5102,4q q ==,所以105201053,515S S S S S ===,从而1020518S S S +=,所以0552051S S 1S S 18S 18==+,故填118. 18.已知数列{}n a 的首项135a =,1321nn n a a a +=+,*n N ∈,记12111n nS a a a =+++,若100k S <,则正整数k 的最大值为__________.【答案】99【详细解析】因为1321n n n a a a +=+,所以112133n n a a +=+,设11113n n k k a a +⎛⎫+=+ ⎪⎝⎭, 得111233n n k a a +=-,与112133n n a a +=+比较得2233k -=,1k ∴=-.所以1111113n n a a +⎛⎫-=- ⎪⎝⎭, 又112103a -=≠,所以()*110n n N a -≠∈,所以数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列,所以1121133n n a -⎛⎫-=⨯ ⎪⎝⎭,所以11213nn a ⎛⎫=⨯+ ⎪⎝⎭,所以1212111111111332211333313n n n nn S n n n a a a +-⎛⎫=+++=++++=+⨯=+- ⎪⎝⎭-, 若100k S <,则111003k k +-<,所以max 99k =,故正整数k 的最大值为99, 故填99.三、解答题19.已知等差数列{}n a 不是常数列,其前四项和为10,且2a 、3a 、7a 成等比数列.(1)求通项公式n a ;(2)设2n an b =,求数列{}n b 的前n 项和n S .【详细解析】设等差数列{}n a 的首项为1a ,公差d ,1234232710a a a a a a a +++=⎧⎨=⎩ ()()()12111461026a d a d a d a d +=⎧⎪⇒⎨+=++⎪⎩ 解得:12,3a d =-=()21335n a n n ∴=-+-⨯=- ;(2)352n n b -= ,3231352282n n n n b b -+-=== ,114b = {}n b ∴是公比为8,首项为14的等比数列,()1188141828n n n S ⨯--∴==- .20.等比数列{a n }中,a 1=1,a 5=4a 3.(1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .【详细解析】 (1)设{}n a 的公比为q,由题有:1421114a a q a q =⎧⎨=⎩解得: 0()22q q q ===-舍去或或 故()1122n n n n a a --=-=或(2)若()12n n a -=-,则()123nns --=,由63m s =得()2188m-=-,此方程没有正整数解;若12n n a -=,则21n n s =-,由63m s =得,264m =,6m ∴=综上:6m =21.记n S 为数列{}n a 的前n 项和.已知12n n S a +=.(1)求{}n a 的通项公式;(2)求使得22020n n a S >+的n 的取值范围. 【详细解析】 (1)由题知,12n n S a +=①, 当1n =时,11a =当2n ≥时,1112n n S a --+=② ①减②得,12n n a a -=,故{}n a 是以1为首项,2为公比的等比数列, 所以12n na(2)由 (1)知,2122n n a -=,21nn S =-22020n n a S >+即210221202n n --+> 等价于()2224038nn->易得()222nn-随n 的增大而增大而6n =,()2224038nn-<,7n =,()2224038n n ->故7n ≥,n N ∈22.已知数列{}n a 的前n 项和为n S ,13a =,且对任意的正整数n ,都有113n n n S S λ++=+,其中常数0λ>.设3nn n a b =()n N *∈﹒ (1)若3λ=,求数列{}n b 的通项公式; (2)若1λ≠且3λ≠,设233n n n c a λ=+⨯-()n N *∈,证明数列{}n c 是等比数列; (3)若对任意的正整数n ,都有3n b ≤,求实数λ的取值范围.【详细解析】∵113n n n S S λ++=+,n N *∈, ∴当2n ≥时,-13nn n S S λ=+,从而123nn n a a λ+=+⋅,2n ≥,n N *∈﹒又在113n n n S S λ++=+中,令1n =,可得12123a a λ=+⋅,满足上式, 所以123nn n a a λ+=+⋅,n N *∈﹒(1)当3λ=时,1323nn n a a +=+⋅,n N *∈,从而112333n n n na a ++=+,即123n n b b +-=, 又11b =,所以数列{}n b 是首项为1,公差为23的等差数列, 所以213n n b +=. (2)当0λ>且3λ≠且1λ≠时,1122323333n n n n n n c a a λλλ--=+⨯=+⨯+⨯-- 11111223(33)(3)33n n n n n a a c λλλλλλ-----=+⨯-+=+⨯=⋅--,又163(1)3033c λλλ-=+=≠--,所以{}n c 是首项为3(1)3λλ--,公比为λ的等比数列,13(1)3n n c λλλ--=⋅-﹒ (3)在 (2)中,若1λ=,则0n c =也适合,所以当3λ≠时,13(1)3n n c λλλ--=⋅-. 从而由 (1)和 (2)可知11(21)33{3(1)23333n n n n n a λλλλλλ--+⨯==-⋅-⨯≠--,,,. 当3λ=时,213n n b +=,显然不满足条件,故3λ≠. 当3λ≠时,112()333n n b λλλλ--=⨯---. 若3λ>时,103λλ->-,1n n b b +<,n N *∈,[1,)n b ∈+∞,不符合,舍去. 若01λ<<时,103λλ->-,203λ->-,1n n b b +>,n N *∈,且0n b >. 所以只须11133a b ==≤即可,显然成立.故01λ<<符合条件; 若1λ=时,1n b =,满足条件.故1λ=符合条件; 若13λ<<时,103λλ-<-,203λ->-,从而1n n b b +<,n N *∈, 因为110b =>.故2[1)3n b λ∈--,, 要使3n b ≤成立,只须233λ-≤-即可. 于是713λ<≤. 综上所述,所求实数λ的范围是7(0]3,.。
4.3.2 等比数列的性质(课件)高二数学课件(人教A版2019选择性必修第二册)

aman a q
2
1
m n2
as a1q s 1
2 s t 2
at a1q t 1 as at a1 q
am an as at
等比数列常用的性质
等比数列的性质
设等比数列 an , 公比为 q.
在等比数列{an}中,由 p+q=s+t
ap.aq=as.at
特别地:①若p+q=2t,则ap.aq=(at)2
(1)由题意,得
a4+a6=5,
a4=2,
解得
a6=3
a4=3,
或
a6=2,
a6
3 a6
2
2
2
∴a =q =2或a =q =3.
4
4
a9
又a =q2,且 q>1,
7
a9
3
∴a 的值为2.
7
(4)∵{an}成等比数列,
a6a7a8 24
∴a3·
a4·
a5,a6·
a7·
a8,a9·
考点三:等比数列的应用
练习 已知{an}为等差数列,且 a1+a3=8,a2+a4=12.
(1)求{an}的通项公式;
(2)记{an}的前 n 项和为 Sn, 若 a1,ak,Sk+2 成等比数列,求正整数 k 的值。
解析:(1)设数列{an}的公差为 d,
2a1+2d=8,
由题意知
2a1+4d=12,
(2)利用等比数列的性质判断
.
n -1
q n=1,∴1=32×
4
3
又∵a
2
,解得
n=6.
3 1
a7
3
3
高中数学第四章圆与方程4.3.1空间直角坐标系4.3.2空间两点间的距离公式学案含解析新人教A版必修2

4.3.1 空间直角坐标系4.3.2 空间两点间的距离公式知识导图学法指导1.结合长方体、正棱锥等常见几何体,把握建系的方法,并能写出空间中的点在坐标系中的坐标.2.类比平面上两点间的距离,熟记空间两点间的距离公式.3.体会利用空间直角坐标系解决问题的步骤.高考导航1.空间直角坐标系的应用很少单独命题,一般是在解答题中应用建立空间直角坐标系的方法求解,分值为2~3分.2.通过建立空间直角坐标系,计算两点间的距离公式或确定点的坐标,是常考知识点,常与后面将要学习的立体几何等知识相结合,分值为4~6分.知识点一空间直角坐标系的建立及坐标表示1.空间直角坐标系(1)空间直角坐标系及相关概念①空间直角坐标系:从空间某一定点O引三条两两垂直,且有相同单位长度的数轴:x 轴、y轴、z轴,这样就建立了一个空间直角坐标系Oxyz.②相关概念:点O叫作坐标原点,x轴、y轴、z轴叫作坐标轴,通过每两个坐标轴的平面叫作坐标平面,分别称为xOy平面、yOz平面、zOx平面.(2)右手直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.2.空间一点的坐标空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫作点M 在此空间直角坐标系中的坐标,记作M(x,y,z),其中x叫作点M的横坐标,y叫作点M的纵坐标,z叫作点M的竖坐标.空间直角坐标系的画法(1)x 轴与y 轴成135 °(或45 °),x 轴与z 轴成135 °(或45 °).(2)y 轴垂直于z 轴,y 轴和z 轴的单位长相等,x 轴上的单位长则等于y 轴单位长的12.知识点二 空间两点间的距离公式1.空间中任意一点P (x ,y ,z )与原点之间的距离|OP |=x 2+y 2+z 2; 2.空间中任意两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)之间的距离 |P 1P 2|=x 2-x 12+y 2-y 12+z 2-z 12.1.空间两点间的距离公式可以类比平面上两点间的距离公式,只是增加了对应的竖坐标的运算.2.空间中点坐标公式:设A(x 1,y 1,z 1),B(x 2,y 2,z 2),则AB 中点P(x 1+x 22,y 1+y 22,z 1+z 22).[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)空间直角坐标系中,在x 轴上的点的坐标一定是(0,b ,c )的形式.( ) (2)空间直角坐标系中,在xOz 平面内的点的坐标一定是(a,0,c )的形式.( ) (3)空间直角坐标系中,点(1,3,2)关于yOz 平面的对称点为(-1,3,2).( ) 答案:(1)× (2)√ (3)√2.在空间直角坐标系中,下列各点中位于yOz 平面内的是( ) A .(3,2,1) B .(2,0,0) C .(5,0,2) D .(0,-1,-3)解析:位于yOz 平面内的点,其x 坐标为0,其余坐标任意,故(0,-1,-3)在yOz 平面内.答案:D3.点(2,0,3)在空间直角坐标系中的( ) A .y 轴上 B .xOy 平面上 C .zOx 平面上 D .第一象限内解析:点(2,0,3)的纵坐标为0,所以该点在zOx 平面上. 答案:C4.若已知点A(1,1,1),B(-3,-3,-3),则线段AB的长为( )A.4 3 B.2 3C.4 2 D.3 2解析:|AB|=-3-2+-3-2+-3-2=4 3.答案:A类型一空间中点的坐标的确定例1 如图,在长方体ABCD-A1B1C1D1中,|AD|=3,|AB|=5,|AA1|=4,建立适当的直角坐标系,写出此长方体各顶点的坐标.【解析】如图,以DA所在直线为x轴,以DC所在直线为y轴,以DD1所在直线为z 轴,建立空间直角坐标系Oxyz.因为长方体的棱长|AD|=|BC|=3,|DC|=|AB|=5,|DD1|=|AA1|=4,显然D(0,0,0),A在x轴上,所以A(3,0,0);C在y轴上,所以C(0,5,0);D1在z轴上,所以D1(0,0,4);B在xOy平面内,所以B(3,5,0);A1在xOz平面内,所以A1(3,0,4);C1在yOz平面内,所以C1(0,5,4).由B1在xOy平面内的射影为B(3,5,0),所以B1的横坐标为3,纵坐标为5,因为B1在z轴上的射影为D1(0,0,4),所以B1的竖坐标为4,所以B1(3,5,4).(1)建立适当的空间直角坐标系.(2)利用线段长度结合符号写出各点坐标.要注意与坐标轴正向相反的坐标为负.方法归纳(1)建立空间直角坐标系时,要考虑如何建系才能使点的坐标简单、便于计算,一般是要使尽量多的点落在坐标轴上.(2)对于长方体或正方体,一般取相邻的三条棱为x轴、y轴、z轴建立空间直角坐标系;确定点的坐标时,最常用的方法就是求某些与轴平行的线段的长度,即将坐标转化为与轴平行的线段长度,同时要注意坐标的符号,这也是求空间点的坐标的关键.跟踪训练1 在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.解析:如图所示,取AC 的中点O 和A 1C 1的中点O 1,连接BO ,OO 1,可得BO ⊥AC ,OO 1⊥AC ,OO 1⊥BO ,分别以OB ,OC ,OO 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32,∵点A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1,C 1在yOz 平面内,∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1. ∵点B 1在xOy 平面内的射影为点B ,且BB 1=1, ∴B 1⎝ ⎛⎭⎪⎫32,0,1,∴各点的坐标分别为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝⎛⎭⎪⎫0,12,0,A 1⎝⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1.建立空间直角坐标系,求出有关线段的长,再写出各点的坐标. 类型二 空间直角坐标系中的点的对称点例2 在空间直角坐标系中,点P (-2,1,4)关于x 轴对称的点P 1的坐标是________;关于xOy 平面对称的点P 2的坐标是________;关于点A (1,0,2)对称的点P 3的坐标是________.【解析】 点P 关于x 轴对称后,它的横坐标不变,纵坐标和竖坐标均变为原来的相反数,所以点P 关于x 轴的对称点P 1的坐标为(-2,-1,-4).点P 关于xOy 平面对称后,它的横坐标和纵坐标均不变,竖坐标变为原来的相反数,所以点P 关于xOy 平面的对称点P 2的坐标为(-2,1,-4).设点P 关于点A 的对称点的坐标为P 3(x ,y ,z ),由中点坐标公式可得⎩⎪⎨⎪⎧-2+x2=1,1+y2=0,4+z 2=2,解得⎩⎪⎨⎪⎧x =4,y =-1,z =0.故点P 关于点A (1,0,2)对称的点P 3的坐标为(4,-1,0).【答案】 (-2,-1,-4) (-2,1,-4) (4,-1,0)利用对称规律解决关于坐标轴、坐标平面的对称问题,利用中点坐标公式解决点关于点的对称问题.方法归纳在空间直角坐标系内,已知点P(x,y,z),则有:①点P关于原点的对称点是P1(-x,-y,-z)②点P关于横轴(x轴)的对称点是P2(x,-y,-z)③点P关于纵轴(y轴)的对称点是P3(-x,y,-z)④点P关于竖轴(z轴)的对称点是P4(-x,-y,z)⑤点P关于xOy坐标平面的对称点是P5(x,y,-z)⑥点P关于yOz坐标平面的对称点是P6(-x,y,z)⑦点P关于xOz坐标平面的对称点是P7(x,-y,z).跟踪训练2 已知M(2,1,3),求M关于原点对称的点M1,M关于xOy平面对称的点M2,M 关于x轴、y轴对称的点M3,M4.解析:由于点M与M1关于原点对称,所以M1(-2,-1,-3);点M与M2关于xOy平面对称,横坐标与纵坐标不变,竖坐标变为原来的相反数,所以M2(2,1,-3);M与M3关于x 轴对称,则M3的横坐标不变,纵坐标和竖坐标变为原来的相反数,即M3(2,-1,-3),同理M4(-2,1,-3).方法归纳求对称点的坐标问题一般依据“关于谁对称谁不变,其余均改变”来解决.如关于横轴(x轴)的对称点,横坐标不变,纵坐标、竖坐标变为原来的相反数;关于xOy 坐标平面的对称点,横坐标、纵坐标不变,竖坐标变为原来的相反数.要特别注意:点关于点的对称要用中点坐标公式解决.类型三空间两点间的距离,,例3 如图,已知正方体ABCD-A′B′C′D′的棱长为a,M为BD′的中点,点N在A′C′上,且|A′N|=3|NC′|,试求|MN|的长.【解析】由题意应先建立坐标系,以D为原点,建立如图所示空间直角坐标系.因为正方体棱长为a,所以B(a,a,0),A′(a,0,a),C′(0,a,a),D′(0,0,a).由于M为BD′的中点,取A′C′的中点O′,所以M ⎝ ⎛⎭⎪⎫a 2,a 2,a 2,O ′⎝ ⎛⎭⎪⎫a 2,a2,a . 因为|A ′N |=3|NC ′|,所以N 为A ′C ′的四等分点,从而N 为O ′C ′的中点,故N ⎝ ⎛⎭⎪⎫a 4,34a ,a .根据空间两点间的距离公式,可得 |MN |=⎝ ⎛⎭⎪⎫a 2-a 42+⎝ ⎛⎭⎪⎫a 2-3a 42+⎝ ⎛⎭⎪⎫a 2-a 2=64a .建立空间直角坐标系,先确定相关点的坐标,然后根据两点间的距离公式求解. 方法归纳求空间两点间的距离时,一般使用空间两点间的距离公式,应用公式的关键在于建立适当的坐标系,确定两点的坐标.确定点的坐标的方法视具体题目而定,一般说来,要转化到平面中求解,有时也利用几何图形的特征,结合平面直角坐标系的知识确定.跟踪训练3 求A (0,1,3),B (2,0,1)两点之间的距离. 解析:|AB |=-2+-2+-2=3.解答本题可直接利用空间两点间的距离公式.[基础巩固](20分钟,40分)一、选择题(每小题5分,共25分)1.点M (0,3,0)在空间直角坐标系中的位置是在( ) A .x 轴上 B .y 轴上 C .z 轴上 D .xOz 平面上解析:因为点M (0,3,0)的横坐标、竖坐标均为0,纵坐标不为0,所以点M 在y 轴上. 答案:B2.点P (1,4,-3)与点Q (3,-2,5)的中点坐标是( ) A .(4,2,2) B .(2,-1,2) C .(2,1,1) D .(4,-1,2)解析:设点P 与点Q 的中点坐标为(x ,y ,z ),则x =1+32=2,y =4-22=1,z =-3+52=1.答案:C3.在空间直角坐标系中,已知点P(1,2,3),过P作平面yOz的垂线PQ,则垂足Q的坐标为( )A.(0,2,0) B.(0,2,3)C.(1,0,3) D.(1,2,0)解析:根据空间直角坐标系的概念知,yOz平面上点Q的x坐标为0,y坐标、z坐标与点P的y坐标2,z坐标3分别相等,∴Q(0,2,3).答案:B4.已知M(4,3,-1),记M到x轴的距离为a,M到y轴的距离为b,M到z轴的距离为c,则( )A.a>b>c B.c>b>aC.c>a>b D.b>c>a解析:借助长方体来思考,a、b、c分别是三条面对角线的长度.∴a=10,b=17,c=5.答案:B5.已知A点坐标为(1,1,1),B(3,3,3),点P在x轴上,且|PA|=|PB|,则P点坐标为( )A.(0,0,6) B.(6,0,1)C.(6,0,0) D.(0,6,0)解析:设P(x,0,0),|PA|=x-2+1+1,|PB|=x-2+9+9,由|PA|=|PB|,得x=6.答案:C二、填空题(每小题5分,共15分)6.如图,长方体ABCD-A1B1C1D1中,已知A1(a,0,c),C(0,b,0),则点B1的坐标为________.解析:由题中图可知,点B1的横坐标和竖坐标与点A1的横坐标和竖坐标相同,点B1的纵坐标与点C的纵坐标相同,所以点B1的坐标为(a,b,c).答案:(a,b,c)7.在空间直角坐标系中,点(4,-1,2)关于原点的对称点的坐标是________.解析:空间直角坐标系中关于原点对称的点的坐标互为相反数,故点(4,-1,2)关于原点的对称点的坐标是(-4,1,-2).答案:(-4,1,-2)8.点P (-1,2,0)与点Q (2,-1,0)的距离为________. 解析:∵P (-1,2,0),Q (2,-1,0), ∴|PQ |=-1-2+[2--2+02=3 2.答案:3 2三、解答题(每小题10分,共20分)9.已知直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,|AB |=|AC |=|AA 1|=4,M 为BC 1的中点,N 为A 1B 1的中点,求|MN |.解析:如右图,以A 为原点,射线AB ,AC ,AA 1分别为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系,则B (4,0,0),C 1(0,4,4),A 1(0,0,4),B 1(4,0,4),因为M 为BC 1的中点,N 为A 1B 1的中点,所以由空间直角坐标系的中点坐标公式得M (4+02,0+42,0+42),N (0+42,0+02,4+42),即M (2,2,2),N (2,0,4).所以由两点间的距离公式得 |MN |=-2+-2+-2=2 2.10.已知点P (2,3,-1),求:(1)点P 关于各坐标平面对称的点的坐标; (2)点P 关于各坐标轴对称的点的坐标; (3)点P 关于坐标原点对称的点的坐标.解析:(1)设点P 关于xOy 坐标平面的对称点为P ′,则点P ′的横坐标、纵坐标与点P 的横坐标、纵坐标相同,点P ′的竖坐标与点P 的竖坐标互为相反数.所以点P 关于xOy 坐标平面的对称点P ′的坐标为(2,3,1).同理,点P 关于yOz ,xOz 坐标平面的对称点的坐标分别为(-2,3,-1),(2,-3,-1).(2)设点P 关于x 轴的对称点为Q ,则点Q 的横坐标与点P 的横坐标相同,点Q 的纵坐标、竖坐标与点P 的纵坐标、竖坐标互为相反数.所以点P 关于x 轴的对称点Q 的坐标为(2,-3,1).同理,点P 关于y 轴,z 轴的对称点的坐标分别为(-2,3,1),(-2,-3,-1). (3)点P (2,3,-1)关于坐标原点对称的点的坐标为(-2,-3,1).[能力提升](20分钟,40分)11.在空间直角坐标系中,点M 的坐标是(4,7,6),则点M 关于y 轴对称的点在xOz 平面上的射影的坐标为( )A .(4,0,6)B .(-4,7,-6)C .(-4,0,-6)D .(-4,7,0)解析:点M 关于y 轴对称的点是M ′(-4,7,-6),点M ′在xOz 平面上的射影的坐标为(-4,0,-6).答案:C12.已知点P ⎝ ⎛⎭⎪⎫32,52,z 到线段AB 中点的距离为3,其中A (3,5,-7),B (-2,4,3),则z =________.解析:由中点坐标公式,得线段AB 中点的坐标为⎝ ⎛⎭⎪⎫12,92,-2.又点P 到线段AB 中点的距离为3,所以⎝ ⎛⎭⎪⎫32-122+⎝ ⎛⎭⎪⎫52-922+[z --2=3,解得z =0或z =-4. 答案:0或-413.如图,已知长方体ABCD -A 1B 1C 1D 1的对称中心在坐标原点,交于同一顶点的三个面分别平行于三个坐标平面,顶点A (-2,-3,-1),求其他七个顶点的坐标.解析:由题意,得点B 与点A 关于xOz 平面对称, 故点B 的坐标为(-2,3,-1);点D 与点A 关于yOz 平面对称,故点D 的坐标为(2,-3,-1); 点C 与点A 关于z 轴对称,故点C 的坐标为(2,3,-1); 由于点A 1,B 1,C 1,D 1分别与点A ,B ,C ,D 关于xOy 平面对称,故点A 1,B 1,C 1,D 1的坐标分别为A 1(-2,-3,1),B 1(-2,3,1),C 1(2,3,1),D 1(2,-3,1).14.已知点M (3,2,1),N (1,0,5),求: (1)线段MN 的长度;(2)到M ,N 两点的距离相等的点P (x ,y ,z )的坐标满足的条件. 解析:(1)根据空间两点间的距离公式得 |MN |=-2+-2+-2=26,所以线段MN 的长度为2 6.(2)因为点P (x ,y ,z )到M ,N 两点的距离相等,所以x -2+y -2+z -2=x -2+y -2+z -2,化简得x +y -2z +3=0,因此,到M,N两点的距离相等的点P(x,y,z)的坐标满足的条件是x+y-2z+3=0.。
人教版高中数学选择性必修第二册4.3.2-专题1 数列通项的求法

【 讲 评 】 已 知 an + 1 = g(n)·an , 通 常 利 用 an = aan-n 1·aann--12·…·aa21·a1,求出通项 an.
探究 2 累乘法就是利用以下变形来求通项 an 的方法,an= a1·aa12·aa32·…·aan-n 1.
例如,在等比数列{an}中,由于aa12=aa32=aa43=…=aan-n 1=q,所 以对 n≥2 且 n∈N*,有 an=a1·aa21·aa32·…·aan-n1=a1·q·q·…·q =a1qn-1,把 n=1 代入上式也成立,故 an=a1qn-1(n∈N*).
(1)设 bn=an+1-2an(n∈N*),求证:{bn}是等比数列; (2)设 cn=2ann(n∈N*),求证:{cn}是等差数列; (3)求数列{an}的通项公式及前 n 项和公式.
【解析】 (1)证明:∵Sn+1=4an+2,① ∴Sn+2=4an+1+2.② ②-①式,得 Sn+2-Sn+1=4an+1-4an(n∈N*),即 an+2=4an+1 -4an. an+2-2an+1=2(an+1-2an). ∵bn=an+1-2an(n∈N*),∴bn+1=2bn. 由此可知,数列{bn}是公比为 2 的等比数列. 由 S2=a1+a2=4a1+2,又 a1=1,得 a2=5. ∴b1=a2-2a1=3,∴bn=3·2n-1.
专题研究一 数列通项的求法
专题讲解
题型一 累加法
例 1 在数列{an}中,已知 a1=1,an+1=an+2n,求 an. 【解析】 ∵a2-a1=2×1,a3-a2=2×2,…,an-an-1=2×(n -1)(n≥2 且 n∈N*), ∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1) =1+(2×1)+(2×2)+…+[2×(n-1)] =1+2(1+2+…+n-1) =1+2·(n-21)·n=n2-n+1(n≥2 且 n∈N*),把 n=1 代入上 式也成立,故 an=n2-n+1(n∈N*).
高中数学选择性必修二(人教版)《4.3.2等比数列的前n项和》课件

(二)基本知能小试
1.已知等比数列的公比为 2,且前 5 项和为 1,那么前 10 项和等于 ( )
A.31
B.33
C.35
D.37
解析:根据等比数列性质得S10S-5 S5=q5,
8
C.3
D.3
()
解析:法一:因为数列{an}是等比数列,所以 S6=S3+q3S3,S9=S6 +q6S3=S3+q3S3+q6S3,于是SS63=1+Sq33S3=3,即 1+q3=3,所以 q3=2.于是SS96=1+1+q3+q3q6=1+1+2+2 4=73.
法二:由SS63=3,得 S6=3S3. 因为数列{an}是等比数列,且由题意知 q≠-1,所以 S3,S6-S3,S9 -S6 也成等比数列,所以(S6-S3)2=S3(S9-S6),解得 S9=7S3,所以 SS96=73. 答案:B
题型三 等比数列前 n 项和的实际应用 [学透用活]
[典例 3] 一个热气球在第 1 min 上升了 25 m 的高度,在以后的每 1 min 里,它上升的高度都是它在前 1 min 上升高度的 80%.这个热气球 上升的高度能达到 125 m 吗?
[解] 用 an 表示热气球在第 n min 上升的高度. 由题意,得 an+1=80%an=45an. 因此,数列{an}是首项 a1=25,公比 q=45的等比数列. 热气球在 n min 里上升的总高度为
[答案] 70
[方法技巧] 解决有关等比数列前 n 项和的问题时,若能恰当地使用等比数列前 n 项和的相关性质,则可以避繁就简.不仅可以减少解题步骤,而且可 以使运算简便,同时还可以避免对公比 q 的讨论.
高二数学人教A版选择性必修第二册第四章4.3.2等比数列前n项和公式的应用-同步练习及解析答案

高中数学人教A 版(新教材)选择性必修第二册4.3.2第2课时 等比数列前n 项和公式的应用一、选择题1.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15 D .162.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( ) A .152 B .314 C .334 D .1723.设各项都是正数的等比数列{a n },S n 为其前n 项和,且S 10=10,S 30=70,那么S 40等于( ) A .150B .-200C .150或-200D .4004.设数列{x n }满足log 2x n +1=1+log 2x n (n ∈N *),且x 1+x 2+…+x 10=10 ,记{x n }的前n 项和为S n ,则S 20等于( ) A .1 025B .1 024C .10 250D .20 2405.已知公差d ≠0的等差数列{a n } 满足a 1=1,且a 2,a 4-2,a 6成等比数列,若正整数m ,n 满足m -n =10,则a m -a n =( ) A .30B .20C .10D .5或406.(多选题)已知S n 是公比为q 的等比数列{a n }的前n 项和,若q ≠1,m ∈N *,则下列说法正确的是( ) A .S 2m S m =a 2ma m +1B .若S 6S 3=9,则q =2C .若S 2m S m =9,a 2m a m =5m +1m -1,则m =3,q =2D .若a 6a 3=9,则q =37.在各项都为正数的数列{a n }中,首项a 1=2,且点(a 2n ,a 2n -1)在直线x -9y =0上,则数列{a n }的前n 项和S n 等于( ) A .3n-1 B .1-(-3)n 2C .1+3n 2D .3n 2+n 2二、填空题8.在数列{a n }中,a n +1=ca n (c 为非零常数),且前n 项和为S n =3n +k ,则实数k =________. 9.等比数列{a n }共有2n 项,它的全部各项的和是奇数项的和的3倍,则公比q =________. 10.设{a n }是公差不为零的等差数列,S n 为其前n 项和.已知S 1,S 2,S 4成等比数列,且a 3=5,则数列{a n }的通项公式为a n =________.11.等比数列{a n }的首项为2,项数为奇数,其奇数项之和为8532,偶数项之和为2116,则这个等比数列的公比q =________,又令该数列的前n 项的积为T n ,则T n 的最大值为________. 12.设数列1,(1+2),(1+2+22),…,(1+2+22+…+2n -1),…的第n 项为a n ,前n 项和为S n ,则a n =________,S n =________. 三、解答题13.一个项数为偶数的等比数列,全部项之和为偶数项之和的4倍,前3项之积为64,求该等比数列的通项公式.14.在等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式;(2)设b n =2a n -2+n ,求b 1+b 2+b 3+…+b 10的值.15.设数列{a n }的前n 项和为S n .已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.参考答案一、选择题 1.答案:C解析:由题意得4a 2=4a 1+a 3,∴4a 1q =4a 1+a 1q 2, ∴q =2,∴S 4=1·(1-24)1-2=15.]2.答案:B解析:显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q=7,解得⎩⎪⎨⎪⎧ a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9,q =-13(舍去),∴S 5=a 1(1-q 5)1-q =4⎝⎛⎭⎫1-1251-12=314.]解析:依题意,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列, 因此有(S 20-S 10)2=S 10(S 30-S 20).即(S 20-10)2=10(70-S 20),解得S 20=-20或S 20=30, 又S 20>0,因此S 20=30,S 20-S 10=20,S 30-S 20=40, 故S 40-S 30=80,S 40=150.故选A. 4.答案:C解析:∵log 2x n +1=1+log 2x n =log 2(2x n ),∴x n +1=2x n ,且x n >0, ∴{x n }为等比数列,且公比q =2,∴S 20=S 10+q 10S 10=10+210×10=10 250,故选C.] 5.答案:A解析:设等差数列的公差为d ,因为a 2,a 4-2,a 6成等比数列,所以(a 4-2)2=a 2·a 6, 即(a 1+3d -2)2=(a 1+d )·(a 1+5d ),即(3d -1)2=(1+d )·(1+5d ),解得d =0或d =3,因为公差d ≠0,所以d =3,所以a m -a n =a 1+(m -1)d -a 1-(n -1)d =(m -n )d =10d =30,故选A.] 6.答案:ABC解析:[∵q ≠1,∴S 2m S m =a 1(1-q 2m )1-q a 1(1-q m )1-q =1+q m.而a 2m a m =a 1q 2m -1a 1qm -1=q m ,∴A 正确;B 中,m =3,∴S 6S 3=q 3+1=9,解得q =2.故B 正确;C 中,由S 2m S m =1+q m =9,得q m =8.又a 2ma m =q m =8=5m +1m -1,得m =3,q =2,∴C 正确;D 中,a 6a 3=q 3=9,∴q =39≠3,∴D 错误,故选ABC.]7.答案:A解析:由点(a 2n ,a 2n -1)在直线x -9y =0上,得a 2n -9a 2n -1=0,即(a n +3a n -1)(a n -3a n -1)=0,又数列{a n }各项均为正数,且a 1=2,∴a n +3a n -1>0,∴a n -3a n -1=0,即a n a n -1=3,∴数列{a n }是首项a 1=2,公比q =3的等比数列,其前n 项和S n =a 1(1-q n )1-q =2×(3n -1)3-1=3n-1.]二、填空题解析:由a n +1=ca n 知数列{a n }为等比数列.又∵S n =3n +k , 由等比数列前n 项和的特点S n =Aq n -A 知k =-1.] 9.答案:2解析:设{a n }的公比为q ,则奇数项也构成等比数列,其公比为q 2,首项为a 1, S 2n =a 1(1-q 2n )1-q ,S 奇=a 1[1-(q 2)n ]1-q 2.由题意得a 1(1-q 2n )1-q =3a 1(1-q 2n )1-q 2,∴1+q =3,∴q =2.10.答案:2n -1解析:设等差数列{a n }的公差为d ,(d ≠0), 则S 1=5-2d ,S 2=10-3d ,S 4=20-2d ,因为S 22=S 1·S 4,所以(10-3d )2=(5-2d )(20-2d ),整理得5d 2-10d =0,∵d ≠0,∴d =2, a n =a 3+(n -3)d =5+2(n -3)=2n -1.] 11.答案:122解析:设数列{a n }共有2m +1项,由题意得S 奇=a 1+a 3+…+a 2m +1=8532,S 偶=a 2+a 4+…+a 2m =2116,S 奇=a 1+a 2q +…+a 2m q =2+q (a 2+a 4+…+a 2m )=2+2116q =8532, ∴q =12,∴T n =a 1·a 2·…·a n =a n 1q 1+2+…+n -1=232n -n 22,故当n =1或2时,T n取最大值,为2.] 12.答案:2n -1 2n +1-n -2 解析:因为a n =1+2+22+…+2n -1=1-2n 1-2=2n-1, 所以S n =(2+22+23+…+2n )-n =2(1-2n )1-2-n =2n +1-n -2. 三、解答题13.解:设数列{a n }的首项为a 1,公比为q ,全部奇数项、偶数项之和分别记为S 奇,S 偶, 由题意,知S 奇+S 偶=4S 偶,即S 奇=3S 偶. ∵数列{a n }的项数为偶数,∴q =S 偶S 奇=13.又a 1·a 1q ·a 1q 2=64,∴a 31·q 3=64,得a 1=12.故所求通项公式为a n =12×⎝⎛⎭⎫13n -1.14.解:(1)设等差数列{a n }的公差为d .由已知得⎩⎪⎨⎪⎧ a 1+d =4,(a 1+3d )+(a 1+6d )=15,解得⎩⎪⎨⎪⎧a 1=3,d =1.所以a n =a 1+(n -1)d =n +2. (2)由(1)可得b n =2n +n , 所以b 1+b 2+b 3+…+b 10=(2+1)+(22+2)+(23+3)+…+(210+10) =(2+22+23+…+210)+(1+2+3+…+10) =2(1-210)1-2+(1+10)×102=(211-2)+55 =211+53=2 101.15.解:(1)由题意得⎩⎪⎨⎪⎧ a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n ,故a n =3n -1(n ≥2,n ∈N *),又当n =1时也满足a n =3n -1, 所以数列{a n }的通项公式为a n =3n -1,n ∈N *. (2)设b n =|3n -1-n -2|,n ∈N *,b 1=2,b 2=1.当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3. 设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3.n ≥3时,T n =3+9(1-3n -2)1-3-(n -2)(3+n +4)2=3n -n 2-5n +112.∴T n=⎩⎪⎨⎪⎧2, n =1,3, n =2,3n-n 2-5n +112,n ≥3.集合间的基本关系例1 确定整数x 、y ,使得{2,}{7,4}x x y +=.例2 例1 写出集合{,,}a b c 的所有的子集,并指出其中哪些是它的真子集.变式:写出集合{0,1,2}的所有真子集组成的集合. 例3 判断下列集合间的关系:(1){|32}A x x =->与{|250}B x x =-≥;(2)设集合A ={0,1},集合{|}B x x A =⊆,则A 与B 的关系如何? 说明 判断两个集合之间的关系时,(1)若能用列举法表示出集合,则可根据各个集合的元素构成情况直接判断;(2)若不能用列举法表示集合,则可以根据(集或真子集的)定义进行判断.空集:不含有任何元素的集合称为空集(empty set ),记作:∅. 并规定:空集是任何集合的子集,是任何非空集合的真子集.例4 已知集合{}2|(2)430,A x a x x x =-+-=∈R 有且仅有两个子集,求实数a 的取值范围,并写出集合A 的子集.说明 一般,若集合含有n 个元素,则共有2n 个子集(21n -个真子集),其中有一个是空集.例5 已知集合{}260P x x x =+-=∣,{10}Q x ax =+=∣.若Q P ⊆,求满足条件时实数a 的所有取值组成的集合.说明 解决此类问题的一般步骤有:第一步,化简集合,即尽可能地将给定的集合化简,这样我们就能搞清楚集合的元素是什么;第二步,根据子集或真子集的定义,分别写出子集或真子集(不要遗忘空集); 第三步,根据子集或真子集的不同情况分别进行分类讨论.例5 已知集合{}510|<+<=ax x A ,⎭⎬⎫⎩⎨⎧<<-=221|x x B .(1)若A B ⊆,求a 的取值范围. (2)若B A ⊆,求a 的取值范围.(3)集合A 与集合B 能否相等?若能,求出a 的值;若不能,说明理由.例6 已知2{|0}A x x px q =++=,2{|320}B x x x =-+=且A B ⊆,求实数p 、q 所满足的条件学习检测1.用适当的符号填空:{1,}1-________{}2|10,x x x -=∈R ; {0}________{}2|10,x x x +=∈R .2.集合{1,2,3}的子集共有________个.3.写出集合{(2,1),(1,2)}--的所有子集:________________________.4.已知集合{1,3,}{3,4}A m B =-=,.若B A ⊆,则实数m =________.5.已知集合{|12}{|}A x x B x x a =<<=>,,B={x |x >a }.若A ⫋B ,则实数a 的取值范围是_____________.6.满足{}a ⫋{,,}M a b c ⊆的所有集合M 共有_________个.7.已知集合A B A C ⊆⊆,,且{0,1,2,3,4,5}B =,{}0,2,4,6,8C =,则满足条件的所有集合A 共有______.8.已知a 、b ∈R ,集合{1,,}A a b a =+,0,,bB b a⎧⎫=⎨⎬⎩⎭.若A B =,则b a -的值是( ) A.1; B.-1; C.2; D.-2.9.已知集合{}2230A y y y =--=∣,{}220B x x ax b =-+=∣(a 、b 均为实数).若非空集合B A ⊆,则a b +的值是( )A.12或-2;B.-2或0;C.2或2或0;D.12或-2或010.若1,1x A A x∈∈-且,则称集合A 为“和谐集”.已知集合1122,1,,0,1,,,2,3,223M ⎧⎫=---⎨⎬⎩⎭,则集合M 的子集中,“和谐集”的个数为11.已知集合{}52|≤<-=x x A ,{}121|-<≤+=m x m x B ,且B A ⊆.求实数m 的取值范围并用集合表示.12.给定集合A 和B ,定义运算“⊗”:{|,,}A B x x m n m A n B ⊗==-∈∈.若{}4,5,6A =,{}1,2,3B =:(1)写出A B ⊗,并求集合A B ⊗中的所有元素之和;(2)写出集合A B ⊗的所有子集.13.已知集合}),12(51{Z k k x x M ∈+==,},5154{Z k k x x N ∈±==,则集合NM ,之间的关系为( )A N M ⊆ B M N ⊆ C N M = D N M ≠14、已知集合B A ⊆,},)412({Z k k x x B ∈+==π,},)214({Z k k x x C ∈+==π,那么集合A 与C 的关系为_____15、设集合{}240A x x x =+=,(){}222110B x x a x a =+++-=,A B ⊆求实数a的取值范围。
高中数学选择性必修二 4 3 2(第1课时)等比数列的前n项和 教案

4.3.2(第1课时)等比数列的前n项和教学设计
国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第一个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒……依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.
已知一千颗麦粒的质量约为40g,据查,2016——2017年度世界小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.3.2 空间两点间的距离公式
一、基础过关
1.若A (1,3,-2)、B (-2,3,2),则A 、B 两点间的距离为
( ) A.61 B .25 C .5 D.57 2.在长方体ABCD -A 1B 1C 1D 1中,若D (0,0,0)、A (4,0,0)、B (4,2,0)、A 1(4,0,3),则对角线AC 1
的长为
( )
A .9
B.29
C .5
D .2 6
3.已知点A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |等于 ( )
A.534
B.532
C.532
D.132
4.到点A (-1,-1,-1),B (1,1,1)的距离相等的点C (x ,y ,z )的坐标满足 ( )
A .x +y +z =-1
B .x +y +z =0
C .x +y +z =1
D .x +y +z =4
5.若点P (x ,y ,z )到平面xOz 与到y 轴距离相等,则P 点坐标满足的关系式为____________.
6.已知P ⎝⎛⎭⎫
32,52,z 到直线AB 中点的距离为3,其中A (3,5,-7),B (-2,4,3),则z =________. 7.在yOz 平面上求与三个已知点A (3,1,2),B (4,-2,-2),C (0,5,1)等距离的点的坐标.
8. 如图所示,BC =4,原点O 是BC 的中点,点A 的坐标为(32,1
2,0),点D 在平面yOz 上,且∠BDC
=90°,∠DCB =30°,求AD 的长度.
二、能力提升
9.已知A (2,1,1),B (1,1,2),C (2,0,1),则下列说法中正确的是
( )
A .A 、
B 、
C 三点可以构成直角三角形 B .A 、B 、C 三点可以构成锐角三角形 C .A 、B 、C 三点可以构成钝角三角形
D .A 、B 、C 三点不能构成任何三角形
10.已知A (x,5-x,2x -1),B (1,x +2,2-x ),当|AB |取最小值时,x 的值为
( )
A .19
B .-87 C.87 D.19
14
11.在空间直角坐标系中,已知点A (1,0,2),B (1,-3,1),点M 在y 轴上,且M 到A 与到B 的距离
相等,则M 的坐标是________.
12. 在长方体ABCD —A 1B 1C 1D 1中,|AB |=|AD |=3,|AA 1|=2,点M 在A 1C 1上,|MC 1|=2|A 1M |,N 在
D 1C 上且为D 1C 的中点,求M 、N 两点间的距离.
三、探究与拓展
13.在xOy平面内的直线x+y=1上确定一点M,使它到点N(6,5,1)的距离最小.
答案
1.C 2.B 3.B 4.B
5.x 2+z 2-y 2=0 6.0或-4
7.解 设P (0,y ,z ),由题意⎩
⎪⎨⎪
⎧
|P A |=|PC ||PB |=|PC |
所以⎩
⎨⎧
(0-3)2+(y -1)2+(z -2)2=(0-0)2+(y -5)2+(z -1)2(0-4)2
+(y +2)2
+(z +2)2
=(0-0)2+(y -5)2+(z -1)2
即⎩⎪⎨⎪⎧ 4y -z -6=07y +3z -1=0,所以⎩
⎪⎨⎪⎧
y =1z =-2, 所以点P 的坐标是(0,1,-2). 8.解 由题意得B (0,-2,0),C (0,2,0), 设D (0,y ,z ),则在Rt △BDC 中,∠DCB =30°, ∴BD =2,CD =23,z =3,y =-1.
∴D (0,-1,3).又∵A (32,1
2,0),
∴|AD | =
(
32)2+(1
2
+1)2+(-3)2= 6. 9.A 10.C 11.(0,-1,0)
12.解 如图分别以AB 、AD 、AA 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系.
由题意可知C (3,3,0), D (0,3,0),∵|DD 1|=|CC 1|=2, ∴C 1(3,3,2),D 1(0,3,2),
∵N 为CD 1的中点,∴N ⎝⎛⎭⎫32,3,1. M 是A 1C 1的三等分点且靠近A 1点, ∴M (1,1,2).
由两点间距离公式,得|MN | =⎝⎛⎭⎫32-12
+(3-1)2+(1-2)2 =212
.
13.解 ∵点M 在直线
x +y =1(xOy 平面内)上,∴可设M (x,1-x,0).
∴|MN |=
(x -6)2+(1-x -5)2+(0-1)2 =2(x -1)2+51≥51, 当且仅当x =1时取等号,
∴当点M的坐标为(1,0,0)时, |MN|min=51.。