2008年长春市中考数学试题及答案
长春市2008年中考语文试卷及答案

2008年长春市初中毕业生学业考试语文试题本试卷包括两道大题,共28道小题。
共6页。
全卷满分120分。
考试时间为120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内。
2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效。
一.阅读(60分)(一)名句积累与运用(15分)1.蒹葭苍苍,。
(《诗经·蒹葭》)2.安得广厦千万间,!(杜甫《茅屋为秋风所破歌》)3.,。
无为在歧路,儿女共沾巾。
(王勃《送杜少府之任蜀州》)4.,,古道西风瘦马。
(马致远《天净沙·秋思》)5.学习与思考是紧密结合的过程,“学而不思则罔,思而不学则殆”这句话强调了学习与思考的辩证关系;同时,学习又是相互联系,从旧知中不断获得新知的过程,这自然使我们联想到从《论语》选材的课文中学习过的:,。
6.苏轼说“求物之妙,如系风捕影,能使物了然于心者”。
《醉翁亭记》中欧阳修以神来之笔捕捉到了四时之景的诗情画意,其中描写春夏之景的两个句子:,。
7.范仲淹在《渔家傲秋思》这首词中用来表达征人归心切、思乡迫,破敌功未成,把酒难释怀之意的句子是:8.“士不可以不弘毅,任重而道远。
”古代先贤有这样风范的人不胜枚举,请写出初中课本内学习过的古诗词中能表现鉴定信念,战胜困难的勇气和决心的连续两句,并标明作者或出处。
句子:作者或出处:(二)文言文阅读(15分)(甲)阅读下文,回答问题。
(10分)出师表先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。
然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。
诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。
宫中府中,俱为一体,陟罚臧否,不宜异同。
若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理,不宜偏私,使内外异法也。
2024年长春市中考数学试卷

选择题在平面直角坐标系中,点A(3, -2)关于x轴对称的点的坐标是:A. (-3, 2)B. (-3, -2)C. (3, 2)(正确答案)D. (2, 3)已知等腰三角形的两边长分别为3和5,则这个等腰三角形的周长为:A. 8B. 11C. 13(正确答案)D. 11或13函数y = 2x + 1与y = 2x - 3的图象:A. 平行且关于x轴对称B. 平行且关于y轴对称C. 相交且交点在y轴上D. 平行且关于直线y = x对称(正确答案)若关于x的一元二次方程x2 - 4x + m = 0有两个相等的实数根,则m的值为:A. -4B. 4(正确答案)C. 2D. -2下列计算正确的是:A. 3a + 2b = 5abB. a2 · a3 = a6C. (a2)3 = a6(正确答案)D. a6 ÷ a3 = a1已知圆的半径为r,圆心到直线l的距离为d,若直线l与圆相切,则:A. d > rB. d < rC. d = r(正确答案)D. d与r的大小关系不确定在比例尺为1:1000的地图上,测得某矩形区域的图上面积为2cm2,则该矩形区域的实际面积为:A. 2m2B. 20m2C. 200m2(正确答案)D. 2000m2下列不等式组中,解集为x > 2的是:A. {x | x > 1, x > 3}B. {x | x > 1, x ≤ 2}C. {x | x ≥ 2, x < 3}D. {x | x > 1, x > 2}(正确答案)若a、b、c为三角形的三边长,且满足(a - 5)2 + |b - 12| + c2 - 26c + 169 = 0,则此三角形的形状为:A. 等腰三角形B. 等边三角形C. 直角三角形(正确答案)D. 等腰直角三角形。
吉林省长春市中考数学卷及答案版

2008年吉林省长春市初中学业水平测试数学试题一、选择题(每小题3分,共分39,每小题给出4个答案,其中只有一个正确,把所选答案的编号写在题目后面的括号内)1、如图,是北京奥运会自行车比赛项目标志,则图中两轮所在圆的位置关系是【 】A .内含B .相交C .相切D .外离 2、化简(-3)2的结果是【 】A.3B.-3C.±3 D .93、如果2是方程02=-c x 的一个根,那么c 的值是 【 】A .4B .-4C .2D .-24、下列成语所描述的事件是必然发生的是 【 】A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖5、如图,AB 是⊙O 的直径,弦CD ⊥AB,垂足为E,如果AB=20,CD=16, 那么线段OE 的长为【 】 A 、10 B 、8 C 、6 D 、46、抛物线()223y x =++的顶点坐标是 【 】A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3) 7、观察下列银行标志,从图案看是中心对称图形的有( )个A 、1个B 、2个C 、3个D 、4个 8、二次函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是【 】A .3<kB .03≠<k k 且C .3≤kD .03≠≤k k 且9、某校九年级(1)班50名学生中有20名团员,他们都积极报名参加学校开展的“文明劝导活动”。
根据要求,该班从团员中随机抽取1名参加,则该班团员京京被抽到的概率是 【 】 A .150B .12C .120D . 2510、在△ABC 中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是【 】A .23B .1C .2D . 3211、如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r ,扇形的半径为R ,扇形的圆心角等于90°,则r 与R 之间的关系是【 】 A 、R =2r ; B 、3R r =; C 、R =3r ; D 、R =4r .12.已知反比例函数xk y =的图象如下右图所示,则二次函数222k x kx y +-=的图象大致为【 】13、如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F 点P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是【 】94π-.984π-C .948πD .988π- 二、填空题(每小题3分,共15分,请把答案填在横线上) 14、点(4,-3)关于原点对称的点的坐标是 _____________15、⊙O 的半径为3cm ,点M 是⊙O 外一点,OM =4 cm ,则以M 为圆心且与⊙O 相切的圆的半径是 cm. 16、将抛物线2(0)y ax bx c a =++≠向下平移3个单位,再向左平移4个单位得到抛物线2245y x x =--+,则原抛物线的顶点坐标是 。
2008年华北各省中考数学代数解答题含答案-

2008年华北各省中考数学代数---解答题(08北京市卷)13.(本小题满分5分)计112sin45(2)3-⎛⎫+-π- ⎪⎝⎭.112sin45(2π)3-⎛⎫+-- ⎪⎝⎭2132=⨯+- ································································································4分2=. ···················································································································5分(08北京市卷)14.(本小题满分5分)解不等式5122(43)x x--≤,并把它的解集在数轴上表示出来14.(本小题满分5分)解:去括号,得51286x x--≤.·············································································1分移项,得58612x x--+≤. ·····················································································2分合并,得36x-≤.·····································································································3分系数化为1,得2x-≥.·····························································································4分不等式的解集在数轴上表示如下:(08北京市卷)16.(本小题满分5分)如图,已知直线3y kx=-经过点M,求此直线与x轴,y轴的交点坐标.16.(本小题满分5分)解:由图象可知,点(21)M-,在直线3y kx=-上, ················································1分231k∴--=.解得2k=-. ···············································································································2分∴直线的解析式为23y x=--. ················································································3分y令0y =,可得32x =-. ∴直线与x 轴的交点坐标为302⎛⎫- ⎪⎝⎭,.······································································· 4分 令0x =,可得3y =-.∴直线与y 轴的交点坐标为(03)-,. ········································································ 5分 (08北京市卷)17.(本小题满分5分)已知30x y -=,求222()2x yx y x xy y +--+的值.解:222()2x yx y x xy y+--+ 22()()x yx y x y +=-- ······································································································· 2分 2x yx y+=-. ··················································································································· 3分 当30x y -=时,3x y =. ························································································· 4分原式677322y y y y y y +===-. ·························································································· 5分(08北京市卷)20.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:图1“限塑令”实施前,平均一次购物使用不同数量塑料..购物袋的人数统计图 “限塑令”实施后,使用各种 购物袋的人数分布统计图其它%46%24%“限塑令”实施后,塑料购物袋使用后的处理方式统计表请你根据以上信息解答下列问题:(1)补全图1,“限塑令”实施前,如果每天约有2 000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋? (2)补全图2,并根据..统计图...和.统计..表.说.明.,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.解:(1)补全图1见下图.·························································································· 1分9137226311410546373003100100⨯+⨯+⨯+⨯+⨯+⨯+⨯==(个).这100位顾客平均一次购物使用塑料购物袋的平均数为3个. ································ 3分200036000⨯=.估计这个超市每天需要为顾客提供6000个塑料购物袋. ·········································· 4分 (2)图2中,使用收费塑料购物袋的人数所占百分比为25%. ······························ 5分根据图表回答正确给1分,例如:由图2和统计表可知,购物时应尽量使用自备袋和押金式环保袋,少用塑料购物袋;塑料购物袋应尽量循环使用,以便减少塑料购物袋的使用量,为环保做贡献.图1“限塑令”实施前,平均一次购物使用不同数量塑料..购物袋的人数统计图······································································································································· 6分(08北京市卷)21.(本小题满分5分)列方程或方程组解应用题:京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?21.解:设这次试车时,由北京到天津的平均速度是每小时x 千米,则由天津返回北京的平均速度是每小时(40)x +千米. ······························································································ 1分 依题意,得3061(40)602x x +=+. ············································································ 3分 解得200x =. ············································································································· 4分 答:这次试车时,由北京到天津的平均速度是每小时200千米. ····························· 5分(08北京市卷)23.已知:关于x 的一元二次方程2(32)220(0)mx m x m m -+++=>.(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中12x x <).若y 是关于m 的函数,且212y x x =-,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量m 的取值范围满足什么条件时,2y m ≤. 23.(1)证明:2(32)220mx m x m -+++=是关于x222[(32)]4(22)44(2)m m m m m m ∴∆=-+-+=++=+.当0m >时,2(2)0m +>,即0∆>.∴方程有两个不相等的实数根.……2分(2)解:由求根公式,得(32)(2)2m m x m+±+=.22m x m+∴=或1x =. ······························································································· 3分 0m >,222(1)1m m m m++∴=>. 12x x <,11x ∴=,222m x m +=. ···························································································· 4分 21222221m y x x m m+∴=-=-⨯=. 即2(0)y m m =>为所求. ····················· 5分(3)解:在同一平面直角坐标系中分别画出2(0)y m m=>与2(0)y m m =>的图象. 6分由图象可得,当1m ≥时,2y m ≤. ···· 7分(08北京市卷)24.在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A B ,两点(点A 在点B的左侧),与y 轴交于点C ,点B 的坐标为(30),,将直线y kx =沿y 轴向上平移3个单位长度后恰好经过B C ,两点.(1)求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标; (3)连结CD ,求OCA ∠与OCD ∠两角和的度数. 24.解:(1)y kx =沿y 轴向上平移3个单位长度后经过y 轴上的点C ,(03)C ∴,.设直线BC 的解析式为3y kx =+.(30)B ,在直线BC 上, 330k ∴+=.解得1k =-.∴直线BC 的解析式为3y x =-+.……1分抛物线2y x bx c =++过点B C ,,9303b c c ++=⎧∴⎨=⎩,. 解得43b c =-⎧⎨=⎩,.x0)∴抛物线的解析式为243y x x =-+.······································································· 2分 (2)由243y x x =-+. 可得(21)(10)D A -,,,.3OB ∴=,3OC =,1OA =,2AB =.可得OBC △是等腰直角三角形.45OBC ∴∠=,CB =如图1,设抛物线对称轴与x 轴交于点F ,112AF AB ∴==. 过点A 作AE BC ⊥于点E .90AEB ∴∠=.可得BE AE ==CE =在AEC △与AFP △中,90AEC AFP ∠=∠=,ACE APF ∠=∠,AEC AFP ∴△∽△.AE CE AF PF ∴==. 解得2PF =.点P 在抛物线的对称轴上,∴点P 的坐标为(22),或(22)-,. ············································································· 5分 (3)解法一:如图2,作点(10)A ,关于y 轴的对称点A ',则(10)A '-,. 连结A C A D '',,可得A C AC '==OCA OCA '∠=∠. 由勾股定理可得220CD =,210A D '=. 又210A C '=,222A D A C CD ''∴+=.A DC '∴△是等腰直角三角形,90CA D '∠=,x图1x图245DCA '∴∠=.45OCA OCD '∴∠+∠=. 45OCA OCD ∴∠+∠=.即OCA ∠与OCD ∠两角和的度数为45. ······························································· 7分解法二:如图3,连结BD .同解法一可得CD =AC = 在Rt DBF △中,90DFB ∠=,1BF DF ==,DB ∴=在CBD △和COA △中,1DB AO ==3BC OC ==CD CA == DB BC CDAO OC CA∴==. CBD COA ∴△∽△. BCD OCA ∴∠=∠.45OCB ∠=,45OCA OCD ∴∠+∠=.即OCA ∠与OCD ∠两角和的度数为45. ······························································· 7分(08天津市卷)19.(本小题6分)解二元一次方程组3582 1.x y x y +=⎧⎨-=⎩,19.本小题满分6分.解 ∵3582 1.x y x y +=⎧⎨-=⎩,①②由②得12-=x y ,③ ······························································································ 2分 将③代入①,得8)12(53=-+x x .解得1=x .代入③,得1=y .x图3∴原方程组的解为11.x y =⎧⎨=⎩,·························································································· 6分(08天津市卷)20.(本小题8分)已知点P (2,2)在反比例函数xky =(0≠k )的图象上, (Ⅰ)当3-=x 时,求y 的值; (Ⅱ)当31<<x 时,求y 的取值范围. 20.本小题满分8分.解 (Ⅰ)∵点P (2,2)在反比例函数xky =的图象上, ∴22k=.即4=k . ··································································································· 2分 ∴反比例函数的解析式为xy 4=. ∴当3-=x 时,34-=y . ·························································································· 4分 (Ⅱ)∵当1=x 时,4=y ;当3=x 时,34=y , ················································ 6分 又反比例函数xy 4=在0>x 时y 值随x 值的增大而减小, ······································· 7分 ∴当31<<x 时,y 的取值范围为434<<y . ···························································· 8分(08天津市卷)22.(本小题8分)下图是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时).请分别计算这些车辆行驶速度的平均数、中位数和众数(结果精确到0.1). 22.本小题满分8分. 解 观察直方图,可得车速为50千米/时的有2辆,车速为51千米/时的有5辆, 车速为52千米/时的有8辆,车速为53千米/时的有6辆,车速为54千米/时的有4辆,车速为55千米/时的有2辆,车辆总数为27, ········································································································ 2分 ∴这些车辆行驶速度的平均数为4.52)255454653852551250(271≈⨯+⨯+⨯+⨯+⨯+⨯. ········································· 4分 ∵将这27个数据按从小到大的顺序排列,其中第14个数是52,∴这些车辆行驶速度的中位数是52. ···································································· 6分 ∵在这27个数据中,52出现了8次,出现的次数最多,∴这些车辆行驶速度的众数是52. ············································································· 8分(08天津市卷)24.(本小题8分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.天津市奥林匹克中心体育场——“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度. (Ⅰ)设骑车同学的速度为x 千米/时,利用速度、时间、路程之间的关系填写下表. (要求:填上适当的代数式,完成表格)(Ⅱ)列出方程(组),并求出问题的解. 24.本小题满分8分. 解 (Ⅰ)······························································· 3分 (Ⅱ)根据题意,列方程得3121010+=x x .······························································ 5分 解这个方程,得15=x . ····················································································· 7分 经检验,15=x 是原方程的根. 所以,15=x .答:骑车同学的速度为每小时15千米. ··································································· 8分(08天津市卷)26.(本小题10分)已知抛物线c bx ax y ++=232,(Ⅰ)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围; (Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由. 26.本小题满分10分.解(Ⅰ)当1==b a ,1-=c 时,抛物线为1232-+=x x y , 方程01232=-+x x 的两个根为11-=x ,312=x . ∴该抛物线与x 轴公共点的坐标是()10-,和103⎛⎫ ⎪⎝⎭,. ·········································· 2分 (Ⅱ)当1==b a 时,抛物线为c x x y ++=232,且与x 轴有公共点.对于方程0232=++c x x ,判别式c 124-=∆≥0,有c ≤31. ·································· 3分①当31=c 时,由方程031232=++x x ,解得3121-==x x . 此时抛物线为31232++=x x y 与x 轴只有一个公共点103⎛⎫- ⎪⎝⎭,. ·························· 4分 ②当31<c 时, 11-=x 时,c c y +=+-=1231, 12=x 时,c c y +=++=5232.。
长春市中考数学试题含答案解析(word版)

一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 3的相反数是()A.﹣3 B.﹣13C.13D.3【答案】A【解析】试题分析: 3的相反数是﹣3故选A.考点:相反数.2.据统计,2016年长春市接待旅游人数约人次,这个数用科学记数法表示为()A.67×106B.×105C.×107D.×108【答案】C考点:科学记数法.3.下列图形中,可以是正方体表面展开图的是()A.B.C.D.【答案】D【解析】试题分析:下列图形中,可以是正方体表面展开图的是,故选D考点:几何体的展开图.4.不等式组10251xx-≤⎧⎨-<⎩的解集为()A.x<﹣2 B.x≤﹣1 C.x≤1 D.x<3【答案】C【解析】试题分析:10 251 xx-≤⎧⎨-<⎩①②解不等式①得:x≤1,解不等式②得:x<3,∴不等式组的解集为x≤1,故选C.考点:解一元一次不等式组.5.如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54° B.62° C.64° D.74°【答案】C考点:1.平行线的性质;2.三角形的内角和.6.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【答案】A【解析】试题分析:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选A.考点:列代数式.7.如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA的延长线于点D,则∠D的大小为()A.29° B.32° C.42° D.58°【答案】B考点:1.切线的性质;2.等腰三角形的性质;3.三角形的外角的性质;4.三角形的内角和定理.8.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数y=kx(k>0,x>0)的图象经过点C,则k的值为()A.33B.32C.233D.3【答案】D【解析】试题分析:∵四边形ABCD是平行四边形,点A的坐标为(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=3,∴C(1,3),∴k=3,故选D.考点:1.平行四边形的性质;2.反比例函数图象上点的坐标特征.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.计算:2×3= .【答案】6【解析】试题分析:2×3=6;考点:二次根式的乘法.10.若关于x的一元二次方程x2+4x+a=0有两个相等的实数根,则a的值是.【答案】4考点:根的判别式.11.如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB:BC=1:2,DE=3,则EF的长为.【答案】6【解析】试题分析:∵a∥b∥c,∴AB DEBC EF=,∴132EF=,∴EF=6.考点:平行线分线段成比例定理.12.如图,则△ABC中,∠BAC=100°,AB=AC=4,以点B为圆心,BA长为半径作圆弧,交BC于点D,则的长为.(结果保留π)【答案】8 9π考点:1.弧长公式;2.等腰三角形的性质;3.三角形内角和定理.13.如图①,这个图案是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.此图案的示意图如图②,其中四边形ABCD和四边形EFGH都是正方形,△ABF、△BCG、△CDH、△DAE是四个全等的直角三角形.若EF=2,DE=8,则AB的长为.【答案】10【解析】试题分析:依题意知,BG=AF=DE=8,EF=FG=2∴BF=BG ﹣BF=6,∴直角△ABF 中,利用勾股定理得:AB=22AF BF =10.考点:勾股定理的证明.14.如图,在平面直角坐标系中,△ABC 的顶点A 在第一象限,点B ,C 的坐标为(2,1),(6,1),∠BAC=90°,AB=AC ,直线AB 交x 轴于点P .若△ABC 与△A'B'C'关于点P 成中心对称,则点A'的坐标为 .【答案】(-1,-2)考点:等腰直角三角形.三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.先化简,再求值:3a(a2+2a+1)﹣2(a+1)2,其中a=2.【答案】3a3+4a2﹣a﹣2,36.【解析】试题分析:原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a的值代入计算即可求出值.试题解析:原式=3a3+6a2+3a﹣2a2﹣4a﹣2=3a3+4a2﹣a﹣2,当a=2时,原式=24+16﹣2﹣2═36.考点:整式的混合运算﹣化简求值.16.一个不透明的口袋中有一个小球,上面分别标有字母a,b,c,每个小球除字母不同外其余均相同,小园同学从口袋中随机摸出一个小球,记下字母后放回且搅匀,再从可口袋中随机摸出一个小球记下字母.用画树状图(或列表)的方法,求小园同学两次摸出的小球上的字母相同的概率.【答案】1 3考点:列表法与树状图法.17.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,求大厅两层之间的距离BC 的长.(结果精确到米)(参考数据:sin31°=,cos31°=,tan31°=)【答案】大厅两层之间的距离BC的长约为米.考点:解直角三角形的应用﹣坡度坡角问题.18.某校为了丰富学生的课外体育活动,购买了排球和跳绳.已知排球的单价是跳绳的单价的3倍,购买跳绳共花费750元,购买排球共花费900元,购买跳绳的数量比购买排球的数量多30个,求跳绳的单价.【答案】跳绳的单价是15元.【解析】试题分析:首先设跳绳的单价为x元,则排球的单价为3x元,根据题意可得等量关系:750元购进的跳绳个数﹣900元购进的排球个数=30,依此列出方程,再解方程可得答案.试题解析:设跳绳的单价为x元,则排球的单价为3x元,依题意得:7509003x x=30,解方程,得x=15.经检验:x=15是原方程的根,且符合题意.答:跳绳的单价是15元.考点:分式方程的应用.19.如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.【答案】86°考点:1.菱形的性质;2.旋转的性质;3.三角形的性质和判定.20.某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.【答案】(1)n=60;(2)估计该年级600名学生中睡眠时长不足7小时的人数为90人.【解析】考点:条形统计图的综合运用.21.甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.【答案】(1)80;1140;(2)乙车间加工服装数量y与x之间的函数关系式为y=60x﹣120(4≤x≤9);(3)甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时.【解析】试题分析:(1)根据工作效率=工作总量÷工作时间,即可求出甲车间每小时加工服装件数,再根据这批服装的总件数=甲车间加工的件数+乙车间加工的件数,即可求出这批服装的总件数;(2)根据工作效率=工作总量÷工作时间,即可求出乙车间每小时加工服装件数,根据工作时间=工作总量÷工作效率结合工作结束时间,即可求出乙车间修好设备时间,再根据加工的服装总件数=120+工作效率×工作时间,即可求出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于1000,求出x值,此题得解.试题解析:(1)甲车间每小时加工服装件数为720÷9=80(件),这批服装的总件数为720+420=1140(件).故答案为:80;1140.(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时).∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).(3)甲车间加工服装数量y与x之间的函数关系式为y=80x,当80x+60x﹣120=1000时,x=8.答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时.考点:1.一次函数的应用;2.解一元一次方程.22.【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=12 BC.(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH 的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形你添加的条件是:.(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分图形的面积和为.【答案】【探究】平行四边形.理由见解析;【应用】(1)添加AC=BD,理由见解析;(2)54.(2)先判断出S△BCD=4S△CFG,同理:S△ABD=4S△AEH,进而得出S四边形EFGH=52,再判断出OM=ON,进而得出S阴影=12S四边形EFGH即可.试题解析:【探究】平行四边形.理由:如图1,连接AC,∵E是AB的中点,F是BC的中点,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,综上可得:EF∥HG,EF=HG,故四边形EFGH是平行四边形.【应用】(1)添加AC=BD,理由:连接AC,BD,同(1)知,EF=12 AC,同【探究】的方法得,FG=12 BD,∵AC=BD,∴EF=FG,∵四边形EFGH是平行四边形,∴▱EFGH是菱形;故答案为AC=BD;考点:1.三角形的中位线定理;2.平行四边形的判定;3.菱形的判定;4.相似三角形的判定和性质.23.如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6,点P从点A出发,沿折线AB﹣BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒43个单位长度的速度运动,P,Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.(1)求线段AQ的长;(用含t的代数式表示)(2)连结PQ,当PQ与△ABC的一边平行时,求t的值;(3)如图②,过点P作PE⊥AC于点E,以PE,EQ为邻边作矩形PEQF,点D为AC的中点,连结DF.设矩形PEQF与△ABC重叠部分图形的面积为S.①当点Q在线段CD上运动时,求S与t之间的函数关系式;②直接写出DF将矩形PEQF分成两部分的面积比为1:2时t的值.【答案】(1)AQ=8﹣43t(0≤t≤4);(2)t=32s或3s时, PQ与△ABC的一边平行;(3)①当0≤t≤32时,S=﹣16t2+24t.当32<t≤2时,S=﹣163t2+40t-48.当2<t≤3时,S=﹣203t2+30t﹣24.②当t=914s或3631s时,DF将矩形PEQF分成两部分的面积比为1:2.【解析】(3)①如图1中,a、当0≤t≤32时,重叠部分是四边形PEQF.S=PE•EQ=3t•(8﹣4t﹣43t)=﹣16t2+24t.b、如图2中,当32<t≤2时,重叠部分是四边形PNQE.S=S四边形PEQF﹣S△PFN=(16t2﹣24t)﹣12•45[5t﹣54(8﹣43t)]•35[5t﹣54(8﹣43t0]=﹣163t2+40t-48.C、如图3中,当2<t≤3时,重叠部分是五边形MNPBQ.S=S四边形PBQF S△FNM=43t•[6﹣3(t﹣2)]﹣12•[43t﹣4(t﹣2)]•34[43t﹣4(t﹣2)]=﹣203t2+30t﹣24.∴DE:DQ=NE:FQ=1:3,∴(3t﹣3):(3﹣43t)=1:3,解得t=36 31s,综上所述,当t=914s或3631s时,DF将矩形PEQF分成两部分的面积比为1:2.考点:1.矩形的性质;2.勾股定理;3.相似三角形的性质和判定;4.平行线分线段成比例定理.24.定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它们的相关函数为y=()()1010x xx x-+<⎧⎪⎨-≥⎪⎩.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣x2+4x﹣12.①当点B(m,32)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣12的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M,N的坐标分别为(﹣12,1),(92,1}),连结MN.直接写出线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围.【答案】(1)a=1;(2)①m=2﹣5或m=2+2或m=2﹣2.②当﹣3≤x≤3时,函数y=﹣x2+4x﹣12的相关函数的最大值为432,最小值为﹣12;(3)n的取值范围是﹣3<n≤﹣1或1<n≤54.(2)二次函数y=﹣x2+4x﹣12的相关函数为y=()()2214021402x x xx x x⎧-+<⎪⎪⎨⎪-+-≥⎪⎩①当m<0时,将B(m,32)代入y=x2﹣4x+12得m2﹣4m+12=32,解得:5或m=25当m≥0时,将B(m,32)代入y=﹣x2+4x﹣12得:﹣m2+4m﹣12=32,解得:2或m=22.综上所述:m=252或m=22.②当﹣3≤x<0时,y=x2﹣4x+12,抛物线的对称轴为x=2,此时y随x的增大而减小,∴此时y的最大值为432.当0≤x≤3时,函数y=﹣x2+4x﹣12,抛物线的对称轴为x=2,当x=0有最小值,最小值为﹣12,当x=2时,有最大值,最大值y=72.综上所述,当﹣3≤x≤3时,函数y=﹣x2+4x﹣12的相关函数的最大值为432,最小值为﹣12;(3)如图1所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有1个公共点.所以当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3.如图2所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点考点:二次函数的综合应用.。
二次函数选择题(含答案)

2008年全国中考数学试题分类精编二次函数专题一、选择题1.(2008资阳市) 在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是 ( )A .y =2(x -2)2+ 2 B .y =2(x + 2)2-2C .y =2(x -2)2-2D .y =2(x + 2)2+ 22.(2008四川达州市)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,当0y <时,x 的取值范围是( )A .13x -<<B .3x >C .1x <-D .3x >或1x <-3.(2008泰州市)二次函数342++=x x y 的图像可以由二次函数2x y =的图像平移而得到,下列平移正确的是( )A .先向左平移2个单位,再向上平移1个单位B .先向左平移2个单位,再向下平移1个单位C .先向右平移2个单位,再向上平移1个单位D .先向右平移2个单位,再向下平移1个单位 4.(2008山西省)抛物线5422---=x x y 经过平移得到22x y -=,平移方法是( )A .向左平移1个单位,再向下平移3个单位B .向左平移1个单位,再向上平移3个单位C .向右平移1个单位,再向下平移3个单位D .向右平移1个单位,再向上平移3个单位 5.(2008年陕西省)已知二次函数2y ax bx c =++(其中000a b c >><,,),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧.以上说法正确的个数为( ) A .0B .1C .2D .36、(2008年吉林省长春市)抛物线()223y x =++的顶点坐标是 【 】A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3) 7、(2008年吉林省长春市)二次函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是【】A .3<kB .03≠<k k 且C .3≤kD .03≠≤k k 且8.(2008年吉林省长春市)已知反比例函数xk y =的图象如下右图所示,则二次函数222k x kx y +-=的图象大致为【】9.(2008年浙江省嘉兴市)一个函数的图象如图,给出以下结论:①当0x=时,函数值最大;②当02x <<时,函数y 随x 的增大而减小;xyO 31- (2题图)y O x y O x yO xyO xyOxA .B .C .D .③存在001x <<,当0x x =时,函数值为0.其中正确的结论是( ) A .①②B .①③C .②③D .①②③10.(2008 湖北 荆门)把抛物线y =x 2+bx +c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y =x 2-3x +5,则( )(A) b =3,c =7. (B) b =6,c =3. (C) b =-9,c =-5. (D) b =-9,c =21. 11.(2008 河北)如图,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( )12.(2008 湖南 长沙)二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确的是( )A 、a <0B 、abc >0C 、c b a ++>0D 、ac b 42->013.(2008江西)函数243y x x =-+化成2()y a x h k =-+的形式是( )A .2(2)1y x =-- B .2(2)1y x =+-C .2(2)7y x =-+D .2(2)7y x =++14.(2008 湖北 恩施) 将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( )A. 7B. 6C. 5D. 4 15.(2008湖北鄂州)小明从图5所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有( )A .2个B .3个C .4个D .5个16、(2008 福建龙岩)已知函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( )A .a >0,c >0B .a <0,c <0C .a <0,c >0D .a >0,c <017、(2008 山东 临沂)如图,已知正三角形ABC 的边长为1,E 、F 、G 分别是AB 、BC 、CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数的图象大致是( )x ADCByx10 O 100A .yx10 O 100B .yx10 O 100C .5 yx10 O 100D ...A xyO43xyO 43 BxyO43 C xyO43 D第14题图F A GEB C18、(2008贵州贵阳)二次函数2(1)2y x =-+的最小值是( )A.2-B .2C .1-D .119. (2008甘肃兰州)已知二次函数2y ax bx c =++(0a ≠)的图象如图5所示,有下列4个结论:①0abc >;②b a c <+;③420a b c ++>;④240b ac ->;其中正确的结论有( )A .1个B .2个C .3个D .4个20. (2008甘肃兰州)下列表格是二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a a b ≠,,x6.17 6.18 6.19 6.202y ax bx c =++ 0.03-0.01- 0.02 0.04A .6 6.17x <<B .C .6.18 6.19x <<D .6.19 6.20x <<21. (2008江苏镇江)福娃们在一起探讨研究下面的题目:参考下面福娃们的讨论,请你解该题,你选择的答案是( )贝贝:我注意到当0x=时,0y m =>.晶晶:我发现图象的对称轴为12x =. 欢欢:我判断出12x a x <<.迎迎:我认为关键要判断1a -的符号. 妮妮:m 可以取一个特殊的值.22. (2008上海市)在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( )A .3B .2C .1D .023. (2008湖北仙桃等) 如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为 ( ) A. 0 B. -1 C. 1 D. 2函数2y x x m =-+(m 为常数)的图象如左图, 如果x a =时,0y <;那么1x a =-时,函数值( ) A .0y < B .0y m <<C .y m >D .y m =xyO x 1 x 224. (2008齐齐哈尔).对于抛物线21(5)33y x =--+,下列说法正确的是( )A .开口向下,顶点坐标(53),B .开口向上,顶点坐标(53),C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,25、(2008年荷泽市)若A (1,413y -),B (2,45y -),C (3,41y )为二次函数245y x x =+- 的图象上的三点,则1,y 2,y 3y 的大小关系是( ) A .123y y y << B .213y y y << C .312y y y <<D .132y y y <<26、(2008年庆阳市) 若2A.243y x x =-+B.234y x x =-+C.233y x x =-+ D.248y x x =-+27.(2008山东 滨州)若A (-4,y 1),B (-3,y 2),C (1,y 3)为二次函数y=x 2+4x-5的图象上的三点,则y 1,y 2,y 3的大小关系是( )A.y 1<y 2<y 3B.y 2<y 1<y 3C.y 3<y 1<y 2D.y 1<y 3<y 2 28.(2008四川 凉山州)已知二次函数21y ax bx =++的大致图象如图所示,那么函数y ax b =+的图象不经过( )A .一象限B .二象限C .三象限D .四象限29.(2008齐齐哈尔).对于抛物线21(5)33y x =--+,下列说法正确的是( )A .开口向下,顶点坐标(53),B .开口向上,顶点坐标(53),C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,30、(2008湖北武汉)下列命题:①若0a b c ++=,则240bac -≥;②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根;③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根;④若240bac ->,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是( ).A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④. 31、(2008湖北孝感)把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )A.2(1)3y x =--- B. 2(1)3y x =-+- C. 2(1)3y x =--+ D. 2(1)3y x =-++32.(2008山东泰安)函数1y x x=+的图象如图所示,下列对该函数性质的论断不可能正....确.的是( ) A .该函数的图象是中心对称图形B .当0x>时,该函数在1x =时取得最小值2C .在每个象限内,y 的值随x 值的增大而减小D .y 的值不可能为133.(2008山东泰安)在同一直角坐标系中,函数y mx m =+和222y mx x =-++(m 是常数,且0m ≠)的图象可能..是()34、(2008 台湾)如图坐标平面上有一透明片,透明片上有一拋物线及一点P ,且拋物线为二次函数y =x 2的图形,P 的坐标(2,4)。
2008年东北各省中考数学代数-解答题(含答案)

2008年东北各省中考数学代数---解答题(08黑龙江哈尔滨)19.(本题 5分)先化简,再求代数式2x 1-x 2x 3-12+÷+)(的值,其中x =4sin45°-2cos60°(08黑龙江哈尔滨)21.(本题5分)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?(参考公式:二次函数y =ax 2+bx +c =0,当x =2ab-时,a 4b ac 4y 2-=最大(小)值)(08黑龙江哈尔滨)24.(本题6分)哈市某中学为了解该校学生对四种国家一级保护动物的喜爱情况,围绕“在丹顶鹤、大熊猫、滇金丝猴、藏羚羊四种国家一级保护动物中,你最喜欢哪一种动物?(只写一种)”这一问题,在全校范围内随机抽取部分同学进行问卷调查.甲同学根据调查结果计算得知:最喜欢丹顶鹤的学生人数占被抽取人数的 16%;乙同学根据调查结果绘制成如下不完整的条形统计图.请你根据甲、乙两位同学提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生? (2)补全条形统计图的空缺部分;(3)如果全校有1200名学生,请你估计全校最喜欢滇金丝猴的学生有多少名?(08黑龙江哈尔滨)26.(本题8分)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同. (1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元? (2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用. (08黑龙江齐齐哈尔)21.(本小题满分5分)08黑龙江齐齐哈尔,鸡西,佳木斯试卷相同先化简:224226926a a a a a --÷++++,再任选一个你喜欢的数代入求值.21.解:224226926a a a a a --÷++++2(2)(2)2(3)2(3)2a a a a a +-+=++- ······················ (1分)242633a a a a ++=-+++ ·························· (2分) 23a =+ ································ (3分) n 取3-和2以外的任何数,计算正确都可给分. ·············· (5分)(08黑龙江齐齐哈尔)24.(本小题满分7分)A B C ,,三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一: 表一(1)请将表一和图一中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.24.解:(1)90;补充后的图如下(每项1分,计2分)(2)A:30035105⨯=% B :30040120⨯=% 图二 95 90 8580 7570 分数/分 图一竞选人A B C95 90 85 80 7570 分数/分竞选人 A B CC :3002575⨯=%(方法对1分,计算结果全部正确1分,计2分)(3)A :854903105392.5433⨯+⨯+⨯=++(分)B :954803120398433⨯+⨯+⨯=++(分) C :90485375384433⨯+⨯+⨯=++(分) B 当选(方法对1分,计算结果全部正确1分,判断正确1分,计3分)(08黑龙江齐齐哈尔)25.(本小题满分8分)武警战士乘一冲锋舟从A 地逆流而上,前往C 地营救受困群众,途经B 地时,由所携带的救生艇将B 地受困群众运回A 地,冲锋舟继续前进,到C 地接到群众后立刻返回A 地,途中曾与救生艇相遇.冲锋舟和救生艇距A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数图象如图所示.假设营救群众的时间忽略不计,水流速度和冲锋舟在静水中的速度不变. (1)请直接写出冲锋舟从A 地到C 地所用的时间. (2)求水流的速度.(3)冲锋舟将C 地群众安全送到A 地后,又立即去接应救生艇.已知救生艇与A 地的距离y (千米)和冲锋舟出发后所用时间x (分)之间的函数关系式为11112y x =-+,假设群众上下船的时间不计,求冲锋舟在距离A 地多远处与救生艇第二次相遇?25.解:(1)24分钟 ·························· (1分) (2)设水流速度为a 千米/分,冲锋舟速度为b 千米/分,根据题意得24()20(4424)()20b a a b -=⎧⎨-+=⎩························· (3分) 解得1121112a b ⎧=⎪⎪⎨⎪=⎪⎩答:水流速度是112千米/分. ······················ (4分) (3)如图,因为冲锋舟和水流的速度不变,所以设线段a 所在直线的函数解析式为 x (分)56y x b =+ ······························ (5分) 把(440),代入,得1103b =-∴线段a 所在直线的函数解析式为511063y x =-·············· (6分) 由11112511063y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩求出20523⎛⎫ ⎪⎝⎭,这一点的坐标 ··············· (7分)∴冲锋舟在距离A 地203千米处与求生艇第二次相遇. (8分) (08黑龙江齐齐哈尔)27.(本小题满分10分)某工厂计划为震区生产A B ,两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料30.5m ,一套B 型桌椅(一桌三椅)需木料30.7m ,工厂现有库存木料3302m . (1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A 型桌椅的生产成本为100元,运费2元;每套B 型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.27.解:(1)设生产A 型桌椅x 套,则生产B 型桌椅(500)x -套,由题意得0.50.7(500)30223(500)1250x x x x +⨯-⎧⎨+⨯-⎩≤≥ ······················ (2分) 解得240250x ≤≤ ·························· (3分) 因为x 是整数,所以有11种生产方案. ·················· (4分) (2)(1002)(1204)(500)2262000y x x x =+++⨯-=-+ ········· (6分)220-< ,y 随x 的增大而减少.∴当250x =时,y 有最小值. ····················· (7分) ∴当生产A 型桌椅250套、B 型桌椅250套时,总费用最少.此时min 222506200056500y =-⨯+=(元) ··············· (8分)x (分)(3)有剩余木料,最多还可以解决8名同学的桌椅问题.·········(10分)(08黑龙江大庆)19.(本题5分)12-.(08黑龙江大庆)21.(本题6分)某文具厂加工一种文具2 500套,加工完1 000套后,由于采用了新设备,每天的工作效率变为原来的1.5倍,结果提前5天完成了加工任务.求该文具厂原来每天加工多少套这种文具.(08黑龙江大庆)22.(本题6分)某数学老师为了了解学生在数学学习中对常见错误的纠正情况,收集了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对她所任教的初三(1)班和(2)班进行了检测.下图表示的是从以上两个班级各随机抽取10名学生的得分情况.(1)利用上图提供的信息,补全下表.有多少名学生成绩为“优秀”.(3)观察上图中点的分布情况,你认为哪个班的学生纠错的整体情况更好一些?(08黑龙江大庆)23.(本题7分)甲、乙两个工程队完成某项工程,假设甲、乙两个工程队的工作效率是一定的,工程总量为单位1.甲队单独做了10天后,乙队加入合作完成剩下的全部工程,工程进度如图所示.(1)甲队单独完成这项工程,需天.(2)求乙队单独完成这项工程所需的天数.(3)求出图中x的值.(08黑龙江大庆)25.(本题6分)t (天)(第23题)(1)班(2)班(第22题)如图,反比例函数ky x=的图象与一次函数y mx b =+的图象相交于两点(13)A ,,(1)B n -,. (1)分别求出反比例函数与一次函数的函数关系式; (2)若直线AB 与y 轴交于点C ,求BOC △的面积.(08黑龙江大庆)27.(本题8分)如图,河上有一座抛物线桥洞,已知桥下的水面离桥拱顶部3m 时,水面宽AB 为6m ,当水位上升.....0.5m 时.: (1)求水面的宽度CD 为多少米?(2)有一艘游船,它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行.①若游船宽(指船的最大宽度)为2m ,从水面到棚顶的高度为1.8m ,问这艘游船能否从桥洞下通过? ②若从水面到棚顶的高度为74m 的游船刚好能从桥洞下通过, 则这艘游船的最大宽度是多少米?(08吉林长春)19、(5分)计算:22)8321464(÷+- 20、(5分)解方程:22)25(96x x x -=+-19、20、x1=2 x2=83(08吉林长春)23、(7分)已知,如图,直线l 经过)0,4(A 和)4,0(B 两点,它与抛物线2ax y =在第一象限内相交于点P ,又知AOP ∆的面积为4,求a 的值.23、由△AOPA 的面积可知P 是AB 的中点,从而可得△OAP 是等腰直角三角形,过P 作PC ⊥OA 于C 可得P (2,2),所以a=12(第27题)(08吉林长春)26、(10分)如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1(2)足球第一次落地点C 距守门员多少米?(取7=(3)运动员乙要抢到第二个落点D (取5=)26、解:(1)(3分)如图,设第一次落地时,抛物线的表达式为2(6)4y a x =-+. ····················· 1分由已知:当0x =时1y =. 即1136412a a =+∴=-,. ·························· 2分 ∴表达式为21(6)412y x =--+. ······················· 3分 (或21112y x x =-++)(2)(3分)令20(6)4012y x =--+=,. 212(6)4861360x x x ∴-===-<.≈,(舍去). ········ 2分 ∴足球第一次落地距守门员约13米.····················· 3分 (3)(4分)解法一:如图,第二次足球弹出后的距离为CD根据题意:CD EF =(即相当于将抛物线AEMFC 向下平移了2个单位)212(6)412x ∴=--+解得1266x x =-=+ ············· 2分 1210CD x x ∴=-=.························ 3分 1361017BD ∴=-+=(米). ······················· 4分解法二:令21(6)4012x --+=.解得16x =-,2613x =+.∴点C 坐标为(13,0). ·························· 1分 设抛物线CND 为21()212y x k =--+. ···················· 2分将C 点坐标代入得:21(13)2012k --+=.解得:11313k =-(舍去),2667518k =+++=.····················· 3分 21(18)212y x =--+ 令210(18)212y x ==--+,0.118x =-,21823x =+.23617BD ∴=-=(米).解法三:由解法二知,18k =,所以2(1813)10CD =-=, 所以(136)1017BD =-+=.答:他应再向前跑17米. ·························· 4分 (不答不扣分)(08吉林长春)27、(12分)已知两个关于x 的二次函数1y 与当x k =时,217y =;且二次函数2y 的图象的对称轴是直222112()2(0)612y y a x k k y y x x =-+>+=++,,线1x =-. (1)求k 的值;(2)求函数12y y ,的表达式;(3)在同一直角坐标系内,问函数1y 的图象与2y 的图象是否有交点?请说明理由. 27、[解] (1)由22112()2612y a x k y y x x =-++=++,得22222121()612()2610()y y y y x x a x k x x a x k =+-=++---=++--. 又因为当x k =时,217y =,即261017k k ++=, 解得11k =,或27k =-(舍去),故k 的值为1.(2)由1k =,得2222610(1)(1)(26)10y x x a x a x a x a =++--=-+++-,所以函数2y 的图象的对称轴为262(1)a x a +=--,于是,有2612(1)a a +-=--,解得1a =-,所以2212212411y x x y x x =-++=++,.(3)由21(1)2y x =--+,得函数1y 的图象为抛物线,其开口向下,顶点坐标为(12),;由22224112(1)9y x x x =++=++,得函数2y 的图象为抛物线,其开口向上,顶点坐标为(19)-,; 故在同一直角坐标系内,函数1y 的图象与2y 的图象没有交点.(08辽宁沈阳)17.计算:11(1)52-⎛⎫π-+-+- ⎪⎝⎭17.解:原式1(2)5=+--··················· 4分125=-+-··························· 5分6= ································· 6分(08辽宁沈阳)18.解分式方程:1233xx x=+--. 18.解:12(3)x x =-- ·························· 2分126x x =--7x = ·································· 5分检验:将7x =代入原方程,左边14==右边 ·················· 7分所以7x =是原方程的根 ··························· 8分 (将7x =代入最简公分母检验同样给分)(08辽宁沈阳)19.先化简,再求值:222()()2y x y x y x y ++---,其中13x =-,3y =.19.解:原式2222222xy y x xy y x y =++-+-- ··············· 4分xy =- ·································· 6分当13x =-,3y =时,原式1313⎛⎫=--⨯= ⎪⎝⎭···························· 8分(08辽宁沈阳)22.小刚和小明两位同学玩一种游戏.游戏规则为:两人各执“象、虎、鼠”三张牌,同时各出一张牌定胜负,其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚出象牌,小明出虎牌,则小刚胜;又如,两人同时出象牌,则两人平局. (1)一次出牌小刚出“象”牌的概率是多少?(2)如果用A B C ,,分别表示小刚的象、虎、鼠三张牌,用1A ,1B ,1C 分别表示小明的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少?用列表法或画树状图(树形图)法加以说明.22.解:(1)1()3P =一次出牌小刚出象牌“” ················ 4分 (2)树状图(树形图):························· 8分或列表··················· 8分由树状图(树形图)或列表可知,可能出现的结果有9种,而且每种结果出现的可能性相同,其中小刚胜小明的结果有3种. ···························· 9分1()3P ∴=一次出牌小刚胜小明. 10分 小刚 小明A 1B 1C 1A B C 第22题图 A 1B 1C 1 AA 1B 1C 1 B A 1B 1C 1C 开始 小刚小明(08辽宁沈阳)23.在学校组织的“喜迎奥运,知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A B C D ,,,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在C 级以上(包括C 级)的人数为 ; (2(3)请从下列不同角度对这次竞赛成绩的结果进行分析:①从平均数和中位数的角度来比较一班和二班的成绩; ②从平均数和众数的角度来比较一班和二班的成绩;③从B 级以上(包括B 级)的人数的角度来比较一班和二班的成绩.23.解:(1)21 ······························ 2分 (2)一班众数为90,二班中位数为80 ···················· 6分(3)①从平均数的角度看两班成绩一样,从中位数的角度看一班比二班的成绩好,所以一班成绩好; ····································· 8分②从平均数的角度看两班成绩一样,从众数的角度看二班比一班的成绩好,所以二班成绩好; 10分 ③从B 级以上(包括B 级)的人数的角度看,一班人数是18人,二班人数是12人,所以一班成绩好. ···································· 12分(08辽宁沈阳)24.一辆经营长途运输的货车在高速公路的A 处加满油后,以每小时80千米的速度匀速行驶,前往与A 处相距636千米的B 地,下表记录的是货车一次加满油后油箱内余油量y (升)与行驶时间x (1)y 与x 之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围) (2)按照(1)中的变化规律,货车从A 处出发行驶4.2小时到达C 处,求此时油箱内余油多少升? (3)在(2)的前提下,C 处前方18千米的D 处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D 处至少加多少升油,才能使货车到达B 地.(货车在D 处加油过程中的时间和路程忽略不计)24.解:(1)设y 与x之间的关系为一次函数,其函数表达式为y kx b=+ ····· 1分第23题图 一班竞赛成绩统计图 二班竞赛成绩统计图将(0100),,(180),代入上式得,10080b k b =⎧⎨+=⎩ 解得20100k b =-⎧⎨=⎩ 20100y x ∴=-+ ····························· 4分验证:当2x =时,20210060y =-⨯+=,符合一次函数; 当 2.5x =时,20 2.510050y =-⨯+=,也符合一次函数.∴可用一次函数20100y x =-+表示其变化规律,而不用反比例函数、二次函数表示其变化规律. ················ 5分y ∴与x 之间的关系是一次函数,其函数表达式为20100y x =-+ ········ 6分(2)当 4.2x =时,由20100y x =-+可得16y =即货车行驶到C 处时油箱内余油16升. ···················· 8分 (3)方法不唯一,如:方法一:由(1)得,货车行驶中每小时耗油20升, ·············· 9分 设在D 处至少加油a 升,货车才能到达B 地.依题意得,63680 4.220101680a -⨯⨯+=+, ················ 11分解得,69a =(升) ··························· 12分方法二:由(1)得,货车行驶中每小时耗油20升, ·············· 9分 汽车行驶18千米的耗油量:1820 4.580⨯=(升) D B ,之间路程为:63680 4.218282-⨯-=(千米)汽车行驶282千米的耗油量:2822070.580⨯=(升) ·························· 11分 70.510(16 4.5)69+--=(升) ····················· 12分方法三:由(1)得,货车行驶中每小时耗油20升, ·············· 9分 设在D 处加油a 升,货车才能到达B 地.依题意得,63680 4.220101680a -⨯⨯++≤,解得,69a ≥ ······························ 11分 ∴在D 处至少加油69升,货车才能到达B 地. ··············· 12分(08辽宁省12市)17.先化简,再求值:23111aa a a a a -⎛⎫- ⎪-+⎝⎭,其中2a =.17.解法一:原式223(1)(1)11a a a a a a a +---=⨯- ················ 2分 24a =+ ································· 6分当2a =时,原式2248=⨯+= ······················· 8分解法二:原式3(1)(1)(1)(1)11a a a a a a a a a a+-+-=⨯-⨯-+ ············ 2分 24a =+ ································· 6分 当2a =时,原式2248=⨯+= ······················· 8分(08辽宁省12市)19.如图9,有四张背面相同的纸牌A B C D ,,,,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A B C D ,,,表示); (2)求两次摸牌的牌面图形既是中心对称图形又是轴对称图形的概率.19.(1·············· 6分(2)从表中可以得到,两次摸牌所有可能出现的结果共有16种,其中既是中心对称图形又是轴对称图形的有9种. ································ 8分 故所求概率是916. ···························· 10分 19.(1)解法二:所以可能出现的结果:(A ,A ),(A ,B ),(A ,C ),(A ,D ),(B ,A ),(B ,B ),(B ,C ),(B ,D ),(C ,A ),(C ,B ),(C ,C ),(C ,D ),(D ,A ),(D ,B ),(D ,C ),(D ,D ). ······················· 6分 (2)以下同解法1.(08辽宁省12市)21.某中学开展以“我最喜欢的职业”为主题的调查活动.通过对学生的随机抽样调查A B C DA ABC DB A BC DC A B C DD 开始第一次牌面的字母第二次牌面的字母 图9得到一组数据,下面两图(如图11、图12)是根据这组数据绘制的两幅不完整的统计图.请你根据图中所提供的信息解答下列问题:(1)求在这次活动中一共调查了多少名学生?(2)在扇形统计图中,求“教师”所在扇形的圆心角的度数. (3)补全两幅统计图.21.(1)被调查的学生数为4020020=%(人) ·················· 2分 (2)“教师”所在扇形的圆心角的度数为70115201010036072200⎛⎫----⨯⨯=⎪⎝⎭%%%% ··············· 5分 (3)如图3,补全图 ···························· 8分如图4,补全图 ····························· 10分(08辽宁省12市)22.在“汶川地震”捐款活动中,某同学对甲、乙两班捐款情况进行了统计:甲班捐款人数比乙班捐款人数多3人,甲班共捐款2400元,乙班共捐款1800元,乙班平均每人捐款的钱数是甲班平均每人捐款钱数的45倍.求甲、乙两班各有多少人捐款? 22.解法一:设乙班有x 人捐款,则甲班有(3)x +人捐款. ··········· 1分 根据题意得:24004180035x x⨯=+ ····························· 5分 解这个方程得45x =. ··························· 8分 经检验45x =是所列方程的根. ······················· 9分 348x ∴+=(人)答:甲班有48人捐款,乙班有45人捐款. ················· 10分 解法二:设甲班有x 人捐款,则乙班有(3)x -人捐款. ············· 1分 根据题意得:其它 教师医生 公务员军人10% 20%15%图3图435%20%其它 教师 医生 公务员 军人10% 20%15% 图11 图1224004180053x x ⨯=- ····························· 5分 解这个方程得48x =. ··························· 8分 经检验48x =是所列方程的根. ······················· 9分 345x ∴-=(人)答:甲班有48人捐款,乙班有45人捐款. ················· 10分(08辽宁省12市)24.2008年6月1日起,我国实施“限塑令”,开始有偿使用环保购物袋.为了满足市场需求,某厂家生产A B ,两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产A 种购物袋x 个,每天共获利y 元.(1)求出y 与x (2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元? 24.解:(1)根据题意得:(2.32)(3.53)(4500)0.22250y x x x =-+--=-+ ······ 2分 (2)根据题意得:23(4500)10000x x +-≤ ················· 5分 解得3500x ≥元 ······························ 6分0.20k =-< ,y ∴随x 增大而减小 ····················· 8分∴当3500x =时0.2350022501550y =-⨯+= ······················· 9分答:该厂每天至多获利1550元. ······················ 10分(08辽宁大连)17.化简x x x x x x x 11121222--+-÷=- (08辽宁大连)18.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率相同,求两次降价的百分率.(08辽宁大连)20.六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为40 000人次,公园游戏场发放的福娃玩具为10 000个. ⑴求参加一次这种游戏活动得到福娃玩具的频率; ⑵请你估计袋中白球接近多少个?(08辽宁大连)21.如图10,直线m x y +=和抛物线c bx x y ++=2都经过点A (1,0),B (3,2).⑴求m 的值和抛物线的解析式;⑵求不等式m x c bx x +>++2的解集(直接写出答案).(08辽宁大连)23.某物流公司的快递车和货车每天往返于A、B两地,快递车比货车多往返一趟.图11表示快递车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.⑴请在图11中画出货车距离A地的路程y(千米)与所用时间x(时)的函数图象;⑵求两车在途中相遇的次数(直接写出答案);⑶求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时?(时)。
2007年吉林省长春市数学中考真题(word版含答案)

长春市2007年初中毕业生学业考试数 学 试 题本试题卷包括七道大题,共26小题,共6页.全卷满分120分.考试时间为120分钟.考试结束后,将本试题卷和答题卡一并交回. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题卷上答题无效.一、选择题(每小题3分,共24分) 1.6-的相反数是( ) A .6-B .6C .16-D .162.方程组34231x y x y +=⎧⎨-=-⎩,的解是( )A .11.x y =-⎧⎨=-⎩,B .11.x y =⎧⎨=⎩,C .22.x y =-⎧⎨=⎩,D .21.x y =-⎧⎨=-⎩,3.某地区五月份连续6天的最高气温依次是:28,25,28,26,26,29(单位:℃),则这组数据的中位数是( ) A .26℃ B .26.5℃ C .27℃ D .28℃ 4.如图,小手盖住的点的坐标可能为( )A .(52),B .(63)-,C .(46)--,D .(34)-,5.如图,已知线段8cm AB =,P 与Q 的半径均为1cm .点P Q ,分别从A B ,出发,在线段AB 上按箭头所示方向运动.当P Q ,两点未相遇前,在下列选项中,P 与Q 不.可能..出现的位置关系是( ) A .外离 B .外切 C .相交 D .内含6.一根单线从钮扣的4个孔中穿过(每个孔只穿过一次),其正面情形如右图所示,下面4个图形中可能是其背面情形的是( )(第4题)yxO(第5题)A BQP (第6题)A .B .C .D .7.小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x 根火腿肠,则关于x 的不等式表示正确的是( ) A .34224x ⨯+< B .34224x ⨯+≤ C .32424x +⨯≤ D .32424x +⨯≥8.如图,AOB △中,30B =∠.将AOB △绕点O 顺时针旋转52得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( ) A .22B .52C .60D .82二、填空题(每小题3分,共18分) 9.计算:182+= .10.将下面四张背面都是空白的卡片混在一起,在看不到正面图案的情况下,从中随机选取一张,这张卡片上的图案恰好为2007年长春亚冬会吉祥物“鹿鹿”的概率是 . 11.如图,下面的图案由三个叶片组成,绕点O 旋转120后可以和自身重合,若每个..叶片的面积为24cm ,AOB ∠为120,则图中阴影部分的面积之和为 2cm .12.如图,过正方形ABCD 的顶点B 作直线l ,过A C ,作l 的垂线,垂足分别为E F ,.若1AE =,3CF =,则AB 的长度为 .13.在二次函数2y x bx c =++中,函数y 与自变量x 的部分对应值如下表:x2- 1- 0 1 2 3 4 y721-2-m27则m 的值为 .14.如图,1∠的正切值等于 .(第8题)AA 'BCOB '(第10题) (第11题) A O B (第12题) AB CD EF l三、解答题(每小题5分,共20分)15.先化简,再求值:(2)(2)(1)x x x x +---,其中1x =-.16.如图,在ABC △中,AB AC =,D 是BC 的中点,连接AD .DE AB ⊥,DF AC ⊥,E F ,是垂足.图中共有多少对全等三角形?请直接用“≌”符号把它们分别表示出来(不要求证明).17.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.18.将5个完全相同的小球分装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率.(3分) (2)摸出的两个球上数字之和为多少时的概率最大?(2分)四、解答题(每小题6分,共12分)19.如图,Rt ABC △中,90C =∠,4AC =,3BC =,以ABC △的一边为边画等腰三角形,使它的第三个顶点在ABC △的其他边上.请在图①,图②,图③中分别画出一个符合条件的等腰三角形,且三个图形中的等腰三角形各不相同,并在图中标明所画等腰三角(第14题)yO x1 1223 3 1A B C DE F形的腰长(不要求尺规作图).20.小刚有一块含有30角的直角三角板,他想测量其短直角边的长度,而手中另外只有一个量角器,于是他采用了如下的方法,并获得了相关数据:第一步,他先用三角板标有刻度的一边测出量角器的直径AB 的长度为9cm ;第二步,将三角板与量角器按如图所示的方式摆放,并量得BOC ∠为80(O 为AB 的中点).请你根据小刚测得的数据,求出三角板的短直角边AC 的长.(参考数据:sin800.98=,cos800.17=,tan80 5.67=;sin 400.64=,cos 400.77=,tan 400.84=,结果精确到0.1cm )五、解答题(每小题6分,共12分) 21.网瘾低龄化问题已引起社会各界的高度关注.有关部门在全国范围内对12~35岁的网瘾人群进行了抽样调查.下图是用来表示在调查的样本中不同年龄段的网瘾人数的,其中30~35岁的网瘾人数占样本总人数的20%.(1)被抽样调查的样本总人数为 人.(2分)图① A B C图②A BC图③ABCA CO B 网瘾人数(人) 750 700 650600 550 500 450 0600576 480 12~17 18~23 24~29 30~35 年龄(岁)(2)请把统计图中缺失的数据、图形补充完整.(2分)(3)据报道,目前我国12~35岁网瘾人数约为200万人,那么其中12~17岁的网瘾人数约有多少人?(2分)22.在北方冬季,对某校一间坐满学生、门窗关闭的教室中2CO 的总量进行检测,部分数据如下:教室连续使用时间x (分)5 10 15 20 2CO 总量3(m )y0.61.11.62.1经研究发现,该教室空气中2CO 总量3(m )y 是教室连续使用时间x (分)的一次函数. (1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围).(2分)(2)根据有关资料推算,当该教室空气中2CO 总量达到36.7m 时,学生将会稍感不适,请通过计算说明,该教室连续使用多长时间学生将会开始稍感不适?(2分)(3)如果该教室在连续使用45分钟时开门通风,在学生全部离开教室的情况下,5分钟可将教室空气中2CO 的总量减少到30.1m ,求开门通风时教室空气中2CO 平均每分钟减少多少立方米?(2分)六、解答题(每小题7分,共14分)23.如图①,将一组对边平行的纸条沿EF 折叠,点A B ,分别落在A B '',处,线段FB '与AD 交于点M .(1)试判断MEF △的形状,并证明你的结论.(3分) (2)如图②,将纸条的另一部分CFMD 沿MN 折叠,点C D ,分别落在C D '',处,且使MD '经过点F ,试判断四边形MNFE 的形状,并证明你的结论.(3分) (3)当BFE =∠ 度时,四边形MNFE 是菱形.(1分)图① A B C D E F M A ' B ' 图② A B C D E F M A ' B ' C ' D ' N24.如图,在平面直角坐标系中,A 为y 轴正半轴上一点,过A 作x 轴的平行线,交函数2(0)y x x =-<的图象于B ,交函数6(0)y x x =>的图象于C ,过C 作y 轴的平行线交BD的延长线于D .(1)如果点A 的坐标为(02),,求线段AB 与线段CA 的长度之比.(3分)(2)如果点A 的坐标为(0)a ,,求线段AB 与线段CA 的长度之比.(3分) (3)在(2)的条件下,四边形AODC 的面积与 .(1分)七、解答题(每小题10分,共20分)25.如图①,在Rt ABC △中,90C =∠,边BC 的长为20cm ,边AC 的长为h cm ,在此三角形内有一个矩形CFED ,点D E F ,,分别在AC AB BC ,,上,设AD 的长为cm x ,矩形CFED 的面积为y (单位:2cm ).(1)当h 等于30时,求y 与x 的函数关系式(不要求写出自变量x 的取值范围).(3分) (2)在(1)的条件下,矩形CFED 的面积能否为2180cm ?请说明理由.(3分) (3)若y 与x 的函数图象如图②所示,求此时h 的值.(4分)(参考公式:二次函数2y ax bx c =++,当2b x a =-时,244ac b y a-=最大(小)值.)26.如图,在平面直角坐标系中,直线1(0)2y x b b =-+>分别交x 轴,y 轴于A B ,两点,A B C O D x y 6y x= 2y x =- 图①ABFC DE图②O 2(cm )y(cm)x10 150以OA OB ,为边作矩形OACB ,D 为BC 的中点.以(40)M ,,(80)N ,为斜边端点作等腰直角三角形PMN ,点P 在第一象限,设矩形OACB 与PMN △重叠部分的面积为S .(1)求点P 的坐标.(1分)(2)当b 值由小到大变化时,求S 与b 的函数关系式.(4分) (3)若在直线1(0)2y x b b =-+>上存在点Q ,使OQM ∠等于90,请直接写出....b 的取值范围.(2分)(4)在b 值的变化过程中,若PCD △为等腰三角形,请直接写出....所有符合条件的b 值.(3分)ABCDy O M PN x长春市2007年初中毕业生学业考试数学试题参考答案及评分标准一、选择题(每小题3分,共24分) 1.B 2.B 3.C 4.D 5.D 6.A7.B8.D二、填空题(每小题3分,共18分) 9.4210.1411.4 12.1013.1-14.13三、解答题(每小题5分,共20分)15.原式2244x x x x =--+=-. ····················································································· 3分 当1x =-时,原式145=--=-. ······················································································ 5分 16.共有3对. ······················································································································ 1分 ABD ACD △≌△;ADE ADF △≌△;BDE CDF △≌△. ··································· 5分 (写对1对得2分,写对2对得3分,写对3对得4分)17.设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. ··································································································· 3分 解得20x =.经检验20x =是原方程的解.答:张明平均每分钟清点图书20本. ·················································································· 5分 注:此题将方程列为30020020010x x -=⨯或其变式,同样得分. 18.(1)或2342 4 5 6 4678··········································································································· 2分 摸出的两个球上数字之和为5的概率为16. ········································································ 3分 (2)摸出的两个球上数字之和为6时概率最大. ······························································· 5分 四、解答题(每小题6分,共12分)19.提供以下方案供参考(每画对1个得2分)2 2 43 24 42 4 甲袋 乙袋 和 465768甲袋和 乙袋20.解法一:80BOC =∠,40BAC ∴=∠. ··················································································· 2分在Rt ABC △中,40BAC =∠,9AB =,9cos4090.77 6.9(cm)AC ∴=⨯=⨯≈.答:三角板的短直角边AC 的长约为6.9cm . ······································································ 6分 解法二:作OE AC ⊥于E .80BOC =∠,40BAC ∴=∠. ··················································································· 2分在Rt AOE △中,40BAC =∠, 4.5OA =,4.5cos 40AE ∴=⨯.29cos40 6.9(cm)AC AE ∴==⨯≈.答:三角板的短直角边AC 的长约为6.9cm . ······································································ 6分 五、解答题(每小题6分,共12分) 21.(1)2400. ······················································································································ 2分 (2)如图.··········································································································· 4分 (3)744200622400⨯=(万人), ∴12~17岁的网瘾人数约有62万人. ··················································································· 6分 22.(1)设(0)y kx b b =+≠,3 3442.52.5332.52.5258258网瘾人数(人)750 700 650600 550 500 450 0600 57648012~17 18~23 24~29 30~35 年龄(岁) 744由已知,得50.610 1.1.k b k b +=⎧⎨+=⎩,解得0.10.1.k b =⎧⎨=⎩,0.10.1y x ∴=+. ················································································································· 2分(2)在0.10.1y x =+中,当 6.7y =时,66x =(分).答:该教室连续使用66分钟学生将会开始稍感不适.························································ 4分 (3)当45x =时, 4.6y =,4.60.10.95-∴=(立方米). 答:开门通风时教室空气中2CO 的总量平均每分钟减少0.9立方米. ······························· 6分 六、解答题(每小题7分,共14分) 23.(1)MEF △为等腰三角形.证明:AD BC ∥,MEF EFB ∴=∠∠. MFE EFB =∠∠,MEF MFE ∴=∠∠. ME MF ∴=,即MEF △为等腰三角形. ········································································· 3分 (2)四边形MNFE 为平行四边形. 证法一:ME MF =,同理NF MF =, ME NF ∴=.又ME NF ∥,∴四边形MNFE 为平行四边形. ··························································· 6分 证法二:AD BC ∥,EMF MFN ∴=∠∠.又MEF MFE =∠∠,FMN FNM =∠∠, FMN MFE ∴=∠∠,MN EF ∴∥.∴四边形MNFE 为平行四边形.·························································································· 6分 注:其他正确证法同样得分. (3)60. 24.(1)(02)A ,,BC x ∥轴,(12)B ∴-,,(32)C ,.1AB ∴=,3CA =.∴线段AB 与线段CA 的长度之比为13. ············································································· 3分 (2)(0)A a ,,BC x ∥轴,2B a a ⎛⎫∴- ⎪⎝⎭,,6C a a ⎛⎫ ⎪⎝⎭,.2AB a ∴=,6CA a=. ∴线段AB 与线段CA 的长度之比为13. ············································································· 6分 (3)15. ································································································································ 7分 七、解答题(每小题10分,共20分) 25.(1)30AC =,AD x =,30CD x ∴=-. 四边形CFED 为矩形,DE BC ∴∥.DE AD BC AC ∴=,即2030DE x=. 23DE x ∴=.2(30)3y x x ∴=-.即22203y x x =-+. ············································································································ 3分(2)2224020431502443ac b a ⎛⎫⨯-⨯- ⎪-⎝⎭==⎛⎫⨯- ⎪⎝⎭, y ∴的最大值为150. 150180<,∴矩形CFED 的面积不能为2180cm . ················································································ 6分 (3)由图象可知,当10x =时,150y =. 当10x =时,10CD h =-,200DE h=, 200(10)150h h∴-=, 解得40h =.经检验40h =是方程的解. 40h ∴=. ···························································································································· 10分26.(1)作PK MN ⊥于K ,则122PK KM NM ===.6KO ∴=,(62)P ∴,. ······································································································· 1分(2)当02b <≤时,如图①,0S =. 当23b <≤时,如图②, 设AC 交PM 于H .24AM HA b ==-.21(24)2S b ∴=-. A B C D yO MPN x 图①图②ABCDyOM PN xH即22(2)S b =-. 或2288S b b =-+.当34b <<时,如图③, 设AC 交PN 于H . 82NA HA b ==-.22(4)4S b ∴=--+,或221628S b b =-+-.当4b ≥时,如图④,4S =. ··································································································································· 5分 (此问不画图不扣分)(3)051b <+≤. ···················································· 7分 (提示:以OM 为直径作圆,当直线1(0)2y x b b =-+>与此圆相切时,51b =+.)(4)b 的值为4,5,826±. ······························· 10分(提示:当PC PD =时,4b =.当PC CD =时,12b =(舍),25b =.当P D C D =时,826b =±.) (写对2个得1分,写对3个得2分,写对4个得3分)图③A BC Dy O MPN x H图④A BCD yO MPN x图⑤A B CD yOMPN xQ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年长春市初中毕业生学业考试数 学 试 题本试卷包括七道大题,共26小题,共6页,满分120分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.-3的绝对值是(A )3. (B )-3. (C )31. (D )31-. 2.在《商品零售场所塑料购物袋有偿使用管理办法》实施以后,某家超市一周内塑料袋的使用量约减少了57 000个.将57 000用科学记数法表示为(A )5.7×103. (B )5.7×104.(C )57×103. (D )0.57×105. 3.下列四个图案中,可以通过右图平移得到的是(A ) (B ) (C ) (D )4.在一次女子体操比赛中,八名运动员的年龄(单位:岁)分别为:12,14,12,15,14,14,16,15.这组数据的众数是(A )12. (B)14. (C)15. (D)16. 5.将分式方程xx 122=-化为整式方程,方程两边可以同时乘以 (A )x -2. (B )x . (C )2(x -2). (D )x (x -2). 6.下列各几何体均由三个大小相同的正方体组成,其中正视图...为右图的是(A ) (B ) (C ) (D ) (第6题) 7.在直角坐标系中,⊙A 、⊙B 的位置如图所示.下列四个点中,在⊙A 外部且在⊙B 内部的是 (A )(1,2). (B )(2,1). (C )(2,-1). (D )(3,1).(第3题)(第7题)(第8题)8.如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线xy3=(x>0)上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会(A)逐渐增大. (B)逐渐减小. (C)不变. (D)先增大后减小.二、填空题(每小题3分,共18分)9.分解因式:m2-3m= .10.不等式组⎩⎨⎧>->712,63xx的解集是 .11.某次电视娱乐节目的现场观众分成红、黄、蓝三个队,其中红队有28人,黄队有30人,蓝队有32人.从这按个队中随机选取一人作为幸运者,这位幸运者恰好是黄队观众的概率为 .12.在平面内,有一条公共边的正六边形和正方形如图放置,则∠α等于度.FE CBAn块2块1块(第12题)(第13题)(第14题)13.如图,在平面内将Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC.若AB=5,BC=1,则线段BE的长为 .14.如图,一块拼图卡片的长度为5cm,两块相同的拼图卡片拼接在一起的长度为9cm,n 块相同的拼图卡片拼接在一起的长度为 cm(用含有n的代数式表示).三、解答题(每小题5分,共20分)15.先化简,再求值“()()112+--aaa,其中61=a.α16.如图,AB、CD是⊙O的两条弦,延长AB、CD交于点P,连接AD、BC交于点E.∠P=30°,∠ABC=50°,求∠A的度数.17.小明和小东各有课外读物若干本,小明课外读物的数量是小东的2倍.小明送给小东10本后,小东课外读物的数量是小明剩余数量的3倍,求小明和小东原来各有课外读物多少本.18.如图,有两个7×4的网格,网格中每个小正方形的边长均为1,每个网格中各画有一个梯形.请在图1、图2中分别画出一条线段,同时满足以下要求:(1)线段的一端点为梯形的顶点,另一个端点在梯形一边的格点上;(2)将梯形分成两个图形,其中一个轴对称图形;(3)图1、图2中分成的轴对称图形不全等.图1 图2四、解答题(每小题6分,共12分)19.如图,点B、F、C、E在一条直线上,FB=CE,AB∥DE,AC∥DF.求证:AB=DE.20.一个不透明的口袋中有三个小球,上面分别标有数字1,2,3,每个小球除数字外其他都相同.甲先从袋中随机取出1个小球,记下数字后放回;乙再从袋中随机取出1个小球记下数字.(1)用画树形图或列表的方法,求取出的两个笑求上的数字之和为3的概率.(4分) (2)求取出的两个小球的数字之和大于4的概率.(2分)五、解答题(每小题6分,共12分)21.如图,点A 、B 为地球仪的南、北极点,直线AB 与放置地球仪的平面交于点D ,所成的角度约为67°,半径OC 所在的直线与放置平面垂直,垂足为点E .DE =15cm,AD =14cm.求半径OA 的长. (精确到0.1cm)【参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36】670DEO CB A22.为培养学生的节约意识,某校开展收集饮料瓶、旧报纸和旧书本的活动.学校对五个班级一周收集的情况进行了统计,绘制统计图如下.已知饮料瓶平均每个卖0.1元,根据相关信息,解答下列问题:(1)五个班级这一周收集的饮料瓶共卖多少元?(2分) (2)五个班级这一周收集的三种物品共卖多少元?(2分)(3)五个班级这周收集的旧书本共卖100元,请补全扇形统计图.(2分)各班收集饮料瓶数量的条形统计图 五个班级收集三种物品所卖钱数的扇形统计图饮料瓶25%六、解答题(每小题7分,共14分)23.甲车由A 地出发沿一条公路向B 地行驶,3小时到达.甲车行驶的路程y (千米)与所用时间x (时)之间的函数图象如图所示. (1)求y 与x 之间的函数关系式.(5分)(2)若乙车与甲车同时从A 地出发,沿同一公路匀速行驶至B 地. 乙车的速度与甲车出发1小时后的速度相同,在图中画出乙车行驶的路程y (千米)与所用时间x (时)的函数图象.(2分))(千米)y24.如图,在△ABC 中,AD 平分∠BAC 交BC 于点D .点E 、F 分别在边AB 、AC 上,且BE =AF ,FG ∥AB 交线段AD 于点G ,连接BG 、EF . (1)求证:四边形BGFE 是平行四边形.(4分)(2)若△ABC ∽△AGF ,AB =10,AG =6,求线段BE 的长.(3分)七、解答题(每小题10分,共20分)25.在直角坐标系中,抛物线c bx x y ++=2经过点(0,10)和点(4,2).(1)求这条抛物线的解析式.(3分)(2)如图,在边长一定的矩形ABCD 中,CD =1,点C 在y 轴右侧沿抛物线c bx x y ++=2滑动,在滑动过程中CD ∥x 轴,AB 在CD 的下方.当点D 在y 轴上时,AB 落在x轴上.①求边BC 的长.(2分)②当矩形ABCD 在滑动过程中被x 轴分成两部分的面积比为1:4时,求点C 的坐标.(5分)26.如图,在直角坐标系中,四边形OABC 为矩形,A (8,0),C (0,6),点M 是OA 的中点,P 、Q 两点同时从点M 出发,点P 沿x 轴向右运动;点Q 沿x 轴先向左运动至原点O 后,再向右运动到点M 停止,点P 随之停止运动. P 、Q 两点运动的速度均为每秒1个单位.以PQ为一边向上作正方形PRLQ.设点P的运动时间为t(秒),正方形PRLQ与矩形OABC重叠部分(阴影部分)的面积为S(平方单位).(1)用含t的代数式表示点P的坐标.(1分)(2)分别求当t=1,t=5时,线段PQ的长.(2分)(3)求S与t之间的函数关系式.(5分)(4)连接AC. 当正方形PRLQ与△ABC的重叠部分为三角形时,直接写出....t的取值范围.(2分)2008年长春市初中毕业生学业考试数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.A 2.B 3.C 4.B 5.D 6.A 7.C 8.B二、填空题(每小题3分,共18分)9.m(m-3) 10.x>4 11.12.150 13.3 14.(4n+1)三、解答题(每小题5分,共20分)15.解:原式==(3分)当时原式==. (5分)16.解:∵∠ABC为△BCP的外角∴∠ABC=∠P+∠C.∵∠ABC=50°,∠P=30°,∴∠C=20°. (3分)∴∠A=∠C,∴∠A=20. (5分)17.解:设小明原来有课外读物x本,小东原来有课外读物y本.则 (3分)解得答:小明原来有课外读物16本,小东原来有课外读物8本. (5分) 18.提供以下方案供参考.(画对1种,得3分;画对2种,得5分)四、解答题(每小题6分,共12分)19.证明:∵AB∥DE,∴∠B=∠E.∵AC∥DF,∴∠ACB=∠DFE(3分)∵FB=CE,∴FB+FC=CE+FC,即BC=EF.∴△ABC≌△DEF.∴AB=DE. (6分)20.解:(1)(2分)∴P(和为3)=. (4分)(2)P(和大于4)=. (6分)五、解答题(每小题6分,共12分)21.解:在Rt△ODE中,DE=15,∠ODE=67°.∵cos∠ODE=.∴OD≈≈38.46(cm) (4分)∴OA=OD-AD≈38.46-14≈24.5(cm).答:半径OA的长约为24.5cm. (6分)22.解:(1)∵80+120+90+110+100=500(个),∴500×0.1=50(元).∴五个班级这一周收集的饮料瓶共卖50元. (2分)(2)∵50÷25%=200(元)∴五个班级这一周收集的三种物品共卖200元. (4分) (3)五个班级收集三种物品所卖钱数的扇形统计图(6分)六、解答题(每小题7分,共14分)23.解:(1)当0≤x≤1时,设y=k1x(k1≠0)∵图象过(1,90),∴k1=90,∴y=90x. (2分)当1<x≤3时,设y=k2x+b(k2≠0).∵图象过(1,90),(3,210),∴∴∴y=60x+30. (5分) (2)(7分)24.(1)证明:∵FG∥AB,∴∠BAD=∠AGF.∵∠BAD=∠GF A,∴∠AGF=∠GAF,∴AF=GF.∵BE=AF,∴FG=BE.又∵FG∥BE,∴四边形BGFE为平行四边形. (4分)(2)解:∵△ABC∽△AGF,∴,既.∴AF=3.6.∵BE=AF,∴BE=3.6. (7分) 七、解答题(每小题10分,共20分)25.解:(1)由已知,得∴∴y=x2-6x+10. (3分)(2)①∵CD=1,点D在y轴上,∴点C的横坐标为1.在y=x2-6x+10中,当x=1时,y=5.∴边BC的长为5. (5分)②∵矩形边长一定,∴BC=5.当矩形ABCD在x轴上方部分的面积占这个矩形面积的时,∵BC=5,∴点C的纵坐标为1.∴x2-6x+10=1,即x2-6x+9=0,∴C1(3,1). (7分)当矩形ABCD在x轴上方部分占这个矩形面积的时,∵BC=5,∴点C的纵坐标为4.∴x2-6x+10=4,即x2-6x+6=0,∴C2(3+,4),C3(3-,4). (10分)26.解:(1)∵MP=t,OM=4,∴OP=t+4, (1分)∴P(t+4,0)(0<t≤8)(2)当t=1时,PQ=2×1=2.当t=5时,OP=9,OQ=1,∴PQ=8. (3分)(3)如图①,当0<t≤3时,∵PQ=2t,∴S=4t2.如图②,当3<t≤4时,∵PQ=2t,AB=6,∴S=12t.如图③,当4<t≤8时,AQ=12-t,AB=6,∴S=-6t+72. (8分)图①图②图③(4)如图④,当点R在AC上时,t=.当点L在AC上时,t=.∴.如图⑤,当点L在y轴上时,t=4. (10分)图④图⑤。