大跨连续刚构桥常见病害与设计对策
浅析大跨预应力混凝土连续刚构常见病害

浅析大跨预应力混凝土连续刚构常见病害摘要从设计和施工以及材料方面,简要分析大跨预应力混凝土连续刚构的一些常见病害及其原因。
关键词连续刚构;病害;主跨下挠;裂缝预应力混凝土梁式桥是公路桥梁中最常用的桥型。
其跨径大小是技术水平的重要指标,一定程度上反映一个国家的工业、交通、桥梁设计和施工各方面的成就。
随着我国桥梁建设技术的不断发展,建造大跨径梁式桥已成必然趋势。
但是,这些大跨径的梁式桥建成之后,难免会出现挠度,包括弹性挠度、徐变挠度,以及预应力损失、松弛引起的下挠。
一旦挠度过大,特别是下挠与开裂同时出现时,病害就产生了。
跨度越大,病害就越多。
跨径80~100m以下梁桥,病害较少;跨径100~160m的桥梁病害多些;跨径160m以上的梁桥,病害严重。
预应力混凝土土梁式桥,主要是指连续梁、连续刚构和刚构—连续组合体系桥梁。
自20世纪初80年代末以来,我国梁式桥的发展迅速,形势喜人。
虎门大桥辅航道桥连续刚构主跨270m,于1997年建成通车,曾居世界首位达一年半之久。
我国在预应力混凝土连续刚构桥梁的建设中,已步入了世界先进行列。
在肯定成绩的同时,也应当看到有一部分梁式桥存在一些缺陷,甚至可以说问题不少,在建成后不长时间即损坏,甚至成为危桥。
当前运营中的大跨连续刚构桥梁存在的两大缺陷:一是跨中下挠,二是梁上裂缝。
对于后者,主要为斜裂缝和纵向裂缝,也涉及垂直裂缝和底板保护层裂缝。
1常见病害及原因分析1.1主跨中下挠主跨跨中下挠在大跨预应力混凝土连续刚构中普遍存在。
国内已建的众多大跨预应力混凝土连续刚构均存在不同程度的跨中下挠现象(见表1)。
主跨270m 的虎门大桥辅航道桥,至2003年,已下挠22cm。
该桥立模高程的确定,没有逐节段地计入混凝土收缩徐变的影响,而是参照了洛溪大桥建成后3年下挠6cm的实测数据,预留了10cm的徐变预拱度。
大跨预应力混凝土连续刚构主跨下挠的主要原因有:1)对混凝土收缩徐变的影响程度及长期性估计不足。
高墩大跨连续刚构桥的病害及其对策措施

高墩大跨连续刚构桥的病害及其对策措施摘要:本文将针对这些出现的常见问题进行阐述分析,并对造成的桥体危害提出相应的对策措施。
关键词:连续刚构桥;危害;对策措施Abstract: This article described these common problem and point out some countermeasures for bridge and caused harm.Key words: continuous rigid frame bridge; hazards; countermeasures中图分类号:U448.23 文献标识码:A文章编号:连续刚构桥的常见问题产生的原因及其病害目前,国内连续刚构桥的发展迅速,相关技术也比较成熟。
在桥梁工程领域广泛应用预应力计算体系,使得桥梁在性能、造价成本、安全系数等各方面都相对优于其他桥梁体系。
但在实际使用中仍出现诸多显著的病害。
(一)桥体跨中下挠。
1.对混凝土的收缩认识不到位。
很多桥梁在施工完成后,主梁的混凝土收缩造成桥体跨中下挠。
但现役的连续刚构桥出现,正常下挠后,再出现严重的下挠。
在桥梁建设前期,没有充分认识到混凝土的徐变性具有极大的随机性,造成混凝土预应力的损失使得桥梁的刚度下降。
从而桥梁出现桥体下挠的病害。
在连续刚构桥的设计之初,设计者一般为了减轻主桥梁的自重,都会在桥梁施工时使用高强度的薄板作为主梁。
而其实,在实际的数据中可以知道,加载的时间限制对桥梁混凝土的徐变度也有非常大的影响,桥梁的主梁一般在3天后就开始桥体预应力的加载,形成桥梁的整体。
于是由于浇筑凝固期时间缩短的缘故,使得混凝土的徐变的量增大,桥体的主梁下挠严重。
2.桥梁在前期设计中,计算的模型不够完善。
对桥梁在不同部位温差的考虑也是影响预应力的损失的因素。
目前国内在温差模型上采用三角模型,而该模型在理论值和实际测量值存在较大差距。
经一些国外桥梁专家分析:桥梁的温度分布呈现出非线性的分布,箱梁出现顶板的温度高于底板的温度现象。
大跨度连续刚构桥典型病害成因分析及应对措施

连续刚构桥是墩梁固接的连续梁桥。 中部分张拉锚固后出现的纵向开裂裂缝及
因为这种体系利用主墩的柔性来适应桥梁 墩顶横隔板的竖向和横向裂缝等。
的纵向变形, 所以在大跨度高墩连续梁桥
通过对病害桥梁的调查分析, 其病害
中比较适合。连续刚构桥也分跨中带铰和 原因可归咎于设计上、施工上、材料上等三
跨中无铰两种类型, 两者一般均采用变高 个方面。
( 3) 跨中底板纵向裂缝问题。为了减轻 结构自重, 箱梁底板在跨中一般比较薄, 有 的桥梁底板布设一层纵向预应力钢束, 其 厚 度仅 25~28cm, 布设两层纵向预应力钢 束的厚度为 32cm。为了锚固靠近 腹 板 , 减 小平弯角度, 往往预应力钢束横向布置间 距较小, 一般管道间净距离为 6~7cm, 在此 截面的挖空率非常大, 截面削弱较大, 加之 如横向普通钢筋配置不强, 此部分砼浇筑 质量又有问题, 则在强大的底板纵向预应 力束全部张拉锚固时, 底板砼因承受不了 底板束的压力而导致开裂。
墩, 此外双薄壁墩还有削减墩顶负弯矩峰 力也将产生一定影响, 从设计的角度来分
值的作用。连续刚构桥结构为多次超静定 析其原因主要是对混凝土徐变的影响程度
结构, 混凝土收缩、徐变、温度变化, 预应力 及长期性估计不足。
作用、墩台不均匀沉降等引起的附加内力
连续刚构从设计上为减轻自重而都采
对结构的影响较大, 但同时这种桥具有结 用高强的薄壁箱形主梁, 加载龄期对砼的
预应力砼连续刚构主梁采用的均为高 强度的砼, 但高强砼也有其不足之处, 它不 仅 对 原 材 料 选 择 、生 产 运 输 、施 工 管 理 及 质 量控制等各个方面都有严格的要求, 而且 在材料的性能上也存在许多突出的缺点亟 待解决:
大跨径连续刚构桥梁的常见病害及控制措施

大跨径连续刚构桥梁的常见病害及控制措施通过调查,我国已成的大跨径连续刚构桥梁中,出现的病害主要有以下几种情况:(1) 跨中挠度过大;(2) 箱梁腹板、底板产生裂缝;(3) 墩顶0 # 梁段开裂;(4) 桥墩墩身裂缝。
1跨中挠度(1)适当增加梁高,提高结构的承载能力(2)设置足够的施工预拱度(3)应力松弛的影响,增加底板预应力束,并采用分批张拉,部分底板预应力束可滞后1 年左右的时间,待混凝土完成一定的收缩、徐变后再张拉。
(4) 在中跨底板适当设置体外备用钢束,待需要时进行张拉。
(5)延长混凝土的加载龄期,减少徐变对结构的影响(6)利用高墩的柔度来适应结构由预应力混凝土收缩、徐变和温度变化所引起的位移,减少饶度。
竖向接缝存在,可以采用把接缝作成斜接缝,阶梯接缝,销槽式接缝等.增加截面的配筋率减小徐变对结构的影响。
我国施工质量水平总体不高, 管理不完善,.采用预抛高的方法,即在建造期间通过设置预拱度来抵消桥梁长期下挠变形。
是对高标号混凝土的收缩、徐变的考虑不足,且在施工中预拱度的设置存在偏差.顶板悬臂施工束有效性降低对主梁下挠有较大的影响2混凝土开裂,如箱梁竖向开裂、箱梁底板纵向开裂、箱梁腹板出现斜裂缝等;箱梁裂缝主要表现为纵向裂缝、弯曲裂缝、弯曲剪应力裂缝和主拉应力裂缝,(1)选择合适的箱梁下缘曲线。
大跨径连续刚构桥多采用变截面箱梁,底板下缘曲线常采用半立方抛物线和二次抛物线(2)预应力筋过于集中及预应力吨位过大导致混凝土开裂。
设计合适可靠的竖向预应力。
箱梁施加竖向预应力的主要目的是克服腹板主拉应力过大(3) 在中跨跨中及悬臂中部设置横隔板,提高箱梁畸变刚度,(4)增设腹板纵向预应力下弯束(5)适当增加边跨现浇段的底板和腹板厚度,并设置足够的防崩钢筋(6)合拢段的混凝土标号提高半级或一级(7)合理布置桥梁跨径。
箱梁腹板截面几何尺寸偏小,为了减少结构自重,对于宽箱梁,多数桥梁腹板仅仅是由构造决定其厚度,这导致截面抗剪能力储备不足.主梁梁体非预应力钢筋配置不足,也会导致砼的开裂. 墩柱的约束过大,导致主梁开裂应尽可能使其具有较大的抗弯刚度和较小的抗推刚度, 国内外连续刚构墩身形式多为双墙式薄壁柔性墩。
大跨连续刚构桥常见病害与设计方案对策

大跨连续刚构桥常见病害与设计对策摘要:通过分析已成大跨径连续刚构桥出现病害的原因,就大跨径连续刚构桥的设计提出一些新的思路.为今后类似桥梁设计提供参考。
关键词:连续刚构桥;箱粱;设计;挠度;裂缝文章编号:1009—6477(2005)增一0109—03中图分类号:U448.23文献标识码:B山区地形大多呈“ V’字形,地形起伏较大,为了跨越山谷深沟,连续刚构桥作为较经济的大跨径桥梁结构形式,在山区的桥梁设计中常常被采用。
虽然连续刚构桥不论在设计方面还是在施工方面,都有较为成熟的经验,而且在国内建成较多,但由于目前对连续刚构桥梁认识的局限性,很多大跨径连续刚构桥均出现不同程度的病害。
在现有认识的基础上,如何克服和尽量减少病害的产生,是目前在设计过程中急需解决的问题。
1 常见病害通过调查,我国已成的大跨径连续刚构桥梁中,出现的病害主要有以下几种情况:(1)跨中挠度过大;(2)箱梁腹板、底板产生裂缝;(3)墩顶0 梁段开裂;(4)桥墩墩身裂缝。
2 设计对策由于现代桥梁在结构的安全性和耐久性方面的认识不断提高,在大跨径桥梁方面给我们设计人员提出了新的要求。
从对连续刚构桥出现病害的原因进行分析的结果来看,其实这些病害在早期并不影响结构的整体安全,但随着时间的推移,会逐渐降低结构的耐久性。
针对大跨径连续刚构桥病害出现的特点,笔者通过多年的工作实践,认为在设计中可以采取相应的有效措施,来克服和尽量减少病害的产生,以提高结构的安全性和耐久性。
2. 1 跨中挠度通过调查,很多大跨径连续刚构桥梁虽然在主梁的设计中设有足够的预拱度,但在建成通车一段时间后,箱梁跨中均出现不同程度的下挠,这不但给行车带来麻烦,而且会使结构开裂、破坏,给结构带来安全隐患。
经过分析,这是由于混凝土的收缩徐变的结果。
虽然在设计中主梁的预拱度考虑了混凝土的收缩徐变因素,但考虑到混凝土在三向受力的实际情况与理论计算模型并不完全相同,因此,在设计中可以采取以下措施:(1)适当增加梁高,提高结构的承载能力。
大跨度连续刚构桥典型病害成因分析及应对措施

( 1) 混凝土由多种地方性材料配制而 成, 施工过程中对混凝土原材料的选择及 拌合、浇注控制不严, 再加上施工各方片面 追求高强度而忽视混凝土的综合性能指 标, 导致混凝土的品质达不到设计的要求。
( 2) 箱梁的腹板承受各种荷载组合下 的主拉应力或主压应力, 腹板的厚度较设 计厚度减薄将进一步恶化腹板斜截面的抗 剪能力, 甚至会导致腹板开裂。因此, 施工 过程中因模板安装不好导致的腹板厚度过 薄将直接影响到腹板的抗裂性能, 过厚又 增加了悬臂箱梁的重量。
3 大跨度连续刚构病害应对措施
大跨度连续刚构病害的应对措施应分 为两个方面: 即新建桥梁的设计对策及已 有病害桥梁的加固措施。 3.1 新建桥梁设计对策
( 1) 改善主梁断面设计方式。按零弯矩 或少弯矩设计主梁断面, 以利于减小连续 刚构的徐变挠度。
( 2) 改善纵向预应力束的布置方式。跨 内纵向预应力束下弯到箱梁截面中心附 近、边梁现浇段配置曲线预应力束以提供 较大的预剪力, 使得腹板的主拉应力有较 大的改善。
从已加固的一些连续刚构桥中发现, 孔道的压浆有时不饱满, 存在着一些孔隙, 有的则浆体分离, 孔道一经戳破即有水流 出, 处于这样孔道中的预应力束肯定会发 生锈蚀, 导致有效预应力的降低, 不但会引 起梁体下挠, 而且有可能出现受弯竖向裂 缝, 也降低了抗主拉应力的能力。 2.1.2 箱梁开裂问题
浅析大跨径预应力混凝土连续刚构桥的常见病害及控制措施

浅析大跨径预应力混凝土连续刚构桥的常见病害及控制措施摘要:本文对大跨径预应力混凝土连续刚构桥的常见病害及成因进行了分析,针对各病害提出了可行的控制方法。
或可为该类桥梁的设计施工提供参考。
关键词:预应力混凝土,连续刚构,病害,控制措施。
1常见病害通过调查,我国已建成的大跨径连续刚构桥梁中,常见的病害主要有以下几种:(1) 跨中挠度过大;(2) 箱梁梁体产生裂缝;(3) 墩顶0#块开裂;(4)桥墩(或塔墩)靠承台区段的竖向裂缝。
2跨中挠度过大的成因分析及控制措施跨中挠度过大,通常是由于梁体本身刚度不足所致,而梁体由混凝土、普通钢筋和预应力钢筋组合而成,故梁高过小、腹板厚度不足、混凝土标号不足、普通钢筋配置不足、预应力不足都会导致梁体刚度不足,进而导致跨中挠度过大。
其中,预应力配置不足可以由设计中预应力配置不足或者预应力筋应力松弛过大、混凝土收缩徐变导致预应力损失过大引起。
此外,如设置的预拱度不足,也会导致桥梁合龙后跨中挠度过大。
可通过以下方法降低跨中挠度:(1) 适当增加梁高,提高结构的承载能力(2) 设置足够的施工预拱度(3) 应力松弛的影响,增加底板预应力束,并采用分批张拉,部分底板预应力束可滞后1 年左右的时间,待混凝土完成一定的收缩、徐变后再张拉。
(4) 在中跨底板适当设置体外备用钢束,待需要时进行张拉。
(5) 延长混凝土的加载龄期,减少徐变对结构的影响(6)利用高墩的柔度来适应结构由预应力混凝土收缩、徐变和温度变化所引起的位移,减少挠度。
3箱梁梁体裂缝的成因分析及控制措施3.1箱梁节段间施工接缝处腹板竖向裂缝箱梁节段间施工接缝处腹板竖向裂缝处于两施工节段之间,严重的缝宽1-2mm甚至更宽。
开裂原因:(1)悬臂浇注移动支架的整体刚度不够,浇注过程中变形大;(2)混凝土浇注程序不对:先浇注后端(紧靠前一浇注节段),然后逐步向前端浇注,前端的荷载引起悬臂支架变形,导致后端混凝土裂开。
控制措施:(1)支架的刚度和强度必须满足施工要求,必须采用相当于实际荷载的荷载预压,除强度满足需要外,其最大挠度应小于或等于2.0cm。
大跨径连续刚构桥梁常见质量缺陷及施工质量控制

大跨径连续刚构桥梁常见质量缺陷及施工质
量控制
大跨径连续刚构桥梁常见质量缺陷有:
1. 桥墩施工质量不良:包括混凝土浇筑不均匀、渗水、剪切钢筋填充不当等。
2. 桥面铺装质量:包括沥青铺装不均匀、接缝处理不当等。
3. 钢筋加工和安装质量:包括钢筋加工尺寸偏差、焊接不良、钢筋卡榫不牢固等。
4. 预应力张拉质量:包括张拉预应力不足、锚固端锚固不紧密等。
为保证大跨径连续刚构桥梁的施工质量,需要进行以下控制:
1. 加强施工监管,确保桥墩施工质量。
2. 选择质量可靠的材料进行桥面铺装。
3. 对钢筋加工进行质量把关,并加强对钢筋安装全过程的监管。
4. 严格控制预应力张拉的过程,确保张拉预应力的质量及锚固效果。
5. 加强现场施工管理和操作技术培训,提高施工人员的技能和责任意识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大跨连续刚构桥常见病害与设计对策
摘要:通过分析已成大跨径连续刚构桥出现病害的原因,就大跨径连续刚构桥的设计提出一些新的思路.为今后类似桥梁设计提供参考。
关键词:连续刚构桥;箱粱;设计;挠度;裂缝
文章编号:1009—6477(2005)增一0109—03 中图分类号:U448.23 文献标识码:B
山区地形大多呈“V”字形,地形起伏较大,为了跨越山谷深沟,连续刚构桥作为较经济的大跨径桥梁结构形式,在山区的桥梁设计中常常被采用。
虽然连续刚构桥不论在设计方面还是在施工方面,都有较为成熟的经验,而且在国内建成较多,但由于目前对连续刚构桥梁认识的局限性,很多大跨径连续刚构桥均出现不同程度的病害。
在现有认识的基础上,如何克服和尽量减少病害的产生,是目前在设计过程中急需解决的问题。
1 常见病害
通过调查,我国已成的大跨径连续刚构桥梁中,出现的病害主要有以下几种情况:
(1)跨中挠度过大;
(2)箱梁腹板、底板产生裂缝;
(3)墩顶0 梁段开裂;
(4)桥墩墩身裂缝。
2 设计对策
由于现代桥梁在结构的安全性和耐久性方面的认识不断提高,在大跨径桥梁方面给我们设计人员提出了新的要求。
从对连续刚构桥出现病害的原因进行分析的结果来看,其实这些病害在早期并不影响结构的整体安全,但随着时间的推移,会逐渐降低结构的耐久性。
针对大跨径连续刚构桥病害出现的特点,笔者通过多年的工作实践,认为在设计中可以采取相应的有效措施,来克服和尽量减少病害的产生,以提高结构的安全性和耐久性。
2.1 跨中挠度
通过调查,很多大跨径连续刚构桥梁虽然在主梁的设计中设有足够的预拱度,但在建成通车一段
时间后,箱梁跨中均出现不同程度的下挠,这不但给行车带来麻烦,而且会使结构开裂、破坏,给结构带来安全隐患。
经过分析,这是由于混凝土的收缩徐变的结果。
虽然在设计中主梁的预拱度考虑了混凝土的收缩徐变因素,但考虑到混凝土在三向受力的实际情况与理论计算模型并不完全相同,因此,在设计中可以采取以下措施:
(1)适当增加梁高,提高结构的承载能力。
高、跨比是影响主梁受力的主要参数,适当增加梁高,可增加主梁的刚度,改善主梁应力状况。
根据设计经验,国内早期连续刚构箱梁根部梁高一般为中跨长度的1/16~1/18,近期设计的连续刚构桥,箱梁根部梁高一般为中跨长度的1/16~1/17。
(2)设置足够的施工预拱度。
混凝土的收缩徐变对挠度的影响较大,而根据目前的理论,较难准确计算,因此适当加大跨中预拱度,以抵
消箱梁的后期下挠。
施工中箱梁的立模标高可按公式(1)计算:
Hmi= Hli+H2i+ H3i (1)
式中Hmi——第i梁段的立模标高;Hli——第i梁段的设计标高(取换算至立模
控制点的设计高程);H2i——第i梁段的设计预拱度值。
由施工阶段恒载、预应力、混凝土的收缩徐变、施工荷载产生的挠度以及二期恒载、运营阶段1/2最大活载挠度组成,并计人混凝土的长期收缩、徐变引起的预抬高值。
H2i从第i梁段的设计标高控制点起算;H3i——考虑施工中温度、挂篮的弹性变形及施工误差等因素影响的修正值,施工中通过实际观测确定。
根据已有连续刚构桥的设计,对于混凝土长期收缩、徐变引起的中跨跨中下挠值,偏安全地取为中跨跨径的1/1 000。
(3)增加底板预应力束,并采用分批张拉,部分底板预应力束可滞后1年左右的时间,待混凝土完成一定的收缩、徐变后再张拉。
(4)在中跨底板适当设置体外备用钢束,待需要时进行张拉。
(5)延长混凝土的加载龄期,减少徐变对结构的影响,如工期容许,要求纵向预应力的张拉龄期不少于7 d。
2.2 箱梁裂缝
根据现有桥梁病害的产生,箱梁的裂缝主要出现在腹板和底板,腹板裂缝多出现在L/4~L/8之间,底板裂缝多出现在跨中部位及边跨现浇段。
分析原因,主要是腹板内的剪应力、主拉应力和局部拉应力场
作用的结果。
针对这些情况,在设计中可以采取以下措施:
(1)选择合适的箱梁下缘曲线。
大跨径连续刚构桥多采用变截面箱粱,底板下缘曲线常采用半立方抛物线和二次抛物线。
采用二次抛物线可以使箱梁L/4~L/8段的梁高减小,减小了结构自重,但对克服该区段的主拉应力不利;采用半立方抛物线可以使箱梁L/4~L/8段的梁高增加,降低了该区段的主拉应力,但结构自重增加。
因此,跨径较小的桥梁常采用二次抛物线,跨径较大的桥架常采用半立方抛物线,同时底板下缘曲线可在二次抛线与半立方抛物之间变化。
(2)设计合适可靠的竖向预应力。
箱梁施加竖向预应力的主要目的是克服主拉应力,竖向预应力的有效性,对箱梁腹板的受力影响很大。
竖向预应力常采用精轧螺纹粗钢筋或钢绞线。
由于精轧螺纹粗钢筋常用的定尺长度为9 m,因此设计中竖向预应力的长度超过9 m宜采用钢绞线,小于9 m的可采用精轧螺纹粗钢筋。
为了克服预应力的损失,竖向预应力可采用二次张拉,同时为了保证竖向预应力的有效性,二次复拉的间隔时间应不少于20 d。
(3)增加纵向预应力下弯束。
由于竖向预应力的施工质量很难完全达到设计要求,适当增设腹板下弯束,对克服腹板内的主拉应力和剪应力有利,同时下弯束应弯至截面高度的2/3以下。
(4)在中跨跨中及悬臂中部设置横隔板,提高箱梁畸变刚度,从而提高箱梁受力的整体性。
(5)适当增加边跨现浇段的底板和腹板厚度,并设置足够的防崩钢筋。
由于受力和锚固的需要,边跨底板预应力束在边跨现浇段向顶板方向
弯曲,且该处钢束竖弯曲线半径较小。
钢束弯曲产生的附加径向力使预应力管道下缘混凝土承受径向荷载的作用,底板因受过大的径向力而容易产生崩裂。
(6)合拢段的混凝土标号提高半级或一级。
由于连续刚构桥往往具有跨度大,施工过程存在结构体系转换的特点。
合拢段不但是结构最薄弱的部分,而且该部分为后浇混凝土。
箱梁合拢段混凝土的浇注,使得结构由原来的静定结构转换成了超静定结构,同时由于合拢温度的影响,使得该部分的应力状况相对较为复杂,提高混凝土的等级,可以提高结构的抗裂效应。
2.3 墩顶0 梁段
连续刚构桥箱梁0 梁段是主墩和箱梁的交接部位,不但结构复杂,而且是全桥受力的主体,同时顶板纵向预应力全部通过该处。
在已成的桥梁中,不论是施工过程中,还是在运营阶段,箱梁0 梁段是最容易出现开裂。
通过分析,这些裂缝的产生主要是由于温度内力、主梁预加应力及混凝土收缩引起的。
为了防止裂缝的产生,设计中可以采取以下措施:
(1)箱梁0 梁段的横隔板的厚度不宜太厚,应尽可能与顶板、腹板的刚度匹配,以改善箱梁0 梁段的受力状况。
(2)由于主墩墩顶弯矩较大,而墩、梁交接处为2次施工的分界点,使得该处受力不利。
因此箱梁__0 梁段的竖向预应力可延伸至墩顶以下5~10 m,定的抗裂防水膨胀剂。
以改善墩、梁交接处的受力。
(3)设置足够的底板钢筋,必要时设置临时预应力。
(4)在箱梁0 梁段的内、外主筋的表面设置防裂钢筋网片,同时箱梁0 梁段的混凝土中可加入抗混凝土开裂的杜拉纤维或钢纤维,以提高结构的抗裂性能。
2.4 桥墩墩身裂缝
根据大跨径连续刚构桥的受力特点,其墩身大多为柔性墩,常见的有双肢薄壁墩和空心薄壁墩。
双肢薄壁墩常用于墩身不高的情况,墩身较高常采用空心薄壁墩。
分析大跨径连续刚构桥墩身开裂的原因,均是由于混凝土的收缩、Et照温差、内外温差的影响,而造成表面开裂。
为了减小混凝土的收缩,增强混凝土的抗裂性,设计中除了配置足够的受力钢筋外,尚应在主筋的外表面设置防裂钢筋网片,同时在混凝土中加入一定的抗裂防水膨胀剂。
3 结束语
众所周知,一座成功的桥梁主要由3个要素决定:优秀的设计、高质量的施工、精心的后期管理和维护,而优秀的设计是成功桥梁的基础。
在桥梁设计中,应对已成同类型桥梁进行分析和调查,借鉴其成功的经验,扬长避短,以实现结构安全、造型美观和景观协调的桥梁设计理念。
参考文献
[1] .rrG 1962—2004,公路钢筋混凝土及预应力混凝土桥涵
设计规范[s].
[2] .ITJ041—2000,公路桥涵施工技术规范[s].
[3] 王文涛.刚构一连续组合桥梁[M].北京:人民交通出版社,1993.
[4] 张士铎.新规范裂缝公式的探讨[J].重庆交通学院学报,1985,(2).。