仪器分析 第3节 红外光谱仪器
仪器分析-红外吸收光谱法

第 6 章红外吸收光谱法6.1 内容提要6.1.1 基本概念红外吸收光谱——当用红外光照射物质时,物质分子的偶极矩发生变化而吸收红外光光能,有振动能级基态跃迁到激发态(同时伴随着转动能级跃迁),产生的透射率随着波长而变化的曲线。
红外吸收光谱法——利用红外分光光度计测量物质对红外光的吸收及所产生的红外光谱对物质的组成和结构进行分析测定的方法,称为红外吸收光谱法。
振动跃迁——分子中原子的位置发生相对运动的现象叫做分子振动。
不对称分子振动会引起分子偶极矩的变化,形成量子化的振动能级。
分子吸收红外光从振动能级基态到激发态的变化叫做振动跃迁。
转动跃迁——不对称的极性分子围绕其质量中心转动时,引起周期性的偶极矩变化,形成量子化的转动能级。
分子吸收辐射能(远红外光)从转动能级基态到激发态的变化叫做转动跃迁。
伸缩振动——原子沿化学键的轴线方向的伸展和收缩的振动。
弯曲振动——原子沿化学键轴线的垂直方向的振动,又称变形振动,这是键长不变,键角发生变化的振动。
红外活性振动——凡能产生红外吸收的振动,称为红外活性振动,不能产生红外吸收的振动则称为红外非活性振动。
诱导效应——当基团旁边连有电负性不同的原子或基团时,通过静电诱导作用会引起分子中电子云密度变化,从而引起键的力常熟的变化,使基团频率产生位移的现象。
共轭效应——分子中形成大键使共轭体系中的电子云密度平均化,双键力常数减小,使基团的吸收频率向低波数方向移动的现象。
氢键效应——氢键使参与形成氢键的原化学键力常数降低,吸收频率将向低波数方向移动的现象。
溶剂效应——由于溶剂(极性)影响,使得吸收频率产生位移现象。
基团频率——通常将基团由振动基态跃迁到第一振动激发态所产生的红外吸收频率称为基团频率,光谱上出现的相应的吸收峰称为基频吸收峰,简称基频峰。
振动偶合一一两个相邻基团的振动之间的相互作用称为振动偶合。
基团频率区一一红外吸收光谱中能反映和表征官能团(基团)存在的区域。
仪器分析_紫外-可见分光光度和红外光谱法习题及参考答案

第三章紫外可见吸收光谱法一、选择题1、人眼能感觉到的可见光的波长范围是()。
A、400nm~760nmB、200nm~400nmC、200nm~600nmD、360nm~800nm2、在分光光度法中,透射光强度(I)与入射光强度(I0)之比I/I0称为( )。
A、吸光度B、吸光系数C、透光度D、百分透光度3、符合朗伯-比尔定律的有色溶液在被适当稀释时,其最大吸收峰的波长位置( )。
A、向长波方向移动B、向短波方向移动C、不移动D、移动方向不确定·4、对于符合朗伯-比尔定律的有色溶液,其浓度为c0时的透光度为T0;如果其浓度增大1倍,则此溶液透光度的对数为( )。
A、T0/2B、2T0C、2lgT0D、5、在光度分析中,某有色物质在某浓度下测得其透光度为T;若浓度增大1倍,则透光度为( )。
A、T2B、T/2C、2TD、T1/26、某物质的摩尔吸光系数很大,则表明( )。
A、该物质溶液的浓度很大B、光通过该物质溶液的光程长C、该物质对某波长的光的吸收能力很强D、用紫外-可见光分光光度法测定该物质时其检出下限很低7、在用分光光度法测定某有色物质的浓度时,下列操作中错误的是( )。
A、比色皿外壁有水珠B、待测溶液注到比色皿的2/3高度处)C、光度计没有调零D、将比色皿透光面置于光路中8、下列说法正确的是( )。
A、透光率与浓度成正比B、吸光度与浓度成正比C、摩尔吸光系数随波长而改变D、玻璃棱镜适用于紫外光区9、在分光光度分析中,常出现工作曲线不过原点的情况。
与这一现象无关的情况有( )。
A、试液和参比溶液所用吸收池不匹配B、参比溶液选择不当C、显色反应的灵敏度太低D、被测物质摩尔吸光系数太大10、质量相等的A、B两物质,其摩尔质量M A>M B。
经相同方式发色后,在某一波长下测得其吸光度相等,则在该波长下它们的摩尔吸光系数的关系是( )。
A、εA>εBB、εA<εBC、εA=εBD、2εA>εB11、影响吸光物质摩尔吸光系数的因素是( )。
红外光谱仪的基本工作原理

红外光谱仪的基本工作原理光源:光源的作用是产生连续宽频谱的光线,通常采用辐射宽频谱的黑体辐射器,如钨丝灯或硅碳棒等。
这些光源能够辐射出整个红外波段的光线片,包括红外近红外、中红外和远红外三个区域。
光源所产生的光线会通过准直等光学元件,使其成为一束平行光线,然后进入样品室。
样品室:样品室是一个封闭的空间,用于容纳待测样品。
在样品室中,待测样品与红外光发生相互作用,样品会吸收特定频率的红外光,形成特定的红外吸收光谱。
为了保持样品的稳定性,样品室通常会有恒温装置。
光学系统:光学系统由多个光学元件组成,主要负责对红外光进行衍射、分散、聚焦等操作,以便传输和处理光信号。
光学系统通常由光路分析仪、棱镜、光栅和光学滤波器等组成。
光路分析仪用于选择波长范围内的光线,而棱镜和光栅则用于光线的衍射和分散操作,最终通过光学滤波器来选择所需的红外光波段。
检测器:检测器是红外光谱仪中的核心部件,其作用是测量样品吸收的红外光信号,并将其转化为电信号。
最常用的红外检测器有热电偶检测器(Thermocouple detector)、半导体检测器(Semiconductor detector)和累计式热发射检测器(Thermionic emission detector)。
热电偶检测器使用两种不同金属的热电偶,其静电响应频率非常高,能适应高速的红外光信号变化。
半导体检测器则能够对红外光信号产生较高的响应速度和较低的噪声。
累计式热发射检测器是一种非平衡测温方法,通过热电效应,将吸收的光量转换为电信号。
信号处理系统:信号处理系统将检测器测量到的电信号转化为可视化的红外光谱图像。
它包括放大器、滤波器、运算放大器及记录仪等。
放大器负责放大信号以提高信噪比,滤波器则用于去除杂散信号。
运算放大器主要用于信号的放大和调节,以便控制检测器中的响应速度和信噪比,最后将信号经记录仪记录下来,形成红外光谱图像。
总结来说,红外光谱仪利用宽频谱的光源照射样品,样品吸收特定频率的红外光,然后通过光学系统对红外光进行处理和传输,最后通过检测器测量红外光信号,并经过信号处理系统转化为红外光谱图像。
红外光谱仪操作流程

红外光谱仪操作流程
1.准备样品:将待测样品制备成适合红外光谱仪分析的样品形式,如粉末、溶液或薄
膜等。
2.打开仪器:打开红外光谱仪的仪器门,并进行仪器自检。
3.调整仪器参数:根据需要,调整仪器的光学系统和探测器灵敏度等参数。
4.定位样品:将样品放置在红外光谱仪的样品台上,并进行定位。
通常需要使用支架
或其他辅助工具来确保样品的位置和稳定性。
5.开始测量:启动红外光谱仪,让其开始测量样品的红外光谱图谱。
这个过程可能需
要几分钟或几小时的时间,具体取决于待测样品的复杂程度和仪器的性能。
6.分析结果:等待测量完成后,分析红外光谱图谱的结果。
这通常需要使用计算机软
件来进行数据处理和图像分析。
根据测量结果可以得到样品的化学组成信息,例如分子结构、官能团等。
7.结果报告:根据分析结果生成报告,记录样品的化学组成信息以及与标准物质的比
较结果。
这个过程通常需要专业的知识和经验,以确保结果的准确性和可靠性。
第三章 红外和近红外光谱分析技术

4). 检测器及记录仪
红外光能量低,因此常用热电偶、测热辐射计、 热释电检测器和碲镉汞检测器等。
以光栅为分光元件的红外光谱仪不足之处: 1)需采用狭缝,光能量受到限制; 2)扫描速度慢,不适于动态分析及和其它仪 器联用; 3)不适于过强或过弱的吸收信号的分析。
2、傅立叶变换红外光谱仪 它是利用光的相干性原理而设计的干涉型红 外分光光度仪。 仪器组成为:光源、迈克尔逊干涉仪、探测 器和计算机
(二)图谱分析 红外图谱主要用于物质定性分析。 1. 已知物的鉴定 将试样谱图与标准谱图对照或与相关文献上的谱 图对照。 2. 未知物结构分析 如果化合物不是新物质,可将其红外谱图与标准 谱图对照(查对); 如果化合物为新物质,则须进行光谱解析,其步 骤为:
1)该化合物的信息收集:试样来源、熔点、 沸点、折光率、旋光率等; 2)不饱和度的计算: 通过元素分析得到该化合物的分子式,并 求出其不饱和度Ω。
条件二:辐射与物质之间必须有耦合作用: 振动过程中须有偶极距的改变才能吸收红 外辐射
• 对称分子:没有偶极矩,辐射不能引起共 振,无红外活性。 如:N2、O2、Cl2 等。 • 非对称分子:有偶极矩,红外活性。
2)分子振动决定吸收峰
A.双原子分子振动 分子的两个原子以其平衡点为中心,以很小的振 幅(与核间距相比)作周期性“简谐”振动,其 振动可用经典刚性振动描述:
• 1690 cm-1:醛基-C=O伸缩振动吸收(1735 cm-1~1715cm-1,由于与苯环发生共轭向低频 率方向位移)。 • 2820 cm-1和2730 cm-1:醛基的C-H伸缩振动 (2820 cm-1和2720 cm-1)。 • 1465 cm-1和1395 cm-1:甲基的弯曲振动 (1460 cm-1和1380 cm-1)。 • 1260 cm-1和1030 cm-1:C-O-C反对称和对称伸 缩振动(1275 cm-1~1010 cm-1)。 • 由以上信息可知化合物的结构为
红外光谱仪操作规程

红外光谱仪操作规程《红外光谱仪操作规程》一、引言红外光谱仪是一种用于分析样品中的分子结构和化学成分的仪器。
它通过对样品激发并测量样品辐射的红外光的方式来进行分析。
正确操作红外光谱仪对于获取准确的分析结果至关重要,因此有必要建立一套操作规程来保证仪器的正确使用。
二、操作准备1. 打开红外光谱仪电源,等待仪器自检完成。
2. 检查样品室和样品支撑平台是否清洁,有无异物。
3. 准备好需要测试的样品,并将其放置在样品支撑平台上。
三、仪器校准1. 进行零点校准,将空气对流区设定为零基线。
2. 使用标准样品进行波数校准,确保仪器的波数测量准确。
四、样品测试1. 选择适当的测试模式和参数设置。
2. 将样品放置在样品支撑平台上,并确保样品与红外光谱仪的检测区域对齐。
3. 开始测试,并记录测试时间和条件。
五、数据处理1. 获取红外光谱图谱,并保存数据。
2. 对测试数据进行分析,提取出需要的信息。
六、仪器维护1. 测试结束后,关闭红外光谱仪电源。
2. 清洁样品室和样品支撑平台,确保仪器的卫生和整洁。
3. 定期对仪器进行维护保养,保证其正常使用。
七、安全注意事项1. 使用红外光谱仪时,注意避免直接暴露在红外光线下,以免对眼睛造成伤害。
2. 操作过程中,尽量避免样品在样品支撑平台上发生滑动或晃动。
八、结语红外光谱仪是一种非常重要的分析仪器,准确操作和维护对于保证分析结果的准确性至关重要。
遵守本操作规程,可以有效保护仪器和提高操作人员的安全意识,保证分析结果的可靠性。
仪器分析红外光谱法

仪器分析红外光谱法红外光谱法是一种常用的仪器分析方法,可以用于分析物质的组成和结构。
本文将详细介绍红外光谱法的原理、仪器设备和应用领域,并对其中的一些关键技术进行探讨。
红外光谱法是一种基于化学键振动的分析技术。
通过测量样品在红外辐射下的吸收光谱,可以获得有关样品分子的信息。
红外辐射的波长范围为0.78-1000微米,对应的频率范围为12.82-3000THz。
在这个频率范围内,物质的分子会吸收特定波长的辐射能量,这些吸收峰对应着不同的化学键振动。
通过比较样品的吸收光谱和标准库中的光谱,可以确定样品的组分或结构。
红外光谱仪是进行红外光谱分析的关键设备。
它主要由光源、样品室、光谱分束系统和探测器组成。
常见的光源有红外灯、光纤波导和测量系统本体产生的光源,它们的特点是辐射能量可见、红外或拉曼光谱区域。
光谱分束系统可以将样品吸收的红外光谱分解为连续光的波长与光强分布的结果,常用的分束器有棱镜和光栅两种。
光谱分束系统将被分解的光聚集到一个探测器上进行测量,常见的探测器有热电偶、焦平面阵列、差分红外探测器等。
根据实际需要,还可以配备测光计、计算机等辅助设备,以提高测量的准确性和效率。
红外光谱法在实际应用中有广泛的用途。
它可以用于各种领域的研究和分析,如化学、材料科学、制药、食品科学等。
红外光谱法可以用于分析有机化合物、无机物质、生物大分子等类型的样品。
在有机化合物分析中,红外光谱法可以确定化学键的类型、鉴别不同的功能基团、判断化学结构等。
在材料科学中,红外光谱法可以用于表面分析、结构表征、聚合物反应动力学等研究。
在制药和食品科学中,红外光谱法可以用于药物质量控制、药物配方优化、食品成分分析等。
为了提高红外光谱法的测量精度和灵敏度,一些关键技术被引入到了仪器分析中。
其中,ATR技术(全反射红外光谱技术)是一种常用的技术。
它通过将样品直接置于晶体表面进行测量,避免了传统方法中液体制备和气体膜片制备的麻烦。
此外,荧光红外光谱技术也是一项重要的技术。
红外光谱仪的操作步骤简介

红外光谱仪的操作步骤简介红外光谱仪是一种广泛应用于化学、生物、医药等领域的分析仪器。
它通过测量物质在红外光波段的吸收特性,可以帮助研究人员分析物质的结构和组成。
本文将简要介绍红外光谱仪的操作步骤。
1. 准备样品在进行红外光谱分析之前,首先需要准备待测样品。
样品可以是固体、液体或气体,但需要保证样品的纯度和稳定性。
对于固体样品,通常需要将其研磨成粉末或制备成适当的片剂。
对于液体样品,可以直接放置在透明的红外吸收盒中。
对于气体样品,需要使用气体采样装置将其引入红外光谱仪。
2. 设置仪器参数在进行红外光谱分析之前,需要根据样品的性质和实验要求设置仪器参数。
主要包括选择合适的光源、选择合适的检测器、调节光源和检测器的强度等。
不同的样品和实验目的可能需要不同的仪器参数设置,因此需要根据具体情况进行调整。
3. 进行基线扫描基线扫描是红外光谱分析的第一步,用于检测仪器本身的噪音和漂移。
在进行基线扫描时,不需要放入样品,仅需将红外吸收盒或样品槽放置在光路中,进行空白扫描。
通过基线扫描可以得到仪器的基线信号,后续的样品扫描将基于这个基线信号进行分析。
4. 进行样品扫描在进行样品扫描之前,需要将样品放置在红外吸收盒中,并将其放入光路中。
样品的位置和角度需要根据具体仪器的要求进行调整。
在进行样品扫描时,仪器将发出一束红外光,样品会吸收部分光线,其余的光线经过检测器后转化为电信号。
通过对样品吸收的光谱进行分析,可以得到样品的红外光谱图。
5. 数据处理与分析得到样品的红外光谱图后,还需要进行数据处理与分析。
常见的数据处理方法包括基线校正、峰识别和峰定量等。
基线校正可以帮助去除基线漂移和噪音,使得谱图更加清晰。
峰识别可以帮助确定谱图中的各个峰位和峰强度,从而推测样品的结构和组成。
峰定量可以通过峰强度与样品浓度的关系,进行定量分析。
6. 结果解读与应用最后,根据数据处理与分析的结果,可以对样品的结构和组成进行解读与应用。
红外光谱分析可以帮助研究人员确定化学键的类型和存在状态,推测分子的结构和功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 傅里叶变换红外光谱仪结构框图
(动画)
干涉仪 样品室 检测器 显示器 光源 计算机 绘图仪
干涉图
FTS
光谱图
12:49:45
3. 傅立叶变换红外光谱仪的原理与特点
光源发出的辐射经干涉仪转变为干涉光,通
过试样后,包含的光信息需要经过数学上的傅立
叶变换解析成普通的谱图。 特点:(1) 扫描速度极快(1s);适合仪器联用; (2)不需要分光,信号强,灵敏度很高; (3)仪器小巧。
12:49:45
响应速度快;高速扫描;
12:49:45
二、制样方法
sampling methods
1)气体——气体池 ①液膜法——难挥发液体(BP》80C) 2)液体:
②溶液法——液体池
溶剂: CCl4 ,CS2常用。 ①研糊法(液体石腊法)
3) 固体:
②KBR压片法 ③薄膜法
12:49:45
三、联用技术
hypheLeabharlann ated technology三、联用技术
hyphenated technology
12:49:45
一、仪器类型与结构
types and structure of instruments
两种类型:色散型 干涉型(傅立叶变换红外光谱仪)
12:49:45
1. 内部结构
Nicolet公司的 AVATAR 360 FT-IR
12:49:45
infrared spectroscopy and molecular structure
第三节
第四节 第五节
红外光谱仪器
红外谱图解析 激光拉曼光谱
结束
infrared absorption spectrophotometer analysis of Infrared spectrograph laser Raman spectrometry
硅碳棒:两端粗,中间细;直径5 mm,长2050mm;不需预热;两端需用水冷却;
(2) 单色器
光栅;傅立叶变换红外光谱仪不需要分光;
12:49:45
(3) 检测器
真空热电偶;不同导体构成回路时的温差电现象 涂黑金箔接受红外辐射; 傅立叶变换红外光谱仪采用热释电(TGS)和碲镉 汞(MCT)检测器; TGS:硫酸三苷肽单晶为热检测元件;极化效应 与温度有关,温度高表面电荷减少(热释电);
第六章 红外吸收光谱 分析法
第四节 红外分光光度计
infrared absorption spectrometer
一、仪器类型与结构
types and structure of instruments
infrared absorption spec- 二、制样方法 sampling methods troscopy,IR
12:49:45
傅里叶变换红外光谱仪工作原理图
(动画)
12:49:45
迈克尔干涉仪工作原理图
(动画)
12:49:45
4. 色散型红外光谱仪主要部件
(1) 光源
能斯特灯:氧化锆、氧化钇和氧化钍烧结制成 的中空或实心圆棒,直径1-3 mm,长20-50mm; 室温下,非导体,使用前预热到800 C; 特点:发光强度大;寿命0.5-1年;
GC/FTIR(气相色谱红外光谱联用) LC/FTIR(液相色谱红外光谱联用)
PAS/FTIR(光声红外光谱)
MIC/FTIR(显微红外光谱)——微量及微区分析
12:49:45
内容选择:
第一节 第二节 红外基本原理 红外光谱与分子结构
basic principle of Infrared absorption spectroscopy