最新高三教案-第四讲数列与探索性新题型的解题技巧 精品
高中数列问题探究教案模板

【教学目标】1. 知识与技能:通过探究活动,理解数列的基本概念,掌握数列的通项公式和递推公式,并能应用于解决实际问题。
2. 过程与方法:通过观察、实验、分析、归纳等方法,培养学生发现问题、分析问题和解决问题的能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神和创新意识。
【教学重难点】1. 教学重点:数列的基本概念、通项公式和递推公式的理解与应用。
2. 教学难点:数列问题的抽象与概括能力,以及数列在实际问题中的应用。
【教学准备】1. 教学课件或黑板。
2. 数列相关练习题。
3. 教学辅助工具,如计算器等。
【教学过程】一、导入1. 复习上一节课的内容,引导学生回顾数列的基本概念。
2. 提出问题:如何找到数列的通项公式和递推公式?3. 引入本节课的主题:数列问题探究。
二、新课讲授1. 介绍数列的基本概念,如数列的定义、数列的通项公式、递推公式等。
2. 通过实例,讲解数列的通项公式和递推公式的推导过程。
3. 分析数列在实际问题中的应用,如人口增长、物理学中的等差数列等。
三、探究活动1. 将学生分成小组,每组选择一个与数列相关的问题进行探究。
2. 每组学生根据所给问题,运用数列的知识进行讨论和分析。
3. 小组代表汇报探究结果,教师点评并总结。
四、课堂练习1. 布置与数列相关的练习题,让学生独立完成。
2. 教师巡视指导,解答学生的问题。
五、总结与反思1. 教师引导学生回顾本节课所学的知识,总结数列的基本概念、通项公式和递推公式。
2. 学生分享自己在探究活动中的收获和体会。
3. 教师点评并总结,强调数列在实际问题中的应用。
【课后作业】1. 完成课后练习题,巩固所学知识。
2. 预习下一节课的内容,为学习新知识做好准备。
【教学评价】1. 课堂表现:观察学生在课堂上的参与程度、回答问题的情况等。
2. 作业完成情况:检查学生完成课后作业的情况,了解学生对数列知识的掌握程度。
3. 探究活动:评估学生在探究活动中的表现,如团队合作、问题解决能力等。
高中数学数列试题的解题方法与技巧分析

高中数学数列试题的解题方法与技巧分析数列是高中数学中的一个重要章节,也是一些大学数学专业的基础。
在高中数学中,数列主要涉及到概念、性质、变量、极限、递推公式等方面,还与数学中的很多分支有紧密联系,例如微积分、代数等。
在学习数列的过程中,需要掌握一些解题方法和技巧,以便更好地解决数列题目。
这里就对高中数列试题的解题方法与技巧进行分析。
一、理清概念,确定步骤在解数列题目时,首先需要理清概念,确定题目中所给出的数列的特点,例如是等差数列还是等比数列,以确定所需要使用的方法和技巧。
同时,还需要明确题目所要求的内容,例如求第n项、前n项和、通项公式等。
一般来说,解数列题目的方法大致分为以下几步:1. 确定数列的性质:通过观察数列的前几项,确定数列的性质,如等差数列、等比数列等。
2. 计算数列的公差或公比:对于等差数列,需要计算公差d;对于等比数列,需要计算公比q。
3. 求解所需内容:根据题目所要求的内容,求解相应的表达式,如第n项的值、前n 项和、通项公式等。
4. 检查答案:解答完题目后,应当检查所得结果是否合理。
二、掌握常用的数列公式解数列题目时, 需要掌握一些常用的数列公式, 包括等差数列、等比数列的通项公式、前n项和公式等, 在解题过程中充分利用数列公式, 可以大大缩短时间, 提高求解效率。
等差数列的通项公式:an=a1+(n-1)d三、注意数列中的特殊问题在解数列题目时, 还需要注意一些数列中的特殊问题, 以免造成解题错误, 其中比较常见的问题包括以下几种:1. 分段函数问题:有的数列是分段函数,即在不同的区间内,数列的增长方式不同,需要分别求解。
2. 公比/公差等于1的情况:当公比或公差为1的时候,数列的规律发生了变化,需要特别注意。
3. 合并/拆分数列:有时数列会被分成两部分或合并成一个数列,需要先将数列合并或拆分,再进行计算。
4. 集合求和问题:有时题目中会给出一个集合,要求求出该集合的和,这时可以通过将集合中的元素提取出来,转化为数列,再求解。
数列与探索性新题型的解题技巧

数列与探索性新题型的解题技巧引言数列问题是高中数学中的重要部分,也是考试中经常出现的题型。
解决数列问题需要掌握一定的解题技巧,特别是对于探索性新题型,更需要灵活运用已有的知识来解决。
本文将介绍一些数列问题的常见解题技巧,并提供一些探索性新题型的解题思路。
常见数列问题的解题技巧等差数列问题等差数列是一种最常见的数列形式,其特点是每个项与前一项之间有相同的公差。
解决等差数列问题的关键是找到通项公式。
常见的解题技巧包括:1.求前n项和:设等差数列的首项为a₁,公差为d,前n项和为Sₙ,则有Sₙ = (n/2)(2a₁ + (n-1)d)。
2.求第n项:设等差数列的首项为a₁,公差为d,第n项为aₙ,则有aₙ = a₁ + (n-1)d。
3.求公差:设等差数列的首项为a₁,第n项为aₙ,公差为d,则有d = (aₙ -a₁)/(n-1)。
等比数列问题等比数列是一种常见的数列形式,其特点是每个项与前一项之间有相同的公比。
解决等比数列问题的关键是找到通项公式。
常见的解题技巧包括:1.求前n项和:设等比数列的首项为a₁,公比为q,前n项和为Sₙ,则有Sₙ = a₁(1 - qⁿ)/(1 - q)。
2.求第n项:设等比数列的首项为a₁,公比为q,第n项为aₙ,则有aₙ =a₁qⁿ⁻¹。
3.求公比:设等比数列的首项为a₁,第n项为aₙ,公比为q,则有q = aₙ/a₁。
递推数列问题递推数列是一种通过前几项计算后一项的数列形式,常见的形式有Fibonacci数列和差分数列。
解决递推数列问题的关键是找到递推公式。
常见的解题技巧包括:1.Fibonacci数列:Fibonacci数列的递推公式为Fₙ = Fₙ₋₁ + Fₙ₋₂,其中F₁ = 1,F₂ = 1。
可以通过循环或递归的方式计算Fibonacci数列的第n项。
2.差分数列:差分数列是一种通过前几项的差值计算后一项的数列形式。
可以通过观察前几项的差值规律,推导出递推公式。
数列解题技巧高中数学教案

数列解题技巧高中数学教案教案标题:数列解题技巧高中数学教案教学目标:1. 理解数列的概念及其在数学中的应用。
2. 掌握数列的常见解题技巧,包括等差数列和等比数列的求和公式。
3. 能够运用数列解题技巧解决高中数学中的相关问题。
教学准备:1. 教师准备:教材、黑板、彩色粉笔、教学投影仪等。
2. 学生准备:教材、练习题、笔记本等。
教学过程:Step 1:导入与复习(5分钟)教师通过提问或举例引导学生回顾数列的定义和基本性质,以及已学过的等差数列和等比数列的求和公式。
Step 2:数列解题技巧介绍(15分钟)2.1 等差数列解题技巧:- 引导学生理解等差数列的定义,并解释等差数列的通项公式。
- 通过示例演示如何利用等差数列的通项公式求解具体问题。
- 强调等差数列求和公式的应用,包括首项、末项、项数和公差的关系。
- 给予学生练习机会,巩固等差数列解题技巧。
2.2 等比数列解题技巧:- 引导学生理解等比数列的定义,并解释等比数列的通项公式。
- 通过示例演示如何利用等比数列的通项公式求解具体问题。
- 强调等比数列求和公式的应用,包括首项、末项、项数和公比的关系。
- 给予学生练习机会,巩固等比数列解题技巧。
Step 3:综合运用(20分钟)教师提供一些综合性的数列问题,要求学生结合所学的解题技巧分析和解决问题。
教师可以组织学生小组合作,互相讨论和解答问题,然后在全班范围内共享解题思路和答案。
Step 4:拓展与应用(10分钟)教师提供一些拓展性的数列问题,要求学生运用所学的解题技巧解决。
教师可以引导学生思考如何将数列解题技巧应用于实际问题中,培养学生的数学建模能力。
Step 5:总结与归纳(5分钟)教师与学生一起总结所学的数列解题技巧,并强调其在数学学习和实际生活中的应用价值。
Step 6:作业布置(5分钟)教师布置相关的练习题作为课后作业,要求学生运用所学的数列解题技巧解答问题,并鼓励学生在解题过程中思考和发现更多的解题方法。
高中物理数学高中数列10种解题技巧

高中物理数学高中数列10种解题技巧
当涉及到高中物理和数学中的数列问题时,以下是10种解题技巧:
确定数列类型:首先,确定数列是等差数列、等比数列还是其他类型的数列。
这将有助于你选择正确的解题方法。
寻找通项公式:对于等差数列和等比数列,寻找通项公式是解题的关键。
通过观察数列中的规律,尝试找到递推关系式,从而得到通项公式。
求和公式:对于需要求和的数列,使用相应的求和公式可以简化计算过程。
例如,等差数列的求和公式是Sn = (n/2)(2a + (n-1)d),其中Sn表示前n项和,a表示首项,d表示公差。
利用递推关系求解:对于一些复杂的数列问题,可以利用递推关系式逐步求解。
通过已知的前几项,推导出后续项的值。
利用数列性质:数列有许多性质和特点,例如对称性、周期性等。
利用这些性质可以简化问题,找到解题的突破口。
利用数列图像:将数列表示为图像,有时可以更直观地理解数列的规律。
通过观察图像,可以得到一些有用的信息。
利用数列的性质进行变形:有时,对数列进行一些变形可以使问题更容易解决。
例如,将等差数列转化为等比数列,或者将复杂的数列转化为简单的数列。
利用数列的对称性:如果数列具有对称性,可以利用对称性来简化问题。
例如,利用等差数列的对称性可以减少计算量。
利用数列的周期性:如果数列具有周期性,可以利用周期性来简化问题。
通过观察周期内的规律,可以推断出整个数列的性质。
多角度思考:对于复杂的数列问题,尝试从不同的角度思考,采用不同的解题方法。
有时,换一种思路可能会带来新的启示。
高中数学数列试题的解题方法与技巧分析

高中数学数列试题的解题方法与技巧分析高中数学中,数列是一个重要的概念和内容,对于数列的理解和解题能力是数学学习的基础。
以下是解题方法与技巧的分析。
一、数列的定义和特征数列是一组按照一定规律排列的数的集合。
数列可以分为等差数列、等比数列、等差数列和等比数列的组合等多种类型。
在解题过程中,首先要明确数列的类型和特征,确定数列的通项公式和通项求和公式,从而找到解题的方法和步骤。
二、数列的性质和常见结论数列有很多性质和常见结论,掌握这些性质和结论,能够快速分析和解题。
常见的数列性质包括:等差数列的前n项和公式、等差数列的前n项和与项数的关系、等差数列的前n项差的和等于其首项与末项之差、等差数列的通项公式、等比数列的通项公式、等差数列的前n项和与差的关系等。
三、数列的求和公式数列的求和是数列问题中常见的一类问题。
求和公式是求解这类问题的关键。
常见的数列求和公式包括:等差数列的前n项和公式、等比数列的前n项和公式、等差数列求和的性质等。
四、数列问题的解题方法和技巧1. 理解问题:要根据题目所给的条件和要求,理解问题所涉及的数列类型和特征,确定解题的方向和步骤。
2. 寻找规律:通过观察数列的项与项之间的关系,寻找数列的规律。
可以通过找到数列的通项公式或者数列的前n项和公式来解题。
3. 列方程:根据数列的规律,列出相应的方程,求解方程,得到题目要求的结果。
4. 转化问题:将数列问题转化为其他数学问题进行求解,如几何问题、代数问题等。
5. 利用性质和结论:在解题过程中,灵活运用数列的性质和常见结论,加快解题速度。
6. 注意特殊情况:注意题目中可能存在的特殊情况,对于这些情况要进行单独考虑。
五、解题思路解题的思路是解决问题的关键。
在解数列问题时,可以采用以下几种思路:1. 直接法:根据题目所给的条件和要求,直接根据数列的定义、性质、公式等进行求解。
2. 类比法:将所给的数列问题与已经熟悉的数列问题进行比较,找到相似之处,借鉴已有的解题方法和技巧。
浅谈高中数列中的探索问题类型及解题策略

定 了题 目解答 的效率 ,因此 ,在审题之后 我们要 注意对 其 问
题 类 型 进 行 分 析 ,每 一 种 类 型 的 问 题 都 有 着 相 应 的 解 题 步
骤和思路 ,只有学会将 问题加 以分类才 能对症下 药 ,寻找到
适合 问题本 身的解答 方向.
三 、有关不 同数列 问题 的解题 策略的讨 论
(三 )根据给 出的有关结论求相应条件的解题策略 对 此 类 问 题 ,解题 者 必 须 具 备 逆 向 思 维 ,学 会 由 果 找 因 的解 题步骤.逆 向思维是一种发散性思 维 ,是与正 常思维或 者 习 惯性 思 维 相 反 的 一 种 思 维 方 式 .逆 向 思 维 是 一 种 拓 展 思路 的 思 维 方 法 ,如果 在 教 学 中有 意识 地 加 强 训 练 ,可 提 高 学 生 解 决 数 学 问 题 的灵 活 性 ,突 破 思 维 定 式 ,创 造 性 地 发 现 解决 问题 的简捷 、新颖 、奇特 的方 法.例 如 ,在 求解数 列通项 的题 目中 ,如果运 用常规 思维 求解 ,往 往计 算量 较 大 ,易 出 现错 误 ,如果逆用 等差 数列 求 和公 式 或者等 比数 列求 和公 式等 ,找 到相关 的规律 ,那么题 目也就迎刃 而解 了. 四 、结 语 综 上 所 述 ,作 为 一 名 合 格 的 高 中生 ,必 须 具 备 分 析 数 列 问题 并 有 效 解 答 的 能 力 .对 高 中数 学 教 师 而 言 ,数 列 的 教 学 也 是 其 教 学 能 力 的 重 要 衡 量 指 标 .数 列 相 关 的 题 目有 着 非 常清晰的逻辑 ,教 师必 须对学 生有 关数 列 内容 的学 习加 以 正确 的引导 ,只有 让学 生学会 分析 数列 问题 的类 型并 掌握 常见 的 几 种 解 题 策 略 ,才 能 有效 提 高 其 数 学 成 绩 .
高中数学探究性教案

高中数学探究性教案
教学目标:
1. 理解数列的定义和概念
2. 掌握数列的常见性质
3. 能应用所学知识解决问题
教学内容:
1. 数列的定义
2. 数列的类型(等差数列、等比数列)
3. 数列的通项公式
4. 数列的前n项和公式
教学步骤:
第一步:引入问题
老师出示一道简单的数列问题:“1, 4, 7, 10, ... ,请问下一个数是多少?”让学生思考并讨论解题方法。
第二步:引入概念
老师引导学生讨论数列的定义,并介绍等差数列和等比数列的概念及特点。
第三步:探究性学习
1. 学生自行探究等差数列和等比数列的通项公式,并在小组讨论中总结规律。
2. 学生尝试应用所学知识解决实际问题,如计算数列的前n项和等。
第四步:展示总结
学生展示他们的研究成果,并讨论数列的常见性质及应用。
第五步:巩固练习
老师布置一些相关的练习题,让学生在课后巩固所学内容。
评估方式:
1. 学生在学习过程中的表现和参与程度
2. 学生在练习中的答题情况和解题思路
3. 学生对于数列概念的理解和应用能力
拓展延伸:
1. 学生可以进一步研究Fibonacci数列及其性质
2. 学生可以尝试探究其他特殊数列的规律和性质,如素数数列、斐波那契数列等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲数列与探索性新题型的解题技巧【命题趋向】从2007年高考题可见数列题命题有如下趋势:1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有.2.数列中a n与S n之间的互化关系也是高考的一个热点.3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用.4.解答题的难度有逐年增大的趋势,还有一些新颖题型,如与导数和极限相结合等.因此复习中应注意:1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等.2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等.4.等价转化是数学复习中常常运用的,数列也不例外.如a n与S n的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳.5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果.7.数列应用题将是命题的热点,这类题关键在于建模及数列的一些相关知识的应用.【考点透视】1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题. 3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题. 4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度.有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法.应用问题考查的重点是现实客观事物的数学化,常需构造数列模型,将现实问题转化为数学问题来解决. 【例题解析】考点1 正确理解和运用数列的概念与通项公式理解数列的概念,正确应用数列的定义,能够根据数列的前几项写出数列的通项公式. 典型例题例1.(2006年广东卷)在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第2,3,4,…堆最底层(第一层)分别按图4所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以 f (n)表示第n 堆的乒乓球总数,则()f 3_____=;()_____f n =(答案用n 表示).思路启迪:从图中观察各堆最低层的兵乓球数分别是12,3,4, …推测出第n 层的球数。
解答过程:显然()f 310=.第n 堆最低层(第一层)的乒乓球数,()n 12n n n 1a a a a 2+=+++=,第n 堆的乒乓球数总数相当于n 堆乒乓球的低层数之和,即()()22212n n n 111f n a a a (12n ).222+=+++=++++⋅ 所以:()()n n 1n 2f (n)6++=例2.(2007年湖南卷理)将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行;第61行中1的个数是 . 第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 00 01第5行 1 1 0 0 1 1……… ………………………………………思路启迪:计算图形中相应1的数量的特征,然后寻找它们之间的规律。
解:第1次全行的数都为1的是第21-=1行,第2次全行的数都为1的是第221-=3行,第3次全行的数都为1的是第321-=7行,······,第n 次全行的数都为1的是第21n -行;第61行中1的个数是521- =32. 应填21n -,32考点2 数列的递推关系式的理解与应用在解答给出的递推关系式的数列问题时,要对其关系式进行适当的变形 ,转化为常见的类型进行解题。
如“逐差法”若n n 1a a n,--=且1a 1=;我们可把各个差列出来进行求和,可得到数列{}n a 的通项.()()()n n n 1n 1n 2211a a a a a a a a ---=-+-++-+()()n n 1n n 121.2+=+-+++=再看“逐商法”即n 1na n 1a +=+且1a 1=,可把各个商列出来求积。
()()n n 12n 1n 1n 21a a a a a n n 1n 221n!a a a ---==--=另外可以变形转化为等差数列与等比数列,利用等差数列与等比数列的性质解决问题。
例3.(2007年北京卷理)数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列. (I )求c 的值;(II )求{}n a 的通项公式.思路启迪:(1)由123a a a ,,成公比不为1的等比数列列方程求c ;(2)可根据递推公式写出数列的前几项,然后分析每一项与该项的序号之间的关系,归纳概括出an 与n 之间的一般规律,从而作出猜想,写出满足前4项的该数列的一个通项公式. 解:(I )12a =,22a c =+,323a c =+,因为123a a a ,,成等比数列,所以2(2)2(23)c c +=+,解得0c =或2c =. 当0c =时,123a a a ==,不符合题意舍去,故2c =. (II )当2n ≥时,由于 21a a c -=, 322a a c -=,,1(1)n n a a n c --=-,所以1(1)[12(1)]2n n n a a n c c --=+++-=.又12a =,2c =,故22(1)2(23)n a n n n n n =+-=-+=,,.当1n =时,上式也成立, 所以22(12)n a n n n =-+=,,.小结:从特殊的事例,通过分析、归纳、抽象总结出一般规律,再进行科学地证明,这是创新意识的具体体现,这种探索问题的方法,在解数列的有关问题中经常用到,应引起足够的重视.例4.(2006年广东卷)已知数列{}n x 满足122x x =,()1212n n n x x x --=+,3,4,n =….若lim 2n n x →∞=, 则 ( B ) (A) 32(B) 3 (C) 4 (D) 5思路启迪:对递推关系变形,运用叠加法求得,特别注意的是对两边同时运用. 解答过程:n n 1n 12x x x --=+, n n 1n 2n x x x x --∴-=-.32134324n 1n 2n 3n 1n n 1n 2n x x x x x x x x x x x x x x x x -------=-⎫⎪-=-⎪⎪⎬⎪-=-⎪-=-⎪⎭相叠加n 212n n 1x x x x x x --=+--. 12x x 2=, n n 112x x 2x-∴+=. ()n n 11n n lim 2x x lim 2x -→∞→∞+=, n n lim x 2→∞=,12x 6∴= ,1x 3=.解答过程2:由()1212n n n x x x --=+得:n n 1n 1n 2211111x +x x x x x x 222---=+==+=, n n 11n 1lim x x x 2-→∞⎛⎫+= ⎪⎝⎭,因为n n lim x 2→∞=. 所以:1x 3=.解答过程3:由()1212n n n x x x --=+得:()()2n n 1n 1n 2n 2n 311x x x x x x 22-----⎛⎫⎛⎫-=--=-- ⎪ ⎪⎝⎭⎝⎭…………()n 2n 121111x x x 22--⎛⎫⎛⎫==--=- ⎪ ⎪⎝⎭⎝⎭,从而 23211x x x 2⎛⎫-=- ⎪⎝⎭;34311x x x 2⎛⎫-=- ⎪⎝⎭;……;n 1n n 111x x x 2--⎛⎫-=- ⎪⎝⎭.叠加得:23n 1n 21111x x x 222-⎡⎤⎛⎫⎛⎫⎛⎫-=-+-++-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. n 2n 2111x x x 162-⎡⎤⎛⎫=+--⎢⎥⎪⎝⎭⎢⎥⎣⎦, n 2n 21n n 11lim x lim x x 162-→∞→∞⎧⎫⎡⎤⎪⎪⎛⎫=+--⎢⎥⎨⎬ ⎪⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭. 11x 12x 26=+ , 从而1x 3=.小结:数列递推关系是近几年高高数学的热点,主要是一些能转化为等差等比数列的递推关系式。
对连续两项递推()n n-1a ka d n 2,k 1=+≥≠,可转化为n n 1d d a k a 1k 1k -⎛⎫-=- ⎪--⎝⎭;对连续三项递推的关系()n 1n n-1a ka da n 2+=+≥如果方程2x kx d=0--有两个根αβ、,则上递推关系式可化为()n 1n n n 1a a a a αβ+--=-或()n 1n n n 1a a a a βα+--=-.考点3 数列的通项n a 与前n 项和n S 之间的关系与应用n a 与n S 的关系:1n n n 1S n=1a S S n 2-⎧=⎨-≥⎩,数列前n 项和n S 和通项n a 是数列中两个重要的量,在运用它们的关系式n n n 1a S S -=-时,一定要注意条件n 2≥,求通项时一定要验证1a 是否适合。
解决含n a 与n S 的式子问题时,通常转化为只含n a 或者转化为只n S 的式子.例5.(2006年辽宁卷) 在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( )(A)122n +- (B) 3n (C) 2n (D)31n - 命题目的:本题考查了等比数列的定义和求和公式,着重考查了运算能力。