数列题型的解题技巧
数列题型及解题方法

数列题型及解题方法数列是数学中常见的一种数学对象,它是按照一定的规律排列的一组数的集合。
在数学中,数列是一个非常重要的概念,它不仅在初等数学中有着广泛的应用,而且在高等数学中也有着重要的地位。
数列题型及解题方法是数学学习中的一个重要内容,下面我们就来详细介绍一下数列的相关知识和解题方法。
一、数列的基本概念。
数列是按照一定的规律排列的一组数的集合,它可以用一个通项公式来表示。
数列中的每一个数称为该数列的项,数列中的第一个数称为首项,数列中的最后一个数称为末项。
数列中的相邻两项之间的差称为公差,如果数列中的相邻两项之间的比值是一个常数,则称这个数列是等比数列,否则称为等差数列。
二、等差数列的求和公式。
对于等差数列来说,如果已知它的首项a1、末项an和项数n,那么可以利用等差数列的求和公式来求出这个等差数列的和。
等差数列的求和公式为Sn=n(a1+an)/2,其中Sn表示等差数列的和,n表示项数,a1表示首项,an表示末项。
利用这个公式可以很方便地求出等差数列的和,从而简化计算过程。
三、等比数列的求和公式。
对于等比数列来说,如果已知它的首项a1、末项an和项数n,那么可以利用等比数列的求和公式来求出这个等比数列的和。
等比数列的求和公式为Sn=a1(1-q^n)/(1-q),其中Sn表示等比数列的和,a1表示首项,q表示公比,n表示项数。
利用这个公式可以很方便地求出等比数列的和,从而简化计算过程。
四、数列题型及解题方法。
1. 求等差数列的和,对于已知的等差数列,如果要求它的和,可以利用等差数列的求和公式来求解。
首先要确定等差数列的首项、末项和项数,然后代入求和公式即可得到结果。
2. 求等比数列的和,对于已知的等比数列,如果要求它的和,可以利用等比数列的求和公式来求解。
首先要确定等比数列的首项、末项和项数,然后代入求和公式即可得到结果。
3. 求等差数列的通项公式,对于已知的等差数列,如果要求它的通项公式,可以利用等差数列的通项公式an=a1+(n-1)d来求解。
数列解题方法大全

数列方法大全一、求通项公式各种数列问题在很多情形下,就是对数列通项公式的求解。
特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。
类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。
例1. 已知数列{}n a 满足211=a ,1n n a a n +=+,求n a 。
变式: 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式. 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。
例2:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。
变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。
解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。
例3:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .类型4 nn n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。
(或1n n n a pa rq +=+,其中p ,q, r 均为常数) 。
解法:一般地,要先在原递推公式两边同除以1+n q,得:qq a q p q a n n n n 111+•=++引入辅助数列{}n b (其中nnn qa b =),得:qb q p b n n 11+=+再待定系数法解决。
数列运算的一些小技巧

数列运算的一些小技巧1. 等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208, 622,规律为a*3-2=b2.深一点模式,各数之间的差有规律,如1、2、5、10、17。
它们之间的差为1、3、5、7,成等差数列。
这些规律还有差之间成等比之类。
B,各数之间的和有规律,如1、2、3、5、8、13,前两个数相加等于后一个数。
3、看各数的大小组合规律,做出合理的分组。
如7,9,40,74,1526,5436,7和9,40和74,1526和5436这三组各自是大致处于同一大小级,那规律就要从组方面考虑,即不把它们看作6个数,而应该看作3个组。
而组和组之间的差距不是很大,用乘法就能从一个组过渡到另一个组。
所以7*7-9=40 , 9*9-7=7 4 , 40*40-74=1526 , 74*74-40=5436</B>,这就是规律。
4、如根据大小不能分组的,A,看首尾关系,如7,10,9,12,11,14,这组数; 7+14=10+11=9+12。
首尾关系经常被忽略,但又是很简单的规律。
B,数的大小排列看似无序的,可以看它们之间的差与和有没有顺序关系。
5、各数间相差较大,但又不相差大得离谱,就要考虑乘方,这就要看各位对数字敏感程度了。
如6、24、60、120、210,感觉它们之间的差越来越大,但这组数又看着比较舒服(个人感觉,嘿嘿),它们的规律就是2^3-2=6、3^3-3=24、4^3-4=60、5^3-5=120、6^3-6=210。
这组数比较巧的是都是6的倍数,容易导入歧途。
6)看大小不能看出来的,就要看数的特征了。
如21、31、47、56、69、72,它们的十位数就是递增关系,如25、58、811、1114 ,这些数相邻两个数首尾相接,且2、5、8、11、14的差为3,如论坛上答:256,269,286,302,(),2+5+6=132+6+9=172+8+6=163+0+2=5,∵256+13=269269+17=286286+16=302 ∴下一个数为302+5=307。
专题 构造法求数列通项的八种技巧

专题 构造法求数列通项的八种技巧【必备知识点】◆构造一:待定系数之1n n a Aa B +=+型构造等比数列求关于1n n a Aa B +=+(其中,A B 均为常数,(1)0AB A -≠)类型的通项公式时,先把原递推公式转化为()1n n a M A a M ++=+,再利用待定系数法求出M 的值,再用换元法转化为等比数列求解.其实对于这类式子,我们只需要记住在等式两侧加上一个常数M ,构造成等比数列.常数M 的值并不需要背诵,我们可以通过待定系数法推导出来.◆构造二:待定系数之1n n a Aa Bn C +=++型构造等比数列求关于1(1,0,0)n n a Aa Bn C A C B +=++≠≠≠类型的通项公式时,与上面讲述的构造一的方法很相似,只不过等式中多了一项Bn ,在构造时我们也保持跟题干一样的结构,加一项pn 再构造等比数列就可以,即令()1(1)n n a p n q A a pn q ++++=++,然后与已知递推式各项的系数对应相等,解,p q ,从而得到{}n a pn q ++是公比为A 的等比数列.◆构造三:待定系数之1n n n a pa q +=+型构造数列求关于1nn n a pa q +=+(其中,p q 均为常数,(1)0pq p -≠)类型的通项公式时,共有3种方法.方法一:先用待定系数法把原递推公式转化为()11n n n n a q p a q λλ+++=+,根据对应项系数相等求出λ的值,再利用换元法转化为等比数列求解. 方法二:先在递推公式两边同除以1n q+,得111n n n n a a p q q q q ++=⋅+,引入辅助数列{}n b (其中n b nna q=),得11n n p b b q q+=⋅+,再利用待定系数法解决; 方法二:也可以在原递推公式两边同除以1n p +,得111nn n n n a a q p p p p ++⎛⎫=+⋅ ⎪⎝⎭,引入辅助数列{}n b (其中n n na b p =),得11n n b b p +-=⋅.nq p ⎛⎫⎪⎝⎭,再利用叠加法(逐差相加法)求解. ◆构造四:同型构造法所谓同型构造法,就是将找因式中的因子和数列项数相同或者相近的部分通过同除或同乘化归成结构相同的形式,形成新的数列,如常数列,等差数列或等比数列.下面让我们来看看有哪些模型结构吧. 模型一:111(1)1n n n n n n a a n a n a n +++−=−−−−→⋅+=⋅+左右同乘,构造n n b n a =⋅,则1n n b b +=,{}n b 为常数数列.模型二:11111n n n n n a a n a a n n n +++−−−−−⋅→+==+左右同除,构造n n a b n=,则1n n b b +=,{}n b 为常数数列. 模型三:()()21112(1)(2)(1)n n n n n n a a n a a n n n n n ++++−−−−+=⋅=+−→++−左右同除,构造(1)n n a b n n =+,则1n n b b +=,{}n b 为常数数列.模型四:()111(1)221n n n n n n n a a na n a n +++−−−−−→=+=+左右同除,构造n n ab n=,则12n n b b +=,{}n b 为等比数列. 模型五:11111222212n n n n n n n n n n n n n a S S S S S n n S S S nn n ++++++++=⋅=⋅=⇒-⇒−−−−−→+⋅=左右同除,构造nn S b n=,则12n n b b +=,{}n b 为等比数列. 模型六:1111111n n n n n a a n a a n n n n ++++=⋅=+++−−−+−−→左右同除,构造n n a b n=,则11n n b b +=+,{}n b 为等差数列.模型七:12111122122n n n n n n n n a a a a +++++−=+=−−−→+−左右同除,构造2nnna b =,则11n n b b +=+,{}n b 为等差数列. 模型八:1111111n n a an n n n n n a a a a a a ++++-−−=-=−−−→左右同除,构造1n nb a=,则11n n b b +-=,{}n b 为等差数列. 看了这么多模型,是不是觉得很多,很难记住呢,其实向大家展示这么多,只是想向大家展示,当看到这类式子,尽量将1n +和1n a +,n 和n a 等因子和数列项数相同的部分划归成结构相同的形式,构造成新数列.◆构造五:取倒数构造等差类型一:数列{}n a 满足:1n n n ba a ka b+=+,则有111n n n n b ka ka ba ab ++==+. 所以1n a ⎧⎫⎨⎬⎩⎭是以11a 为首项,kb 为公差的等差数列,即111(1)n k n a a b =+-.(当分母出现加减时,我们很难将它进行化简运算,所以往往取倒数再运算才能找到突破点). 类型二:数列{}n a 满足:1112n n n n na a a a a -+-=-,则有11111211111n n n n n n n n n a a a a a a a a a -+-+--=⇔-=-. 所以1n a ⎧⎫⎨⎬⎩⎭是等差数列.类型三:若数列{}n a 的前n 项和为n S ,且满足10n n n a kS S -+=,则有110n n n n S S kS S ---+=,两边同除以1n n S S -得:111n n k S S --=,故1n S ⎧⎫⎨⎬⎩⎭是以11a 为首项,k 为公差的等差数列,即111(1)n n k S a =+-,再用1n n n a S S -=-,求{}n a .◆构造六:取对数构造法型如1k n n a ca +=,1n k n a ca -=或者1(),n n kb b b ac a -++=为常数.针对出现这种数列,为方便计算,两边通常取以c 或首项为底的对数,就能找到突破口.什么情况取c 为底,什么情况取首项为底呢?我们来看两道例题.◆构造七:二阶整体构造等比简单的二阶整体等比:关于11n n n a Aa Ba +-=+的模型,可通过构造二阶等比数列求解,大部分题型可转化为()11(1)n n n n a a A a a +--=--,利用{}1n n a a +-成等比数列,以及叠加法求出n a .还有一小部分题型可转化为()11(1)n n n n a a A a a +-=+++,利用{}1+n n a a +成等比数列求出n a .此方法可以解决大多数的11n n n a Aa Ba +-=+,1A B +=模型的试题.当然针对个别试题,单纯构造{}1n n a a +-成等比数列可能解决不了问题.我们需要学习更完整的方法来解决这种类型题.这就需要运用数列的特征方程理念来解决.当然我们不需要详细学习数列的特征方程,用高中的待定系数法也可以解决,接下来我们通过两道例题,来详细解释说明下这种方法.秒杀求法:21(,0)n n n a pa qa p q ++=+≠类通项公式暴力秒杀求法21(,0)n n n a pa qa p q ++=+≠对应的特征方程为:2x px q =+,设其两根为12,x x当12x x ≠时, 2212n n n a Ax Bx --=+,当12x x =时, 21()n n a An B x -=+其中A ,B 的值的求法,用12,a a 的值代入上面的通项公式中,建立方程组解之即可◆构造八:数列不动点构造求数列(较难,能力强的同学可以学习)针对1n n n ax bx cx d++=+这类题型,考题中并不多见,难度比较大,这类题型有特定的解题方法.我们需要学习“数列不动点”的知识点.接下来我们来学习下什么是“数列不动点”,它有什么性质.当然看不懂也没关系,可以通过例题,熟记掌握解题步骤就可以.对于函数()f x ,若存在实数0x ,使得()00f x x =,则称0x x =是函数()f x 的不动点. 在几何上,曲线()y f x =与曲线y x =的交点的横坐标即为函数()f x 的不动点.一般地,数列{}n x 的递推式可以由公式()1n n x f x +=给出,因此可以定义递推数列的不动点:对于递推数列{}n x ,若其递推式为()1n n x f x +=,且存在实数0x ,使得()00f x x =,则称0x 是数列{}n x 的不动点。
数学数列解题技巧

数学数列解题技巧数列问题在数学中是一个很重要的部分,解决这类问题需要的不仅仅是数学知识,还需要一些技巧和策略。
以下是几种能帮助你迅速解决数列问题的技巧。
第一种技巧:观察序列模式数列问题的解法通常有很多种,但最重要的一种解法就是分析数列中的规律。
有时候,数列的规律并不是那么显然,但如果我们能够仔细观察数列的模式,那么就可以发现一些有用的信息。
例如,考虑这样一个数列:1, 2, 4, 7, 11, 16, ...如果你能够看出这个数列的规律,那么你就能迅速解决这个问题。
观察到第二项减去第一项等于1,第三项减去第二项等于2,第四项减去第三项等于3,以此类推。
因此,你可以猜到,第n项和前n-1项的差等于n-1。
如果我们将这个规律用数学语言表示出来,就是:a_n - a_n-1 = n-1其中,a_n 表示数列的第n项。
有些数列中的规律可能没有上面的数列那样显而易见。
但是,如果你有耐心,仔细观察,你就可能发现一些规律。
例如,你可能需要将数列的项数写下来,然后找出每一项之间的相对关系。
第二种技巧:使用标志数标志数是一种非常有用的数列解题技巧。
标志数是一个虚构的数,用于帮助你推导数列的规律。
标志数通常用字母表示,例如a、b、c等。
标志数可以用于表示某个地方的数列值,或是某个数列的差值等。
例如,考虑这个数列:2, 6, 12, 20, 30, ...如果你能够找到这个数列中的规律,则可以使用标志数帮助你推导答案。
因此,让我们设a为这个数列的第一项,然后逐一找出每个项之间的差值:6-2=4, 12-6=6, 20-12=8, 30-20=10这些差值看上去并不那么有规律,但是我们可以将它们再次相减:6-4=2, 8-6=2, 10-8=2这就让我们立刻看出了规律!相邻项的差值相等。
因此我们可以使用这个规律来生成您的解:a_1=2, a_2=a_1+4=6, a_3=a_2+6=12, a_4=a_3+8=20 以此类推。
高中数学数列方法及技巧

高中数学数列方法及技巧1高中数学数列方法和技巧一.公式法如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q≠1.二.倒序相加法如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.三.错位相减法如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.四.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.五.分组求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.2高中数学数列问题的答题技巧高中数列,有规律可循的类型无非就是两者,等差数列和等比数列,这两者的题目还是比较简单的,要把公式牢记住,求和,求项也都是比较简单的,公式的运用要熟悉。
题目常常不会如此简单容易,稍微加难一点的题目就是等差和等比数列的一些组合题,这里要采用的一些方法有错位相消法。
题目变化多端,往往出现的压轴题都是一些从来没有接触过的一些通项,有些甚至连通项也不给。
针对这两类,我认为应该积累以下的一些方法。
对于求和一类的题目,可以用柯西不等式,转化为等比数列再求和,分母的放缩,数学归纳法,转化为函数等方法等方法对于求通项一类的题目,可以采用先代入求值找规律,再数学归纳法验证,或是用累加法,累乘法都可以。
总之,每次碰到一道陌生的数列题,要进行总结,得出该类的解题方法,或者从中学会一种放缩方法,这对于以后很有帮助。
3高考数学解题方法解题过程要规范高考数学计算题要保证既对且全,全而规范。
应为高考数学计算题表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。
高考数列解题技巧

高考数列解题技巧数列是高中数学的重要内容之一,也是高考数学的热点之一。
在解决数列问题时,学生需要掌握一些常用的解题技巧,以提高解题效率和准确性。
1. 公式法公式法是解决数列问题的基本方法之一。
对于等差数列和等比数列,学生需要熟记它们的通项公式和求和公式,以便在解题时能够迅速运用。
例如,对于等差数列{an},其通项公式为a_n=a_1+(n-1)d,其中a_1为首项,d为公差。
求和公式为S_n=n/2(a_1+a_n)。
2. 裂项相消法裂项相消法是一种常用的求和技巧,适用于一些看似复杂的数列求和问题。
通过将每一项都拆分成两个部分,然后抵消掉中间的部分,可以简化计算过程。
例如,对于数列1/2, 2/3, 3/4, ..., n/(n+1),学生可以使用裂项相消法进行求和。
将每一项都拆分成两个部分,即分子和分母,然后抵消掉中间的部分,得到结果为1-1/(n+1)。
3. 错位相减法错位相减法是一种常用的求和方法,适用于一些周期性变化的数列。
通过错位相减法,可以将一个复杂的数列转化为一个简单的数列,从而简化计算过程。
例如,对于数列1, 1/2, 1/3, 1/4, ..., 1/n,学生可以使用错位相减法进行求和。
将每一项都乘以10,得到数列10, 5, 3, 2, ..., 1/n,然后将两个数列相减,得到结果为9+4+2+...+1-1/n。
4. 倒序相加法倒序相加法是一种求解递推关系式的常用方法。
通过将一个数列的顺序倒过来,然后将正序和倒序的两个数列相加,可以得到一个常数列的和,进而求出原数列的和。
例如,对于数列a_n=S_{n-1}+S_n,学生可以使用倒序相加法求解。
将数列a_n的顺序倒过来得到a_n=S_n+S_{n-1}......(B),然后将(A)式和(B)式相加得到2a_n=2S_n+S_{n-1}+S_{n-2}+......+S_2+S_1=S_n+S_{n-1}+......+S_2+S_1+ S_0=2^n-1。
数学中数列题解题技巧与关键知识点

数学中数列题解题技巧与关键知识点数列是数学中一个重要的概念,它在各个数学分支中都有广泛的应用。
解决数列题需要掌握一些关键的技巧和知识点。
本文将介绍数列题的解题技巧,并列举一些数列题的关键知识点。
一、等差数列的解题技巧等差数列是最常见的数列类型之一。
解决等差数列题可以运用以下技巧:1. 找出公差:公差是等差数列中相邻两项的差值,一般表示为d。
通过找出公差,可以帮助我们确定等差数列的规律。
2. 判断首项和通项公式:等差数列的通项公式为an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
通过已知条件,可以确定首项和公差的值,并利用通项公式解决问题。
3. 利用等差数列的性质:等差数列具有一些特殊的性质,如任意三项的和等于三倍的中间项、前n项和的计算公式等。
在解题过程中,利用这些性质可以简化计算,提高解题效率。
二、等比数列的解题技巧等比数列是另一类常见的数列类型。
解决等比数列题可以运用以下技巧:1. 找出公比:公比是等比数列中相邻两项的比值,一般表示为q。
通过找出公比,可以帮助我们确定等比数列的规律。
2. 判断首项和通项公式:等比数列的通项公式为an = a1 * q^(n-1),其中an表示第n项,a1表示首项,q表示公比。
通过已知条件,可以确定首项和公比的值,并利用通项公式解决问题。
3. 利用等比数列的性质:等比数列具有一些特殊的性质,如任意相邻三项的乘积相等等。
在解题过程中,利用这些性质可以简化计算,提高解题效率。
三、斐波那契数列的解题技巧斐波那契数列是一种特殊的数列,它的每一项都是前两项的和。
解决斐波那契数列题可以运用以下技巧:1. 理解斐波那契数列的定义:斐波那契数列的前两项分别为0和1,后面的每一项都是前两项的和。
通过理解这个定义,可以找出斐波那契数列的规律。
2. 利用递推关系求解:斐波那契数列可以通过递推关系an = an-1 + an-2求解,其中an表示第n项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近几年高考题可见数列题命题有如下趋势:1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有.2.数列中a n与S n之间的互化关系也是高考的一个热点.3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用.4.解答题的难度有逐年增大的趋势,还有一些新颖题型,如与导数和极限相结合等.因此复习中应注意:1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等.2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量a1、d(或q),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意q=1和q≠1两种情况等等.4.等价转化是数学复习中常常运用的,数列也不例外.如a n与S n的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳.5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果.7.数列应用题将是命题的热点,这类题关键在于建模及数列的一些相关知识的应用.【考点透视】1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能运用公式解答简单的问题.3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能运用公式解决简单的问题.4.数列是高中数学的重要内容,又是学习高等数学的基础,所以在高考中占有重要的地位.高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏.解答题多为中等以上难度的试题,突出考查考生的思维能力,解决问题的能力,试题大多有较好的区分度.有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法.应用问题考查的重点是现实客观事物的数学化,常需构造数列模型,将现实问题转化为数学问题来解决.【例题解析】考点1 正确理解和运用数列的概念与通项公式理解数列的概念,正确应用数列的定义,能够根据数列的前几项写出数列的通项公式.典型例题 例1.在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第2,3,4,…堆最底层(第一层)分别按图4所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f (n)表示第n 堆的乒乓球总数,则()f 3_____=;()_____f n =(答案用n 表示).分析:从图中观察各堆最低层的兵乓球数分别是12,3,4, …推测出第n 层的球数。
解:显然()f 310=.第n 堆最低层(第一层)的乒乓球数,()n 12n n n 1a a a a 2+=+++=,第n 堆的乒乓球数总数相当于n 堆乒乓球的低层数之和,即()()22212n n n 111f n a a a (12n ).222+=+++=++++⋅ 所以:()()n n 1n 2f (n)6++=例2.将杨辉三角中的奇数换成1,偶数换成0,得到如图所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行;第61行中1的个数是 . 第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 1…… ………………………………………分析:计算图形中相应1的数量的特征,然后寻找它们之间的规律。
解:第1次全行的数都为1的是第21-=1行,第2次全行的数都为1的是第221-=3行,第3次全行的数都为1的是第321-=7行,······,第n 次全行的数都为1的是第21n -行;第61行中1的个数是521- =32.应填21n -,32考点2数列的递推关系式的理解与应用在解答给出的递推关系式的数列问题时,要对其关系式进行适当的变形,转化为常见的类型进行解题。
如“逐差法”若n n 1a a n,--=且1a 1=;我们可把各个差列出来进行求和,可得到数列{}n a 的通项.…()()()n n n 1n 1n 2211a a a a a a a a ---=-+-++-+()()n n 1n n 121.2+=+-+++=再看“逐商法”即n 1na n 1a +=+且1a 1=,可把各个商列出来求积。
()()n n 12n 1n 1n 21a a a a a n n 1n 221n!a a a ---==--=另外可以变形转化为等差数列与等比数列,利用等差数列与等比数列的性质解决问题。
例3.数列{}n a 中,12a =,1n n a a cn +=+(c 是常数,123n =,,,),且123a a a ,,成公比不为1的等比数列.(I )求c 的值;(II )求{}n a 的通项公式.分析:(1)由123a a a ,,成公比不为1的等比数列列方程求c ;(2)可根据递推公式写出数列的前几项,然后分析每一项与该项的序号之间的关系,归纳概括出an 与n 之间的一般规律,从而作出猜想,写出满足前4项的该数列的一个通项公式. 解:(I )12a =,22a c =+,323a c =+,因为123a a a ,,成等比数列,所以2(2)2(23)c c +=+,解得0c =或2c =. 当0c =时,123a aa ==,不符合题意舍去,故2c =. (II )当2n ≥时,由于21a a c -=, 322a a c -=,,1(1)n n a a n c --=-,所以1(1)[12(1)]2n n n a a n c c --=+++-=.又12a =,2c =,故22(1)2(23)n a n n n n n =+-=-+=,,. 当1n =时,上式也成立, 所以22(12)n a n n n =-+=,,.小结:从特殊的事例,通过分析、归纳、抽象总结出一般规律,再进行科学地证明,这是创新意识的具体体现,这种探索问题的方法,在解数列的有关问题中经常用到,应引起足够的重视.例4.已知数列{}n x 满足122x x =,()1212n n n x x x --=+,3,4,n =….若lim 2n n x →∞=, 则 ( B )(A) 32(B) 3 (C) 4 (D) 5思路启迪:对递推关系变形,运用叠加法求得,特别注意的是对两边同时运用.解答过程:n n 1n 12x x x --=+, n n 1n 2n x x x x --∴-=-.32134324n 1n 2n 3n 1n n 1n 2n x x x x x x x x x x x x x x x x -------=-⎫⎪-=-⎪⎪⎬⎪-=-⎪-=-⎪⎭相叠加n 212n n 1x x x x x x --=+--. 12x x 2=, n n 112x x 2x -∴+=.()n n 11n n lim 2x x lim 2x -→∞→∞+=, n n lim x 2→∞=,12x 6∴= ,1x 3=.解答过程2:由()1212n n n x x x --=+得:n n 1n 1n 2211111x +x x x x x x 222---=+==+=,n n 11n 1lim x x x 2-→∞⎛⎫+= ⎪⎝⎭,因为n n lim x 2→∞=. 所以:1x 3=.解答过程3:由()1212n n n x x x --=+得:()()2n n 1n 1n 2n 2n 311x x x x x x 22-----⎛⎫⎛⎫-=--=-- ⎪ ⎪⎝⎭⎝⎭…………()n 2n 121111x x x 22--⎛⎫⎛⎫==--=- ⎪ ⎪⎝⎭⎝⎭,从而 23211x x x 2⎛⎫-=- ⎪⎝⎭;34311x x x 2⎛⎫-=- ⎪⎝⎭;……;n 1n n 111x x x 2--⎛⎫-=- ⎪⎝⎭.叠加得:23n 1n 21111x x x 222-⎡⎤⎛⎫⎛⎫⎛⎫-=-+-++-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. n 2n 2111x x x 162-⎡⎤⎛⎫=+--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, n 2n 21n n 11lim x lim x x 162-→∞→∞⎧⎫⎡⎤⎪⎪⎛⎫=+--⎢⎥⎨⎬ ⎪⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭. 11x 12x 26=+ , 从而1x 3=. 小结:数列递推关系是近几年高高数学的热点,主要是一些能转化为等差等比数列的递推关系式。
对连续两项递推()n n-1a ka d n 2,k 1=+≥≠,可转化为n n 1d d a k a 1k 1k -⎛⎫-=- ⎪--⎝⎭;对连续三项递推的关系()n 1n n-1a ka da n 2+=+≥如果方程2x kx d=0--有两个根αβ、,则上递推关系式可化为()n 1n n n 1a a a a αβ+--=-或()n 1n n n 1a a a a βα+--=-.考点3 数列的通项n a 与前n 项和n S 之间的关系与应用n a 与n S 的关系:1n n n 1S n=1a S S n 2-⎧=⎨-≥⎩,数列前n 项和n S 和通项n a 是数列中两个重要的量,在运用它们的关系式n n n 1a S S -=-时,一定要注意条件n 2≥,求通项时一定要验证1a 是否适合。
解决含n a 与n S 的式子问题时,通常转化为只含n a 或者转化为只n S 的式子.例5. 在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( ) (A)122n +- (B) 3n (C) 2n (D)31n -点评:本题考查了等比数列的定义和求和公式,着重考查了运算能力。
过程指引因数列{}n a 为等比,则12n n a q -=,因数列{}1n a +也是等比数列,则22121122212(1)(1)(1)22(12)01n n n n n n n n n n n n n a a a a a a a a a a a a a q q q +++++++++=++⇒+=++⇒+=⇒+-=⇒= 即2n a =,所以2n S n =,故选择答案C.例6.已知在正项数列{a n }中,S n 表示前n项和且n a 1+,求a n . 分析:转化为只含n a 或者只含n S 的递推关系式.解1:由已知n a 1=+,得当n=1时,a 1=1;当n ≥2时, a n = S n -S n -1,代入已知有n n 1S S 1--+,n 1n S S 1-=-.)2n 1S 1-=,又n n n 1a 0,S S ->>1.1,是以1为首项,1为公差的等差数列,n =故n a 2n 1=-.解2:由已知n a 1+,得当n=1时,a 1=1;当n ≥2时 因为2n n a 1S 2+⎛⎫= ⎪⎝⎭,所以22n n 1n a 1a 1a 22-++⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.22n n n n 1n 14a a 2a a 2a --=+--,22n n n 1n 1a 2a a 2a 0-----= ()()n n 1n n 1a a a a 20--+--=,因为n a 0>,所以n n 1a a 2--=,所以n a 2n 1=-.考点4 等差、等比数列的概念与性质的理解与应用在等差、等比数列中,已知五个元素1n a ,a ,n,d 或q ,n S 中的任意三个,运用方程的思想,便可求出其余两个,即“知三求二”。