2020届高三数学复习 数列解题方法集锦

2020届高三数学复习 数列解题方法集锦
2020届高三数学复习 数列解题方法集锦

2020届高三数学复习 数列解题方法集锦

数列是高中数学的重要内容之一,也是高考考查的重点。而且往往还以解答题的形式出

现,所以我们在复习时应给予重视。近几年的高考数列试题不仅考查数列的概念、等差数列和等比数列的基础知识、基本技能和基本思想方法,而且有效地考查了学生的各种能力。

一、数列的基础知识 1.数列{a n }的通项a n 与前n 项的和S n 的关系

它包括两个方面的问题:一是已知S n 求a n ,二是已知a n 求S n ; 1.1 已知S n 求a n

对于这类问题,可以用公式a n =???≥-=-)

2()1(11

n S S n S n n .

1.2 已知a n 求S n

这类问题实际上就是数列求和的问题。数列求和一般有三种方法:颠倒相加法、错位相

减法和通项分解法。

2.递推数列:??

?==+)

(11n n a f a a

a ,解决这类问题时一般都要与两类特殊数列相联系,设

法转化为等差数列与等比数列的有关问题,然后解决。

例1 已知数列{a n }的前n 项和S n =n 2-2n+3,求数列{a n }的通项a n ,并判断数列{a n }是否为

等差数列。

解:由已知:S n =n 2-2n+3,所以,S n-1=(n-1)2-2(n-1)+3=n 2-4n+6,

两式相减,得:a n =2n-3(n ≥2),而当n=1时,a 1=S 1=2,所以a n =???≥-=)

2(32)1(2

n n n .

又a 2-a 1≠a 3-a 2,故数列{a n }不是等差数列。

注意:一般地,数列{a n }是等差数列?S n =an 2

+bn ?S n

2

)

(1n a a n +.

数列{a n }是等比数列?S n =aq n

-a.

例2 已知数列{a n }的前n 项的和S n =

2

)

(1n a a n +,求证:数列{a n }是等差数列。 证明:因为S n =

2)(1n a a n +,所以,2

)

)(1(111++++=n n a a n S

两式相减,得:2

)

())(1(1111n n n a a n a a n a +-++=

++,所以

n n n na a n a a -++=++111)1(2,即:11)1(a na a n n n -=-+,同理: 11)1()2(a a n a n n n --=--,即:11)2()1(a a n a n n n +-=--,

两式相加,得:n n n a n a n a n )22()1()1(11-=-+--+,即:

n n n a a a 211=+-+,所以数列{a n }是等差数列。

例3 已知数列{a n }的前n 项的和S n + a n =2n+1,求数列{a n }的通项a n . 解:因为S n + a n =2n+1,所以, S n+1+a n+1=2(n+1)+1,两式相减,得: 2a n+1-a n =2,即:2a n+1-a n +2=4,2a n+1-4= a n -2,所以

21221=--+n n a a ,而S 1+a 1=3,a 1=23,故a 1-2=2

1

-,

即:数列{a n }是以2

1

-

为首项,21为公比的等比数列,所以

a n -2=21-(2

1

)n-1= - (21)n ,从而a n =2 - (21)n 。

例 4 (2000年全国)设{a n }是首项为1的正项数列,且(n+1)a n+12-na n 2+a n+1a n =0,(n=1,2,3,…),则它的通项公式是a n = .

分析:(1)作为填空题,不需要解题步骤,所以可以采用不完全归纳法。 令n=1,得:2a 22+a 2-1=0,解得,a 2=21.令n=2, 得:3a 32+21a 3-21=0, 解得,a 3=3

1

.同理,a 4=

41由此猜想:a n =n

1

. (2)由(n+1)a n+12-na n 2+a n+1a n =0,得:[(n+1)a n+1-na n ](a n+1+a n )=0, 所以(n+1)a n+1=na n ,这说明

数列是常数数列,故na n =1,a n =

n

1

. 也可以由(n+1)a n+1=na n ,得:

1

1+=+n n

a a n n ,所以 n

n n n n a a a a a a a a n n n n n 1

121121112211=???--?-=????=

---ΛΛ。 例5 求下列各项的和 (1)n

n n n n n n C n nC C C C )1(321210++++++-Λ.

(2)1+2?21+3?22+4?23+…+n ?2n-1.

(3)1?2+2?3+3?4+…+n(n+1).

(4)

)

2(1421311+++?+?n n Λ. 解:(1)设 S n =n

n n n n n n C n nC C C C )1(321210++++++-Λ,则

S n =0

112)1(n n n n n n C C nC C n +++++-Λ,

两式相加,得:2S n = (n+2)n

n n n C n C n C )2()2(10+++++Λ =(n+2)(n

n n n C C C +++Λ10)=(n+2)2n ,

所以S n =(n+2)2n-1.

思考:n

n n n n n n n n C C C C C 112102242+-+++++Λ又如何求呢?

(2)设S n =1+2?21+3?22+4?23+…+n ?2n-1,则

2 S n = 1?2+2?22+3?23+…+(n-1)2n-1+n2n .

两式相减。得:- S n =1+21+22+…+2 n-1-n2 n =n n

n 22

121?---=2n (1-n)-1.

S n =2n (n-1)+1.

(3)1?2+2?3+3?4+…+n(n+1)=(12+1)+(22+2)+(32+3)+ … +(n 2+n) =(12+22+32+ … +n 2)+(1+2+3+ … +n) =

)1(21)12)(1(61++++n n n n n =)2)(1(3

1

++n n n . (4) ∵

)2

1

1(21)2(1+-=+n n n n

)

2(1421311+++?+?n n Λ =

)2

11111151314121311(21+-++--++-+-+-n n n n Λ =

)2

111211(21+-+-+n n =)2)(1(3243+++-n n n .

二、等差数列与等比数列

1.定义:数列{a n }为等差数列?a n+1-a n =d ?a n+1-a n =a n -a n-1;

数列{b n }为等比数列?

q a b n n =+1?1

1-+=n n n n b b

b b 。

2.通项公式与前n 项和公式:

数列{a n }为等差数列,则通项公式a n =a 1+(n-1)d, 前

n

项和

S n =

2)(1n a a n +=2

)1(1d

n n na -+. 数列{a n }为等比数列,则通项公式a n =a 1q n-1, 前n 项和S n =?

??

??≠--=)1(1)1()1(11

q q

q a q na n .

3.性质:

(4)函数的思想:等差数列可以看作是一个一次函数型的函数;等比数列可以看作是一个指数函数型的函数。可以利用函数的思想、观点和方法分析解决有关数列的问题。

例6 设S n 是等差数列{a n }的前n 项的和,已知

31S 3与41S 4的等比中项为51S 5,3

1

S 3与4

1

S 4的等差中项为1,求等差数列{a n }的通项。(1997年高考题) 解:设等差数列的公差为d,则

???????=+=?24131)51(4131432543S S S S S ,即??????

?=++++=+?+2)64(41)23(3

1)105(25

1)64(41)23(31112111d a d a d a d a d a , 解得:???

??

=-=???==4512101

1a d a d 或,所以n a a n n 5125321-=

=或。 评说:当未知数与方程的个数相等时,可用解方程的方法求出这两类特殊数列的首项与公差或公比,然后再解决其他问题。

例7 设等比数列{a n }的前n 项的和为S n ,若S 3+S 6=2S 9,求数列{a n }的公比q (1996年高考题)。

解:若q=1,则S 3=3a 1,S 6=6a 1,S 9=9a 1, 由已知S 3+S 6=2S 9, 得:3a 1+6a 1=18a 1,解得:a 1=0,这与数列{a n }为等比数列矛盾,所以,q ≠1。

由已知S 3+S 6=2S 9, 得:q

q a q q a q q a --=

--+--1)1(21)1(1)1(916131,整理得: 0)12(3

63=--q q q ,解得:2

4

3

-

=q 。 例8 在等差数列{a n }中,已知a 7=8,求S 13.

分析:在这个问题中,未知数有两个:首项a 1与公差d ,但方程只有一个,因此不能象例6那样通过解方程解决问题,必须利用这两类数列的性质或者利用整体性思想来解决问题。

解:因为a 7=8,所以a 1+a 13=2a 7=16,故S 13=

.1042

)

(13131=+a a

例9 在等差数列{a n }中,已知a 1>0,S n 是它的前n 项的和.已知S 3=S 11,求S n 的最大值。 分析:和例8一样,也是未知数的个数多于方程的个数,所以须考虑等差数列的性质。 解:由已知:S 3=S 11,故.013

2

,551133111<-

=+=+a d d a d a 得:而因为S 3=S 11,得a 4+a 5+a 6+…+a 10+a 11=0.由于a 4+a 11=a 5+a 10=a 6+a 9=a 7+a 8,所以a 7+a 8=0。

故a 7>0,a 8<0,所以 S 7最大。

评说:(1)本题也可以利用函数的思想来解,即把S n 表示成某一变量的函数(比如n ),然后再求这个函数的最大值。

(2)本题还可以利用方程与不等式的思想来解,即S n 最大当且仅当a n >0同时a n+1<0,解

这个不等式组即可。 三、数列综合问题

对于综合问题,要注意与其他数学知识相联系,如函数、方程、不等式,还要注意数学

思想方法的应用,如归纳法、类比、叠加等。

例10 已知等差数列{a n }的前n 项的和为S n ,令b n =

n S 1,且b 4=10

1

,S 6-S 3=15,求数列

{b n }的通项公式和∑=∞

→n

i i n b 1

lim 的值。

分析:欲求b n ,需先求S n ,而S n 是数列{a n }的前n 项的和,所以应首先求出a n 。因为

数列{a n }是等差数列,故只要能找到关于a 1与d 的两个方程即可。

解:设数列的首项为a 1,公差为d.由已知得:

???=+=+????=-=151********

1011364d a d a S S S ,解得:??

?==11

1d a 。

所以a n =n,从而S n =

2

)

1(+n n ,故b n =)1(2+n n 。

])

1(1

321211[

lim 2lim 1

+++?+?=∞

→=∞

→∑n n b n n

i i n Λ =2.2)1

1

1(lim 2]1113121211[lim =+-=+-++-+-

∞→∞

→n n n n n Λ

例11 已知f(x)=a 1x+a 2x 2+a 3x 3+…+a n x n ,且a 1,a 2,a 3,…,a n 组成等差数列(n 为正偶数),

又f(1)=n 2,f(-1)=n ; (1)求数列{a n }的通项a n ;

(2)试比较f(0.5)与3的大小,并说明理由。

分析:显然,只要能把f(1)=n 2,f(-1)=n 转化为关于首项和公差的两个方程即可。

解:(1)设数列的公差为d ,因为f(1)= a 1+a 2+a 3+…+a n =n 2,则na 1+

2

)

1(-n n d=n 2,即2a 1+(n-1)d=2n.又f(-1)= -a 1+a 2-a 3+…-a n-1+a n =n,即d n

?2

=n,d=2.解得a 1=1. ∴a n =1+2(n-1)=2n-1.

(2)f(0.5)=

n n )21)(12()21(5)21(32132-++++Λ,把它两边都乘以2

1

,得: n n n n f )2

1)(12()21)(32()21(3)21()21(21132-+-+++=-Λ

两式相减,得:n

n n f )2

1)(12()21(2)21(2)21(221)21(21132--++++=-Λ

=21)21)(12()21(2)21(221212---+++?-n n n Λ

=21)21)(12()21(2221)21)(12(2

11]

)21(1[21211----=-------n n n n n n

=2

3)21)(32(23<+-n n 。 ∴.3)2

1

(

例12 (2001年春季)在1与2之间插入个正数a 1,a 2,a 3,…,a n ,使这n+2个正数成等比数列;又在1与2之间插入个正数b 1,b 2,b 3,…,b n ,使这n+2个正数成等差数列。记A n =a 1a 2a 3…a n ,B n =b 1+b 2+b 3+…+b n . (1)求数列{A n }和{B n }的通项;

(2)当n ≥7时,比较A n 与B n 的大小,并证明你的结论。

分析:本题的关键是求A n 与B n ,如果能注意到1,a 1,a 2,a 3,…,a n ,2成等比数列,1,

b 1,b 2,b 3,…,b n ,2成等差数列,则就容易想到利用这两类数列的性质。

解:(1)因为1,a 1,a 2,a 3,…,a n ,2成等比数列,所以a 1a n =a 2a n-1=a 3a n-2=…=1?2,从而A n 2= (a 1a 2a 3…a n )(a 1a 2a 3…a n )=(a 1a n )(a 2a n-1)(a 3a n-2)…(a n a 1)=2n

,故A n =2

2n

.

因为1,b 1,b 2,b 3,…,b n ,2成等差数列,所以b 1+b n =1+2=3, 从而B n =

=+2)(1n B B n n 2

3

.

(2)∵A n =2

2n

, B n =

n 23.∴A n 2=2n ,B n 2=4

9

n 2. 当n ≥7时,A n 2=2n =(1+1)n

=n n n n n n n n n n n n C C C C C C C C ++++++++---1233210Λ

≥2(3

210n n n n C C C C +++)=2[1+n+

2)1(-n n +6

)

2)(1(--n n n ] =2+2n+n 2

-n+31n 3-n 2+32n=31n 3+35n+2>31n 3=n 2(31n), 当n ≥7时,31n >4

9.

所以当n ≥7时,A n 2> B n 2

,故A n > B n

评说:对于A n 与B n 的大小,也可以用数学归纳法证明。

求数列通项专题高三数学复习教学设计

假如单以金钱来算,我在香港第六、七名还排不上,我这样说是有事实根据的.但我认为,富有的人要看他是怎么做.照我现在的做法我为自己内心感到富足,这是肯定的. 求数列通项专题高三数学复习教学设计 海南华侨中学邓建书 课题名称 求数列通项(高三数学第二阶段复习总第1课时) 科目 高三数学 年级 高三(5)班 教学时间 2009年4月10日 学习者分析 数列通项是高考的重点内容 必须调动学生的积极让他们掌握! 教学目标 一、情感态度与价值观 1. 培养化归思想、应用意识. 2.通过对数列通项公式的研究 体会从特殊到一般 又到特殊的认识事物规律 培养学生主动探索 勇于发现的求知精神 二、过程与方法 1. 问题教学法------用递推关系法求数列通项公式 2. 讲练结合-----从函数、方程的观点看通项公式 三、知识与技能 1. 培养学生观察分析、猜想归纳、应用公式的能力; 2. 在领会函数与数列关系的前提下 渗透函数、方程的思想 教学重点、难点 1.重点:用递推关系法求数列通项公式 2.难点:(1)递推关系法求数列通项公式(2)由前n项和求数列通项公式时注意检验第一项(首项)是否满足 若不满足必须写成分段函数形式;若满足

则应统一成一个式子. 教学资源 多媒体幻灯 教学过程 教学活动1 复习导入 第一组问题: 数列满足下列条件 求数列的通项公式 (1);(2) 由递推关系知道已知数列是等差或等比数列即可用公式求出通项 第二组问题:[学生讨论变式] 数列满足下列条件 求数列的通项公式 (1);(2); 解题方法:观察递推关系的结构特征 可以利用"累加法"或"累乘法"求出通项 (3) 解题方法:观察递推关系的结构特征 联想到"?=?)" 可以构造一个新的等比数列 从而间接求出通项 教学活动2 变式探究 变式1:数列中 求 思路:设 由待定系数法解出常数

数列综合应用(放缩法)教案资料

数列综合应用(1) ————用放缩法证明与数列和有关的不等式 一、备考要点 数列与不等式的综合问题常常出现在高考的压轴题中, 是历年高考命题的热点,这类问题能有效地考查学生 综合运用数列与不等式知识解决问题的能力.解决 这类问题常常用到放缩法,而求解途径一般有两条: 一是先求和再放缩,二是先放缩再求和. 二、典例讲解 1.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足 12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设1 1+=n n n a a b ,数列{}n b 的前n 项的和 为n B ,求证:21

③.放缩后为差比数列,再求和 例4.已知数列{}n a 满足:11=a , )3,2,1()21(1Λ=+=+n a n a n n n .求证: 112 13-++-≥>n n n n a a ④.放缩后为裂项相消,再求和 例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中, 若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数), 则称P i 与P j 构成一个逆序. 一个排列的全部逆序的 总数称为该排列的逆序数. 记排列321)1()1(Λ-+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的 逆序数63=a . (1)求a 4、a 5,并写出a n 的表达式; (2)令n n n n n a a a a b 11+++=,证明: 32221+<++

高考数学等差数列习题及答案 百度文库

一、等差数列选择题 1.已知数列{}n a 的前n 项和n S 满足() 12n n n S +=,则数列11n n a a +?????? 的前10项的和为( ) A . 89 B . 910 C .10 11 D . 1112 2.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161 B .155 C .141 D .139 3.已知等差数列{}n a 的前n 项和为S n ,若S 2=8,38522a a a +=+,则a 1等于( ) A .1 B .2 C .3 D .4 4.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200 B .100 C .90 D .80 5.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?” 意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( ) A .3斤 B .6斤 C .9斤 D .12斤 6.已知数列{}n a 的前n 项和为n S ,15a =,且满足 122527 n n a a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( ) A .6- B .2- C .1- D .0 7.设等差数列{}n a 的前n 项和为n S ,公差1d =,且62 10S S ,则34a a +=( ) A .2 B .3 C .4 D .5 8.定义 12n n p p p ++ +为n 个正数12,, ,n p p p 的“均倒数”,若已知数列{}n a 的前 n 项的“均倒数”为 12n ,又2n n a b =,则1223 910 111 b b b b b b +++ =( ) A . 8 17 B . 1021 C . 1123 D . 9 19 9.题目文件丢失! 10.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.

高三数学数列专题复习题含答案

高三数学数列专题复习题含答案 一、选择题 1.等比数列{}n a 中,12a =,8a =4,函数 ()128()()()f x x x a x a x a =---L ,则()'0f =( ) A .62 B. 92 C. 122 D. 152 【答案】C 【解析】考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法。考虑到求导中,含有x 项均取0,则()' 0f 只与函数()f x 的一次项 有关;得:412 123818()2a a a a a a ??==L 。 2、在等比数列{}n a 中,11a =,公比1q ≠.若12345m a a a a a a =,则m= (A )9 (B )10 (C )11 (D )12 【答案】C 3、已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ?? ???? 的前5项和为 (A ) 158或5 (B )3116或5 (C )3116 (D )15 8 【答案】C 【解析】本题主要考查等比数列前n 项和公式及等比数列的性质,属于中等题。 显然q ≠1,所以3639(1q )1-=121-q 1q q q q -?+?=-,所以1{}n a 是首项为1,公比为1 2 的等比数列, 前5项和5 51 1()31211612 T -= =-. 4、已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a = (A) 【答案】A

【解析】由等比数列的性质知31231322()5a a a a a a a ===g ,3 7897988()a a a a a a a ===g 10,所以 13 2850a a =, 所以13 3 3 64564655 28()()(50)52a a a a a a a a a =====g 5.已知等比数列{m a }中,各项都是正数,且1a , 321 ,22 a a 成等差数列,则91078a a a a +=+ A.12+ B. 12- C. 322+ D 322- 6、设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为,,X Y Z ,则下列等式中恒成立的是 A 、2X Z Y += B 、()()Y Y X Z Z X -=- C 、2 Y XZ = D 、()()Y Y X X Z X -=- 【答案】 D 【分析】取等比数列1,2,4,令1n =得1,3,7X Y Z ===代入验算,只有选项D 满足。 8、设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时,n 等于 A .6 B .7 C .8 D .9 【答案】A 【解析】设该数列的公差为d ,则461282(11)86a a a d d +=+=?-+=-,解得2d =, 所以22(1) 11212(6)362 n n n S n n n n -=-+ ?=-=--,所以当6n =时,n S 取最小值。 9、已知等比数列{}n a 满足0,1,2,n a n >=L ,且25252(3)n n a a n -?=≥,则当1n ≥时, 2123221log log log n a a a -+++=L A. (21)n n - B. 2 (1)n + C. 2n D. 2 (1)n -

数列放缩法高考专题

高考专题—数列求和放缩法 一.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1 n n n n a a 4.放缩后为裂项相消,再求和 例5.在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列321)1()1(Λ-+n n n 的逆序数为a n ,如排列21的逆序数11=a ,排列321的逆序数63=a . (1)求a 4、a 5,并写出a n 的表达式; (2)令n n n n n a a a a b 11+++=,证明32221+<++

(完整版)高三文科数学数列专题.doc

高三文科数学数列专题 高三文科数学复习资料 ——《数列》专题 1. 等差数列{ a n}的前n项和记为S n,已知a1030, a2050 . ( 1)求通项a n; ( 2)若S n242 ,求 n ; ( 3)若b n a n20 ,求数列 { b n } 的前 n 项和 T n的最小值. 2. 等差数列{ a n}中,S n为前n项和,已知S77, S1575 . ( 1)求数列{ a n}的通项公式; ( 2)若b n S n,求数列 {b n } 的前 n 项和 T n. n 3. 已知数列{ a n}满足a1 1 a n 1 ( n 1) ,记 b n 1 , a n . 1 2a n 1 a n (1)求证 : 数列{ b n}为等差数列; (2)求数列{ a n}的通项公式 . 4. 在数列a n 中, a n 0 , a1 1 ,且当 n 2 时,a n 2S n S n 1 0 . 2 ( 1)求证数列1 为等差数列;S n ( 2)求数列a n的通项 a n; ( 3)当n 2时,设b n n 1 a n,求证: 1 2 (b2 b3 b n ) 1 . n 2(n 1) n 1 n 5. 等差数列{ a n}中,a18, a4 2 . ( 1)求数列{ a n}的通项公式; ( 2)设S n| a1 | | a2 || a n |,求 S n;

1 (n N *) , T n b1 b2 b n (n N *) ,是否存在最大的整数m 使得对任( 3)设b n n(12 a n ) 意 n N * ,均有T n m m 的值,若不存在,请说明理由. 成立,若存在,求出 32 6. 已知数列{log2(a n1)} 为等差数列,且a13, a39 . ( 1)求{ a n}的通项公式; ( 2)证明: 1 1 ... 1 1. a2 a1 a3 a2 a n 1 a n 7. 数列{ a n}满足a129, a n a n 12n 1(n 2, n N * ) . ( 1)求数列{ a n}的通项公式; ( 2)设b n a n,则 n 为何值时, { b n } 的项取得最小值,最小值为多少?n 8. 已知等差数列{ a n}的公差d大于0 , 且a2,a5是方程x2 12 x 27 0 的两根,数列 { b n } 的前 n 项和 为 T n,且 T n 1 1 b n. 2 ( 1)求数列{ a n} , { b n}的通项公式; ( 2)记c n a n b n,求证:对一切 n N 2 , 有c n. 3 9. 数列{ a n}的前n项和S n满足S n2a n 3n . (1)求数列{ a n}的通项公式a n; (2)数列{ a n}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由 . 10. 已知数列{ a n}的前n项和为S n,设a n是S n与 2 的等差中项,数列{ b n} 中, b1 1,点 P(b n , b n 1 ) 在 直线 y x 2 上. ( 1)求数列{ a n} , { b n}的通项公式

高三数学必做题--数列放缩法

(1) 求数列 4的通项公式; 1 a a 1 (2) 若a ,设b n n 丄,且数列b n 的前n 项和为「,求证:人 3 1 a n 1 a n i 3 n 1 a 2、已知数列 q 的前n 项和s n -,且a 1 1. 2 (1) 求数列耳的通项公式; (2) 令b n ln a n ,是否存在k (k 2,k N),使得b k 、b k 1、b k 2成等比数列.若存在, 值;若不存在,请说明理由. 3、已知a n 是等差数列,a 2 3, a 3 5. ⑴求数列a n 的通项公式; 4、设数列a n 的前n 项和为S n ,且满足a 1 2, a . 1⑵对一切正整数n ,设b n n (1) n a n a n 1 ,求数列 b n 的前n 项和S n . 求出所有符合条件的 k 2S n 2 n 1,2,3L

(1)求 a 2 ; (2)数列a n 的通项公式; 5、对于任意的n € N*,数列{a n }满足 (I )求数列{a n }的通项公式; (n )求证:对于 n 》2,—— a ? a a i 1 a 2 2 , a n n -1 .2 L n 1 2 1 2 1 2 1 L 2 1 J a n 1 2n 2 6、已知各项均为正数的数列 {a n }的前n 项和为S n 满足4S n a n 2a n ?(3)设 b n a n 1 S n i S n ,求证: b i b 2 b n

(1)求a i 的值; (2)求{a .}的通项公式; 1 (1)求证:数列{」}是等差数列; a n 1 2 (2)求证:丄色更鱼L n 1 a 2 a 3 a ° (3)求证: 1 ~2 a i 1 ~2 a 2 a n ^,n N 2 7、已知数列耳满足a 1 2,a n 1a n 细1 1 0," N 8已知首项大于0的等差数列 a n }的公差d 1,且二 a n a n 1

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

高考数学压轴专题最新备战高考《数列》难题汇编附答案

新数学《数列》期末复习知识要点 一、选择题 1.在数列{}n a 中,若10a =,12n n a a n +-=,则23111 n a a a +++L 的值 A . 1 n n - B . 1 n n + C . 1 1n n -+ D . 1 n n + 【答案】A 【解析】 分析:由叠加法求得数列的通项公式(1)n a n n =-,进而即可求解23111 n a a a +++L 的和. 详解:由题意,数列{}n a 中,110,2n n a a a n +=-=, 则112211()()()2[12(1)](1)n n n n n a a a a a a a a n n n ---=-+-++-+=+++-=-L L , 所以 1111 (1)1n a n n n n ==--- 所以 231111111111(1)()()12231n n a a a n n n n -+++=-+-++-=-=-L L ,故选A. 点睛:本题主要考查了数列的综合问题,其中解答中涉及到利用叠加法求解数列的通项公式和利用裂项法求解数列的和,正确选择方法和准确运算是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力. 2.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( ) A .21 B .42 C .63 D .84 【答案】B 【解析】 由a 1+a 3+a 5=21得24242 1(1)21172a q q q q q ++=∴++=∴=∴ a 3+a 5+a 7=2 135()22142q a a a ++=?=,选B. 3.设数列{}n a 是等差数列,1356a a a ++=,76a =.则这个数列的前7项和等于( ) A .12 B .21 C .24 D .36 【答案】B 【解析】 【分析】 根据等差数列的性质可得3a ,由等差数列求和公式可得结果. 【详解】 因为数列{}n a 是等差数列,1356a a a ++=,

高考数学数列不等式证明题放缩法十种方法技巧总结

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n Λ求证 .2 )1(2)1(2 +<<+n S n n n 例2 已知函数 bx a x f 211 )(?+= ,若5 4)1(= f ,且 )(x f 在[0,1]上的最小值为21,求证: .2 1 21)()2()1(1 -+ >++++n n n f f f Λ 例3 求证),1(22 1321 N n n n C C C C n n n n n n ∈>?>++++-Λ. 例4 已知222121n a a a +++=L ,222 121n x x x +++=L ,求证:n n x a x a x a +++Λ2 211≤1. 2.利用有用结论 例5 求证.12)1 21 1()511)(311)(11(+>-+++ +n n Λ 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 1211 1,(1).2 n n n a a a n n +==+ ++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈L ) 例8 已知不等式 21111 [log ],,2232 n n N n n *+++>∈>L 。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,] [log 222≥+

高三数学等差数列测试题 百度文库

一、等差数列选择题 1.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A . 47 B . 1629 C . 815 D . 45 2.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n - B .n C .21n - D .2n 3.已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是( ) A .S 5,S 10-S 5,S 15-S 10必成等差数列 B .S 2,S 4-S 2,S 6-S 4必成等差数列 C .S 5,S 10,S 15+S 10有可能是等差数列 D .S 2,S 4+S 2,S 6+S 4必成等差数列 4.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231 n n a n b n =+,则2121S T 的值为( ) A . 13 15 B . 2335 C . 1117 D . 49 5.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8 B .13 C .26 D .162 6.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29 B .38 C .40 D .58 7.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11 B .12 C .23 D .24 8.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则12 15 a b =( ) A . 3 2 B . 7059 C . 7159 D .85 9.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161 B .155 C .141 D .139 10.已知等差数列{}n a 的前n 项和n S 满足:21<,则n 的最大值为( ) A .2m B .21m + C .22m + D .23m + 11.已知等差数列{}n a ,且()()35710133248a a a a a ++++=,则数列{}n a 的前13项之

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

高考数学数列放缩法技巧全汇总

高考数学数列放缩法技巧全汇总

————————————————————————————————作者:————————————————————————————————日期:

高考数学备考之 放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-n k k 1 2 142 的值; (2)求证: 351 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 42 2 +--=+-= -n n n n n ,所以122121114212 +=+-=-∑=n n n k n k (2)因为? ? ? ??+--=-= - <121121 2144 4 111 2 22 n n n n n ,所以 353211211215 1 31211 1 2 = + -?>-?>?-=?=+ (14) ! )2(1 !)1(1)!2()!1(!2+- +=+++++k k k k k k (15) ) 2(1) 1(1 ≥--<+n n n n n

(完整版)高中数学等差数列教案

等差数列 教学目的: 1.明确等差数列的定义,掌握等差数列的通项公式; 2.会解决知道n d a a n ,,,1中的三个,求另外一个的问题 教学重点:等差数列的概念,等差数列的通项公式 教学难点:等差数列的性质 教学过程: 引入:① 5,15,25,35,… 和 ② 3000,2995,2990,2985,… 请同学们仔细观察一下,看看以上两个数列有什么共同特征?? 共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每相邻两项的差相等-----应指明作差的顺序是后项减前项),我们给具有这种特征的数列一个名字——等差数列 二、讲解新课: 1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的 差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示) ⑴.公差d 一定是由后项减前项所得,而不能用前项减后项来求; ⑵.对于数列{n a },若n a -1-n a =d (与n 无关的数或字母),n ≥2,n ∈N + ,则此数列是等差数列,d 为公差 2.等差数列的通项公式:d n a a n )1(1-+=【或=n a d m n a m )(-+】 等差数列定义是由一数列相邻两项之间关系而得若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可 得:d a a =-12即:d a a +=12 d a a =-23即:d a d a a 2123+=+= d a a =-34即:d a d a a 3134+=+= …… 由此归纳等差数列的通项公式可得:d n a a n )1(1-+= ∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项a 如数列①1,2,3,4,5,6; n n a n =?-+=1)1(1(1≤n ≤6) 数列②10,8,6,4,2,…; n n a n 212)2()1(10-=-?-+=(n ≥1) 数列③ ;,1,54 ;53,52;51Λ 5 51)1(51n n a n =?-+=(n ≥1) 由上述关系还可得:d m a a m )1(1-+= 即:d m a a m )1(1--= 则:=n a d n a )1(1-+=d m n a d n d m a m m )()1()1(-+=-+-- 即的第二通项公式 =n a d m n a m )(-+ ∴ d=n m a a n m -- 如:d a d a d a d a a 43212345+=+=+=+= 三、例题讲解 例1 ⑴求等差数列8,5,2…的第20项 ⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

天津市高三数学总复习 综合专题 数列 理 (学生版)

数列(理) 考查内容:本小题主要考查等差数列与等比数列的通项公式及其前n 项和公式、 不等式证明等基础知识,考查分类讨论的思想方法,考查运算能力、 推理论证能力及综合分析、解决问题的能力。 1、在数列{}n a 中,11a =,122n n n a a +=+。 (1)设1 2 n n n a b -= 。证明:数列{}n b 是等差数列; (2)求数列{}n a 的前n 项和n S 。 2、设数列{}n a 的前n 项和为n S ,已知()21n n n ba b S -=- (1)证明:当2b =时,{} 12n n a n --?是等比数列; (2)求{}n a 的通项公式 3、已知数列{}n a 的首项12 3 a = ,121n n n a a a +=+,1,2,3,n =…。 (1)证明:数列? ?? ?? ?-11n a 是等比数列; (2)数列? ?? ?? ?n a n 的前n 项和n S 。 4、已知数列{}n a 满足:1±≠n a ,2 11=a ,()() 2211213n n a a -=-+,记数列21n n a b -=,221n n n c a a +=-, n N *∈。 (1)证明数列 {}n b 是等比数列; (2)求数列{}n c 的通项公式; (3)是否存在数列{}n c 的不同项k j i c c c ,,,k j i <<,使之成为等差数列?若存在请求出这样的不同项 k j i c c c ,,,k j i <<;若不存在,请说明理由。 5、已知数列{}n a 、{}n b 中,对任何正整数n 都有:

11213212122n n n n n n a b a b a b a b a b n +---+++++=--L 。 (1)若数列{}n a 是首项和公差都是1的等差数列,求证:数列{}n b 是等比数列; (2)若数列{}n b 是等比数列,数列{}n a 是否是等差数列,若是请求出通项公式,若不是请说明理由; (3)若数列{}n a 是等差数列,数列{}n b 是等比数列,求证:1132 n i i i a b =<∑ 。 6、设数列{}n a 满足11a =,22a =,121 (2)3 n n n a a a --= +,(3,4,)n =L 。数列{}n b 满足11,(2,3,)n b b n ==L 是非零整数,且对任意的正整数m 和自然数k ,都有 111m m m k b b b ++-≤+++≤L 。 (1)求数列{}n a 和{}n b 的通项公式; (2)记(1,2,)n n n c na b n ==L ,求数列{}n c 的前n 项和n S 。 7、有n 个首项都是1的等差数列,设第m 个数列的第k 项为mk a , (,1,2,3,,, 3)m k n n =L ≥,公差为m d ,并且123,,,,n n n nn a a a a L 成等差数列。 (1)证明1122m d p d p d =+,n m ≤≤3,12,p p 是m 的多项式,并求12p p +的值; (2)当121, 3d d ==时,将数列{}m d 分组如下:123456789(), (,,), (,,,,),d d d d d d d d d L (每组数的个数构成等差数列),设前m 组中所有数之和为4()(0)m m c c >,求数列{2}m c m d 的前n 项和n S 。 (3)设N 是不超过20的正整数,当n N >时,对于(2)中的n S ,求使得不等式1 (6)50 n n S d ->成立的所有N 的值。 8、数列}{n a 的通项公式为?? ? ? ?-=3sin 3cos 22 2 ππn n n a n ,其前n 项和为n S 。 (1)求n S ; (2)设n n n n S b 4 3?= ,求数列}{n b 的前n 项和n T 。 9、数列}{n a 满足}221221,2,(1cos )sin ,1,2,3,.22 n n n n n a a a a a n ππ+===++=L 满足。

高三数学必做题--数列放缩法(典型试题)

数列综合题 1、已知数列{}n a 的前n 项和n S 满足:()11n n a S a a = --,a 为常数,且0a ≠,1a ≠. (1)求数列{}n a 的通项公式; (2)若13a =,设1111n n n n n a a b a a ++=-+-,且数列{}n b 的前n 项和为n T ,求证:13n T <. 2、已知数列{}n a 的前n 项和()12n n n a S +=,且11a =. (1)求数列{}n a 的通项公式; (2)令ln n n b a =,是否存在k (2,)k k N ≥∈,使得k b 、1k b +、2k b +成等比数列.若存在,求出所有符合条件的k 值;若不存在,请说明理由. 3、已知{}n a 是等差数列,32=a ,53=a . ⑴求数列{}n a 的通项公式; ⑵对一切正整数n ,设1 )1(+?-=n n n n a a n b ,求数列{}n b 的前n 项和n S .

4、设数列{}n a 的前n 项和为n S ,且满足21=a ,221+=+n n S a ()1,2,3 n =. (1)求2a ; (2)数列{}n a 的通项公式; (3)设n n n n S S a b 11++= ,求证:2121<+++n b b b . 5、对于任意的n ∈N *,数列{a n }满足 1212121212121n n a n a a n ---+++=++++. (Ⅰ) 求数列{a n }的通项公式; (Ⅱ) 求证:对于n≥2,23 1222112n n a a a ++++<-

6、已知各项均为正数的数列{}n a 的前n 项和为n S 满足242n n n S a a =+. (1)求1a 的值; (2)求{}n a 的通项公式; (3)求证: *222121111,2n n N a a a ++???+<∈。 7、已知数列{}n a 满足112a = ,11210n n n a a a ++-+=,*n N ∈. (1)求证:数列1{}1 n a -是等差数列; (2)求证:2 3 12234 1 1n n a a a a n n n a a a a +<+++<+.

相关文档
最新文档