上海市华师大二附中2014届高三数学综合练习试题1苏教版
华南师大附中高三第二次月考数学(文)试题(答案不全)

学必求其心得,业必贵于专精2012—2013年华南师大附中高三综合测试(二)试题数学(文科)本卷共20小题,满分150分,时间120分钟一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知集合11{2,1,0,1,2}{|28R}2x M N x x +=--=<<∈,,,则M N =( )A .{1,0,1}-B .{2,1,0,1,2}--C .{0,1}D .{10}-,2、设a ∈R ,若i i a 2)(-(i 为虚数单位)为正实数,则a =( )A .2B .1C .0D .1-3、一组数据20,30,40,50,50,60,70,80的平均数、中位数、众数的大小关系是A .平均数>中位数>众数B .平均数<中位数<众数C .中位数<众数<平均数D .众数=中位数=平均数4、若 ]2,4[ππθ∈,47sin =θ,则θ2sin =( )A 。
错误! B. -错误! C. 错误! D. -错误!5、设 S n 为等差数列 {a n } 的前 n 项和,若S 3 = 3,S 6 = 24,则a 9 =( )A. 13 B 。
14 C 。
15 D 。
166、已知-7,1a ,2a ,-1四个实数成等差数列,-4,1b ,2b ,3b ,-1五个实数成等比数列,则212b a a-=( )A .1B .-1C .2D .±17、函数],0[)(26sin(2ππ∈-=x x y 为增函数的区间是 ( )A.[0,3π]B.[12π,12π7]C.[3π,6π5]D.[6π5,π]8、已知xx f )21()(=,其反函数为)(x g 则)(2x g 是( )A 。
奇函数且在),0(+∞上是增函数;B.偶函数且在),0(+∞上是增函数; C 。
奇函数且在)0,(-∞上是增函数;D.偶函数且在)0,(-∞上是增函数;9、△ABC 中,∠C = 60°,且CA = 2,CB = 1,点M 满足 错误!= 2错误!,则 错误!·错误!=( )A. 4 + 错误! B 。
上海市华师大二附中高三年级数学综合练习[3](华师大版)
](https://img.taocdn.com/s3/m/9ca7cf38af45b307e87197ec.png)
上海市华师大二附中 高三年级数学综合练习[3]一、填空题 (本大题满分48分) 本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分。
1.已知集合{|||2,M x x x =≤∈R },{|N x x =∈N ﹡},那么M N = . 2.在ABC ∆中,“3A π=”是“sin A =”的 条件.3.若函数xy a =在[1,0]-上的的最大值与最小值的和为3,则a = .4.设函数2211()()log 221x x xf x x x--=++++的反函数为1()f x -,则函数1()y f x -=的图象与x 轴的交点坐标是 .5. 设数列{}n a 是等比数列,n S 是{}n a 的前n 项和,且32n n S t =-⋅,那么t = .6.若sin()24x ππ+=(2,2)x ∈-,则x = .7.若函数1,0()1,0x f x x ≥⎧=⎨-<⎩,则不等式()2x f x x ⋅+≤的解集是 .8.现用若干张扑克牌进行扑克牌游戏.小明背对小亮,让小亮按下列四个步骤操作:第一步:分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌的张数相同;第二步:从左边一堆拿出两张,放入中间一堆;第三步:从右边一堆拿出一张,放入中间一堆;第四步:左边一堆有几张牌,就从中间一堆拿出几张牌放入左边一堆.这时,小明准确地说出了中间一堆牌现有的张数.你认为中间一堆牌的张数是 .9.若无穷等比数列{}n a 的所有项的和是2,则数列{}n a 的一个通项公式是n a = . 10.已知函数()y f x =是偶函数,当0x >时,4()f x x x=+;当[3,1]x ∈--时,记()f x 的最大值为m ,最小值为n ,则m n -= .11.已知函数()sin f x x =,()sin()2g x x π=-,直线x m =与()f x 、()g x 的图象分别交于M 、N 点,则||MN 的最大值是 . 12.已知函数131()log (31)2xf x abx =++为偶函数,()22x x a b g x +=+为奇函数,其中a 、b 为常数,则2233100100()()()()a b a b a b ab ++++++++= .二、选择题 (本大题满分16分) 本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号,选对得4分,不选、错选或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分。
2018-2019学年上海市浦东新区华师大二附中高一(下)期末数学试卷

2018-2019学年上海市浦东新区华师大二附中高一(下)期末数学试卷试题数:18.满分:01.(填空题.3分)在等比数列{a n }中.已知a 2=4.a 6=16.则a 4=___ .2.(填空题.3分)已知sinx=- 13 .x∈[π. 32π ].则x=___ .3.(填空题.3分)数列{a n }的前n 项和为S n .已知S n =2n 2+n+1.则a n =___ .4.(填空题.3分)等差数列{a n }与{b n }的前n 项和分别为S n .和T n .且 S n T n= 3n+17n+3 .则 a9b 9=___ .5.(填空题.3分) lim n→∞(1+ 11+2 + 11+2+3 +……+ 11+2+3+⋯+n )=___ .6.(填空题.3分)一个正实数.它的小数部分、整数部分及这个正实数依次成等比数列.则这个正实数是___ .7.(填空题.3分)化小数为最简分数:0.3 4• 5•=___ .8.(填空题.3分)若无穷等比数列{a n }的各项和为 12.则a 2的取值范围是___ .9.(填空题.3分)设方程x-cosx= π4 的根是x 1.方程x+arcsin (x- π2 )= π4 的根是x 2.则x 1+x 2的值是___ .10.(填空题.3分)在等差数列{a n }中.若即sp+tm=kn.s+t=k.则有sa p +ta m =ka n .(s.t.k.p.m.n∈N*).对于等比数列{b n }.请你写出相应的命题:___ .11.(单选题.3分)已知a 、b 、c 是非零实数.则“a 、b 、c 成等比数列”是“b= √ac ”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件12.(单选题.3分)下列四个命题中正确的是( ) A.若n→∞a n 2=A 2.则n→∞a n =AB.若a n >0. n→∞a n =A.则A >0C.若n→∞a n =A.则 n→∞a n 2=A 2D.若n→∞(a n -b n )=0.则 n→∞a n =n→∞b n13.(单选题.3分)设S k =1k+1 + 1k+2 + 1k+3 +…+ 12k.则S k+1为( )A.S k + 12(k+1) B.S k + 12k+1 + 12(k+1) C.S k +12k+1 - 12(k+1) D.S k + 12(k+1) - 12k+114.(单选题.3分)已知数列a n =arcsin (sinn°).n∈N*.{a n }的前n 项和为S n .则当1≤n≤2016时( ) A.S 1980≤S n ≤S 90 B.S 1800≤S n ≤S 180 C.S 1980≤S n ≤S 180 D.S 2016≤S n ≤S 9015.(问答题.0分)已知关于x 的方程sin 2x+cosx+m=0.x∈[0.2π). (1)当m=1时.解此方程(2)试确定m 的取值范围.使此方程有解.16.(问答题.0分)在公差为d 的等差数列{a n }中.已知a 1=10.且a 1.2a 2+2.5a 3成等比数列. (Ⅰ)求d.a n ;(Ⅱ)若d <0.求|a 1|+|a 2|+|a 3|+…+|a n |.17.(问答题.0分)某公司自2016年起.每年投入的技术改造资金为1000万元.预计自2016年起第n 年(2016年为第一年).因技术改造.可新增的盈利a n = {150(n −1),n ≤52000(1−0.6n−5),n >5(万元).按此预计.求:(1)第几年起.当年新增盈利超过当年的技术改造金; (2)第几年起.新增盈利累计总额超过累计技术改造金.18.(问答题.0分)已知数列{a n}.满足a n+1=λa n2+μa n+1;(1)若λ=0.μ=1.a1=3.求{a n}的通项公式;(2)若λ=0.μ=2.a1=1.求{a n}的前n项和为S n;(3)若λ=1.a1=-1.{a n}满足a n+a n+1>0恒成立.求μ的取值范围.2018-2019学年上海市浦东新区华师大二附中高一(下)期末数学试卷参考答案与试题解析试题数:18.满分:01.(填空题.3分)在等比数列{a n}中.已知a2=4.a6=16.则a4=___ .【正确答案】:[1]8【解析】:由等比数列通项公式得a2a6=a42 .由此能求出a4.【解答】:解:∵在等比数列{a n}中.a2=4.a6=16.∴ a2a6=a42 =4×16=64.且a4>0.解得a4=8.故答案为:8.【点评】:本题考查等比数列的第4项的求法.考查等比数列的性质等基础知识.考查运算求解能力.考查函数与方程思想.是基础题.2.(填空题.3分)已知sinx=- 13 .x∈[π. 32π ].则x=___ .【正确答案】:[1]π+arcsin 13【解析】:先将x∈[π. 32π ].化为π-x∈[- π2,0 ].再利用诱导公式sin(π-x)=sinx.求出π-x=arcsin(- 13)=-arcsin 13.然后计算得解.【解答】:解:因为x∈[π. 32π ].所以π-x∈[- π2,0 ].由sinx=- 13.sin(π-x)=sinx.所以sin(π-x)=- 13.即π-x=arcsin(- 13)=-arcsin 13.所以x=π+arcsin 13.故答案为:π+arcsin 13 .【点评】:本题考查了解三角方程.及正弦的主值区间.属简单题3.(填空题.3分)数列{a n }的前n 项和为S n .已知S n =2n 2+n+1.则a n =___ . 【正确答案】:[1] {4,n =14n −1,n ≥2【解析】:根据数列的递推公式即可求出通项公式.【解答】:解:当n=1时.a 1=S 1=2×12+1+1=4.当n≥2时.a n =S n -S n-1=2n 2+n+1-[2(n-1)2+n-1+1]=4n-1. 当n=1时.a 1=3≠4. 故a n = {4,n =14n −1,n ≥2 .故答案为: {4,n =14n −1,n ≥2 .【点评】:本题考查了数列的递推公式.属于基础题4.(填空题.3分)等差数列{a n }与{b n }的前n 项和分别为S n .和T n .且 S n T n= 3n+17n+3 .则 a9b 9=___ .【正确答案】:[1] 2661【解析】:由等差数列的性质和求和公式可得 a 9b 9= S17T 17.代值计算可得.【解答】:解:由等差数列的性质和求和公式可得 a 9b 9= 2a 92b 9 = a 1+a 17b 1+b 17 = S 17T 17 = 3×17+17×17+3 = 2661. 故答案为: 2661【点评】:本题考查等差数列的性质和求和公式.属基础题. 5.(填空题.3分) lim n→∞(1+ 11+2 + 11+2+3 +……+ 11+2+3+⋯+n )=___ .【正确答案】:[1]2【解析】:求出数列通项公式的表达式.求出数列的和.然后求解数列的极限即可.【解答】:解: 11+2+3+⋯+n = 2n (n+1) =2( 1n −1n+1 ).∴ lim n→∞(1+ 11+2 + 11+2+3 +……+ 11+2+3+⋯+n )= lim n→∞2(1- 12+12−13+13−14 +… +1n −1n+1 )=lim n→∞(2- 2n+1 )=2.故答案为:2.【点评】:本题考查数列的和.数列的极限的求法.考查计算能力.6.(填空题.3分)一个正实数.它的小数部分、整数部分及这个正实数依次成等比数列.则这个正实数是___ . 【正确答案】:[1]√5+12【解析】:根据题意.这个数为a.则整数部分aq.则小数部分为a-aq.结合等比数列的性质可得a 2q 2=a (a-aq ).即q 2+q-1=0.解可得q 的值.又由aq 为正整数且aq 2<1.设aq 这个正整数为m.则有a= mq =m× √5+12且m (√5+12 )×( √5−12)2<1.解可得m 的值.变形可得a 的值.即可得答案.【解答】:解:小数部分、整数部分及这个正实数依次成等比数列. 不妨设这个数为a.则整数部分aq.则小数部分为a-aq.则q >0. 则有a 2q 2=a (a-aq ). 即q 2+q-1=0. 解得q=√5−12 .q= −1−√52(舍去). 又由aq 为正整数.设aq 这个正整数为m.则a= mq =m× √5+12. 又由aq 2<1.即m ( √5+12 )×( √5−12)2<1. 解可得m <√5+12.又由m 为整数.则m=1.则a= mq=m× √5+12 = m q = √5+12. 故答案为: √5+12.【点评】:本题考查等比数列的性质.涉及等比中项的计算.注意分析q 的范围.属于基础题. 7.(填空题.3分)化小数为最简分数:0.3 4• 5•=___ . 【正确答案】:[1] 1955【解析】:由0.3 4• 5• =0.3+0.045+0.0045+….可得等号右边的数从0.045起为公比为0.01的无穷等比数列.运用无穷递缩等比数列的求和公式.计算可得所求值.【解答】:解:0.3 4• 5• =0.3+0.045+0.0045+… =0.3+ 0.0451−0.01 =0.3+ 45990 = 342990 = 1955 . 故答案为: 1955.【点评】:本题考查循环小数化为分数的方法.考查无穷递缩等比数列的求和公式的运用.考查运算能力.属于基础题.8.(填空题.3分)若无穷等比数列{a n }的各项和为 12.则a 2的取值范围是___ . 【正确答案】:[1](-1.0)∪(0. 18 ]【解析】:由题意 a 11−q =12 .|q|<1.从而q=1-2a 1.进而a 2=a 1q=(1-2q )q=q-2q 2=-2(q- 14 )2+18.利用-1<q <1.能求出a 2的取值范围.【解答】:解:∵无穷等比数列{a n }的各项和为 12 .∴ a 11−q =12 .|q|<1.∴q=1-2a 1.a 2=a 1q=(1-2q )q=q-2q 2=-2(q- 14 )2+ 18 . ∵-1<q <1.a 2的取值范围是(-1.0)∪(0. 18]. 故答案为:(-1.0)∪(0. 18 ].【点评】:本题考查等比数列的第二项的取值范围的求法.考查等比数列的性质等基础知识.考查运算求解能力.是基础题.9.(填空题.3分)设方程x-cosx= π4 的根是x 1.方程x+arcsin (x- π2 )= π4 的根是x 2.则x 1+x 2的值是___ .【正确答案】:[1] 3π4【解析】:先将两方程变形为:-θ- π4 =sinθ.-θ- π4 =arcsinθ.由y=sinθ.y=arcsinθ互为反函数.其图象关于直线y=x 对称.则方程组 {y =xy =−x −π4.由对称性及中点坐标公式可得.解的横坐标为θ1+θ22.得解.【解答】:解:由x-cosx= π4 .可化为: π4 -x=sin (x- π2 ). x+arcsin (x- π2 )= π4 .可化为: π4 -x=arcsin (x- π2 ). 设θ=x - π2.则有:-θ- π4=sinθ.-θ- π4=arcsinθ. 由y=sinθ.y=arcsinθ.互为反函数. 其图象关于直线y=x 对称. 联立 {y =x y =−x −π4 .得:x=- π8 .即θ1+θ2=- π4 . 所以x 1- π2 +x 2- π2 =- π4 . 则x 1+x 2= 3π4 . 故答案为: 3π4 .【点评】:本题考查了函数与其反函数图象关于直线y=x 对称的性质.属中档题 10.(填空题.3分)在等差数列{a n }中.若即sp+tm=kn.s+t=k.则有sa p +ta m =ka n .(s.t.k.p.m.n∈N*).对于等比数列{b n }.请你写出相应的命题:___ . 【正确答案】:[1]若sp+tm=kn.s+t=k.则有b p s b m t =b n k .(s.t.k.p.m.n∈N*) 【解析】:利用类比推理可得【解答】:解:利用类比推理可得.对于等比数列{b n }.若sp+tm=kn.s+t=k. 则有b p s b m t =b n k .(s.t.k.p.m.n∈N*). 故答案为:若sp+tm=kn.s+t=k. 则有b p s b m t =b n k .(s.t.k.p.m.n∈N*)【点评】:本题考查了类比推理的问题.属于基础题.11.(单选题.3分)已知a 、b 、c 是非零实数.则“a 、b 、c 成等比数列”是“b= √ac ”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 【正确答案】:C【解析】:由举例1.-1.1可得“a 、b 、c 成等比数列”不能推出“b= √ac “.由等比中项概念可得:当a 、b 、c 是非零实数.“b= √ac “.可推出“a 、b 、c 成等比数列”.故“a 、b 、c 成等比数列”是“b= √ac “的必要不充分条件.【解答】:解:当“a 、b 、c 成等比数列”时.不妨取“1.-1.1“.则不满足“b= √ac “. 即“a 、b 、c 成等比数列”不能推出“b= √ac “. 当a 、b 、c 是非零实数.“b= √ac ”.由等比中项概念可得:“a 、b 、c 成等比数列”即“a 、b 、c 成等比数列”是“b= √ac ”的必要不充分条件. 故选:C .【点评】:本题考查了等比数列的性质及充分.必要条件.属简单但易错题. 12.(单选题.3分)下列四个命题中正确的是( ) A.若n→∞a n 2=A 2.则n→∞a n =AB.若a n >0. n→∞a n =A.则A >0C.若n→∞a n =A.则 n→∞a n 2=A 2D.若n→∞(a n -b n )=0.则 n→∞a n =n→∞b n【正确答案】:C【解析】:此题可采用排除法法.可取a n =(-1)n .排除A ;取a n = 1n.排除B ;取a n =b n =n.排除D 得到答案.【解答】:解:取a n =(-1)n .排除A ; 取a n = 1n .排除B ; 取a n =b n =n.排除D . 故选:C .【点评】:考查学生认识极限及运算的能力.以及学会采用排除法做选择题. 13.(单选题.3分)设S k = 1k+1 + 1k+2 + 1k+3 +…+ 12k .则S k+1为( ) A.S k + 12(k+1) B.S k + 12k+1 + 12(k+1) C.S k + 12k+1 - 12(k+1) D.S k + 12(k+1) - 12k+1【正确答案】:C【解析】:先利用S k = 1k+1 + 1k+2 + 1k+3 +…+ 12k .表示出S k+1.再进行整理即可得到结论.【解答】:解:因为S k = 1k+1 + 1k+2 + 1k+3 +…+ 12k .所以s k+1= 1(k+1)+1 + 1(k+1)+2 +…+ 12(k+1)−2 + 12(k+1)−1 + 12(k+1) =1k+1 +1k+2 +…+ 12k + 12k+1 + 12k+2 - 1k+1=s k +12k+1 - 12k+2. 故选:C .【点评】:本题主要考查数列递推关系式.属于易错题.易错点在与整理过程中.不能清楚哪些项有.哪些项没有.14.(单选题.3分)已知数列a n =arcsin (sinn°).n∈N*.{a n }的前n 项和为S n .则当1≤n≤2016时( ) A.S 1980≤S n ≤S 90 B.S 1800≤S n ≤S 180 C.S 1980≤S n ≤S 180 D.S 2016≤S n ≤S 90 【正确答案】:B【解析】:由y=arcsinx 的值域为[- π2 . π2 ].考虑数列{a n }的周期为360.一个周期内的和.即可得到所求最小值和最大值.【解答】:解:由y=arcsinx 的值域为[- π2 . π2 ]. 当n 取1到90的自然数可得: S 90=π180 + 2π180 +…+ 90π180; 当n 取91到180的自然数可得: a 91+a 92+…+a 180= 89π180 + 88π180 +…+ π180 +0; 当n 取181到270的自然数可得:a 181+a 182+…+a 270=-( π180 + 2π180 +…+ 90π180 ); 当n 取271到360的自然数可得:a 271+a 272+…+a 360=-( 89π180 + 88π180 +…+ π180 +0). 由{a n }的周期为360.可得S 360=0.且S180>0.且为最大值;而S1800=S360×5=0.S2016=S216>0.S1980=S180>0.则故排除A.C.D.故选:B.【点评】:本题考查反正弦函数值的求法.以及数列的求和.考查分类讨论思想方法.以及运算能力和推理能力.属于中档题.15.(问答题.0分)已知关于x的方程sin2x+cosx+m=0.x∈[0.2π).(1)当m=1时.解此方程(2)试确定m的取值范围.使此方程有解.【正确答案】:【解析】:(1)由sin2x+cos2x=1.则sin2x+cosx+m=0可化为:cos2x-cosx-1-m=0.将m=1代入解一元二次方程可得解.(2)分离m与cosx.用值域法可得解.即1+m=cos2x-cosx.再用配方法求cos2x-cosx的值域即可得解.【解答】:解:(1)sin2x+cosx+m=0.所以cos2x-cosx-1-m=0.当m=1时.方程为:cos2x-cosx-2=0.所以cosx=-1或cosx=2.又cosx∈[-1.1].所以cosx=-1.又x∈[0.2π).所以x=π.故方程的解集为:{π}(2)由(1)得.cos2x-cosx-1-m=0有解.即1+m=cos2x-cosx有解.又1+m=cos2x-cosx=(cosx- 12)2- 14.又cosx∈[-1.1].所以(cosx- 12)2- 14∈[- 14,2 ].即1+m∈[- 14,2 ].即m∈[ −54,1 ].故答案为:[ −54,1 ]【点评】:本题考查了三角函数的运算及二次函数的值域.与方程有解问题.属中档题16.(问答题.0分)在公差为d的等差数列{a n}中.已知a1=10.且a1.2a2+2.5a3成等比数列.(Ⅰ)求d.a n;(Ⅱ)若d<0.求|a1|+|a2|+|a3|+…+|a n|.【正确答案】:【解析】:(Ⅰ)直接由已知条件a1=10.且a1.2a2+2.5a3成等比数列列式求出公差.则通项公式a n可求;(Ⅱ)利用(Ⅰ)中的结论.得到等差数列{a n}的前11项大于等于0.后面的项小于0.所以分类讨论求d<0时|a1|+|a2|+|a3|+…+|a n|的和.【解答】:解:(Ⅰ)由题意得5a3•a1=(2a2+2)2 .即5(a1+2d)•a1=(2a1+2d+2)2 .整理得d2-3d-4=0.解得d=-1或d=4.当d=-1时.a n=a1+(n-1)d=10-(n-1)=-n+11.当d=4时.a n=a1+(n-1)d=10+4(n-1)=4n+6.所以a n=-n+11或a n=4n+6;(Ⅱ)设数列{a n}的前n项和为S n.因为d<0.由(Ⅰ)得d=-1.a n=-n+11.则当n≤11时. |a1|+|a2|+|a3|+⋯+|a n|=S n=−12n2+212n.当n≥12时.|a1|+|a2|+|a3|+…+|a n|=-S n+2S11= 12n2−21n2+110.综上所述.|a1|+|a2|+|a3|+…+|a n|= {−12n2+212n,n≤1112n2−212n+110,n≥12.【点评】:本题考查了等差数列、等比数列的基本概念.考查了等差数列的通项公式.求和公式.考查了分类讨论的数学思想方法和学生的运算能力.是中档题.17.(问答题.0分)某公司自2016年起.每年投入的技术改造资金为1000万元.预计自2016年起第n 年(2016年为第一年).因技术改造.可新增的盈利a n = {150(n −1),n ≤52000(1−0.6n−5),n >5(万元).按此预计.求:(1)第几年起.当年新增盈利超过当年的技术改造金;(2)第几年起.新增盈利累计总额超过累计技术改造金.【正确答案】:【解析】:(1)计算n=1.2.3.4.5.6.7即可得到所求结论;(2)考虑1到5年不符题意;n >5时.可得1500+2000[n-5-0.6(1−0.6n−5)1−0.6 ]>1000n.结合n的特殊值.计算可得结论.【解答】:解:(1)新增的盈利a n = {150(n −1),n ≤52000(1−0.6n−5),n >5 (万元). 可得a 1=0.a 2=150.a 3=300.a 4=450.a 5=600.a 6=2000×(1-0.6)=800.a 7=2000×(1-0.36)=1280>1000.则第7年起.当年新增盈利超过当年的技术改造金;(2)由n=5时.a 1+a 2+…+a 5=1500<5000.可得所求n 超过5.可得1500+2000[n-5- 0.6(1−0.6n−5)1−0.6 ]>1000n.化简可得n+3•0.6n-5>11.5.由于3•0.6n-5随着n 的增大而减小.当n=11时.11+3•0.66<11.5.当n=12时.12+3•0.67>11.5.则第12年起.新增盈利累计总额超过累计技术改造金.【点评】:本题考查数列在实际问题中的运用.考查化简运算能力和推理能力.属于中档题.18.(问答题.0分)已知数列{a n}.满足a n+1=λa n2+μa n+1;(1)若λ=0.μ=1.a1=3.求{a n}的通项公式;(2)若λ=0.μ=2.a1=1.求{a n}的前n项和为S n;(3)若λ=1.a1=-1.{a n}满足a n+a n+1>0恒成立.求μ的取值范围.【正确答案】:【解析】:(1)由题意可得数列为等差数列.即可得到所求通项公式;(2)由条件可得a n+1+1=2(a n+1).由等比数列的定义和通项公式、求和公式.计算可得所求;(3)由条件可得a n2+(1+μ)a n+1>0恒成立.即(a n+ 1+μ2)2+1- (1+μ)24>0恒成立.结合首项成立.以及二次函数的最值.计算可得所求范围.【解答】:解:(1)λ=0.μ=1.a1=3.可得a n+1=a n+1.即有a n=3+n-1=n+2;(2)若λ=0.μ=2.a1=1.可得a n+1=2a n+1.即有a n+1+1=2(a n+1).可得a n+1=2n.即a n=2n-1.前n项和为S n=(2+4+…+2n)-n= 2(1−2n)1−2-n=2n+1-2-n;(3)若λ=1.a1=-1.{a n}满足a n+a n+1>0恒成立. 可得a n+1=a n2+μa n+1.即有a n2+(1+μ)a n+1>0恒成立.即(a n+ 1+μ2)2+1- (1+μ)24>0恒成立.由a1=-1.可得1-(1+μ)+1>0.即有μ<1;又(a n+ 1+μ2)2+1- (1+μ)24≥1- (1+μ)24.可得1- (1+μ)24>0.可得-3<μ<1.综上可得μ的范围是(-3.1).【点评】:本题考查数列的递推式的运用.以及等差数列和等比数列的定义、通项公式和求和公式的运用.考查运算能力和推理能力.属于中档题.。
上海市华东师大二附中2025届高三(最后冲刺)数学试卷含解析

上海市华东师大二附中2025届高三(最后冲刺)数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1,0,1,2A =-,()(){}120B x x x =+-<,则集合A B 的真子集的个数是( )A .8B .7C .4D .32.已知函数f (x )=e b ﹣x ﹣e x ﹣b +c (b ,c 均为常数)的图象关于点(2,1)对称,则f (5)+f (﹣1)=( ) A .﹣2B .﹣1C .2D .43.设正项等差数列{}n a 的前n 项和为n S ,且满足6322S S -=,则2823a a 的最小值为A .8B .16C .24D .364.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( ) A .14B .13C .532D .3165.若函数()()2(2 2.71828 (x)f x x mx e e =-+=为自然对数的底数)在区间[]1,2上不是单调函数,则实数m 的取值范围是( ) A .510,23⎡⎤⎢⎥⎣⎦B .510,23⎛⎫⎪⎝⎭C .102,3⎡⎤⎢⎥⎣⎦D .102,3⎛⎫⎪⎝⎭6.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是( )A .83B .163C .43D .87.平行四边形ABCD 中,已知4AB =,3AD =,点E 、F 分别满足2AE ED =,DF FC =,且6AF BE ⋅=-,则向量AD 在AB 上的投影为( ) A .2B .2-C .32D .32-8.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件9.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是18人,则该班的学生人数是( )A .45B .50C .55D .6010.已知集合{}2|3100M x x x =--<,{}29N x y x ==-,且M 、N 都是全集R (R 为实数集)的子集,则如图所示韦恩图中阴影部分所表示的集合为( )A .{}35x x <≤ B .{3x x <-或}5x >C .{}32x x -≤≤-D .{}35x x -≤≤11.若复数2(2)(32)m m m m i -+-+是纯虚数,则实数m 的值为( ) A .0或2 B .2C .0D .1或212.已知13ω>,函数()sin 23f x x πω⎛⎫=- ⎪⎝⎭在区间(,2)ππ内没有最值,给出下列四个结论:①()f x 在(,2)ππ上单调递增; ②511,1224ω⎡⎤∈⎢⎥⎣⎦ ③()f x 在[0,]π上没有零点; ④()f x 在[0,]π上只有一个零点.其中所有正确结论的编号是( ) A .②④B .①③C .②③D .①②④二、填空题:本题共4小题,每小题5分,共20分。
上海市八校2014届高三数学联合调研考试试题 理(含解析)苏教版

上海市八校2014届高三数学联合调研考试试题 理(含解析)苏教版一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.在复平面上,复数()232i -对应的点到原点的距离为 .2.已知函数()x x x f ωω44cos sin -=()0>ω的最小正周期是π,则=ω .3.向量在向量方向上的投影为 .【答案】22- 【解析】试题分析:向量投影的定义是,向量a 在向量b 方向上的投影是cos ,a a b <>,它还等于a b b⋅,故所求投影为(3,4)(1,1)2(1,1)22⋅-==--.考点:向量的数量积与投影.4.已知正数,a b 满足2a b +=,则行列式111111ab++的最小值为 .5.阅读下边的程序框图,如果输出的函数值y 在区间⎥⎦⎤⎢⎣⎡141,内,则输入的实数x 的取值范围是 .考点:程序框图与函数的定义域.6.设αβ、是一元二次方程022=+-m x x 的两个虚根.若||4αβ=,则实数=m .7.集合⎭⎬⎫⎩⎨⎧<+-=011x x xA ,{}a b x xB <-=.若“a =1”是“A B φ≠”的充分条件, 则实数b 的取值范围是 .8.已知椭圆的焦点在x 轴上,一个顶点为(0,1)A -,其右焦点到直线220x y -+=的距离为3,则椭圆的方程为 .9.在△ABC 中,A B C 、、所对边分别为a 、b 、c .若tan 210tan A cB b++=,则A = .10.已知数列{}n a 的首项12a =,其前n 项和为n S .若121n n S S +=+,则n a = .11.某地球仪上北纬30︒纬线长度为12πcm ,该地球仪的表面上北纬30︒东经30︒对应点A 与北纬30︒东经90︒对应点B 之间的球面距离为 cm (精确到0.01).2222(243)(243)582(243)=⋅,,A B 两点间的球面距离即AOB ∠所对的大圆弧长为5arccos 8OA ⋅约等于37.23考点:球面距离.12.已知直线()2+=x k y 与抛物线x y C 8:2=相交于A 、B 两点,F 为抛物线C 的焦点.若||2||FA FB =,则实数=k .考点:直线和圆锥曲线相交问题.13.将()22xx af x =-的图像向右平移2个单位后得曲线1C ,将函数()y g x =的图像向下平移2个单位后得曲线2C ,1C 与2C 关于x 轴对称.若()()()f x F x g x a=+的最小值为m 且27m >+,则实数a 的取值范围为 .14.已知“,,,,,a b c d e f ”为“1,2,3,4,5,6”的一个全排列.设x 是实数,若“()()0x a x b --<”可推出“()()0x c x d --<或()()0x e x f --<”,则满足条件的排列“,,,,,a b c d e f ”共有__________个.下面我们用列举法列举出各种可能:a,bc,d e,f 排列数a,b 相邻2,3 1,4,5,6任意排列 4,5 1,2,3,6任意排列 3,4 1,5 2,6 1,6 2,5 2,6 1,52,5 1,6 a,b 不相邻2,4 1,5 3,6 1,6 3,5 3,6 1,53,51,63,5与2,4一样2,51,63,444248A ⨯=44248A ⨯=2228⨯⨯=2228⨯⨯=2228⨯⨯=2228⨯⨯=2228⨯⨯=2228⨯⨯=2228⨯⨯=2228⨯⨯=8432⨯=2228⨯⨯=3,4 1,6 1,4 3,63,61,4这样所有的排列数为48281232224⨯+⨯+= 考点:排列、不等式的解等综合问题.二、选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的. 15.函数()()21212-<+=x x x f 的反函数是 ( ) (A) 22(13)y x x =-≤<. (B) 22(3)y x x =->. (C) 22(13)y x x =--≤<. (D)22(3)y x x =-->.16.直线l 的法向量是(),n a b =. 若0ab <,则直线l 的倾斜角为 ( )(A)arctan b a ⎛⎫- ⎪⎝⎭ (B)arctan a b ⎛⎫- ⎪⎝⎭ (C)arctan a b π+ (D)arctanbaπ+2228⨯⨯=2228⨯⨯=2228⨯⨯=17.已知A 、B 、C 是单位圆上三个互不相同的点.若||||AB AC =,则AB AC 的最小值是( )(A)0. (B )14-. (C )12-. (D )34-.18.等差数列{}n a 的公差0d ≠,a n ÎR ,前n 项和为n S ,则对正整数m ,下列四个结论中:(1)232,,m m m m m S S S S S --成等差数列,也可能成等比数列; (2)232,,m m m m m S S S S S --成等差数列,但不可能成等比数列; (3)23,,m m m S S S 可能成等比数列,但不可能成等差数列; (4)23,,m m m S S S 不可能成等比数列,也不可能成等差数列; 正确的是( )(A)(1)(3). (B )(1)(4). (C )(2)(3). (D )(2)(4).三、解答题 (本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 19.(本题满分12分;第(1)小题满分6分,第(2)小题满分6分)在直三棱柱111ABC -A B C 中,90 ABC =∠︒ ,11,2AB =BC =BB =,求: (1)异面直线11B C 与1A C 所成角的大小; (2)直线11B C 到平面BC A 1的距离.(2)因为11B C //平面1A BC考点:(1)异面直线所成的角;(2)直线到平面的距离.20.(本题满分14分;第(1)小题满分6分,第(2)小题满分8分)已知()()x b xx f 24lg2++=,其中b 是常数.(1)若()x f y =是奇函数,求b 的值;(2)求证:()x f y =的图像上不存在两点A 、B ,使得直线AB 平行于x 轴.考点:(1)函数的奇偶性;(2)函数的单调性与方程的解.21.(本题满分14分;第(1)小题满分7分,第(2)小题满分7分 )如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形.由对称性,图中8个三角形都是全等的三角形,设α=∠11H AA .(1)试用α表示11H AA ∆的面积;(2)求八角形所覆盖面积的最大值,并指出此时α的大小.22.(本题满分16分;第1小题满分4分,第2小题满分6分,第3小题满分6分)已知点1F 、2F 为双曲线C :()01222>=-b by x 的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且︒=∠3021F MF .圆O 的方程是222b y x =+.(1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求21PP PP ⋅的值;(3)过圆O 上任意一点()00y ,x Q 作圆O 的切线l 交双曲线C 于A 、B 两点,AB 中点为M ,求证:2AB OM =.试题解析:(1)设2,F M 的坐标分别为220(1,0),(1,)b b y ++因为点M 在双曲线C 上,所以220211y b b+-=,即20y b =±,所以22MF b =在21Rt MF F ∆中,01230MF F ∠=,22MF b =,所以212MF b = ……2分由双曲线的定义可知:2122MF MF b -==故双曲线C 的方程为:2212y x -= ……4分考点: (1)双曲线的方程;(2)占到直线的距离,向量的数量积;(3)圆的切线与两直线垂直的充要条件.23.(本题满分18分;第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分)在等差数列{}n a 和等比数列{}n b 中,112a b ==,222a b b ==+,n S 是{}n b 前n 项和.(1)若lim 3n n S b →∞=-,求实数b 的值;(2)是否存在正整数b ,使得数列{}n b 的所有项都在数列{}n a 中?若存在,求出所有的b ,若不存在,说明理由;(3)是否存在正实数b ,使得数列{}n b 中至少有三项在数列{}n a 中,但{}n b 中的项不都在数列{}n a 中?若存在,求出一个可能的b 的值,若不存在,请说明理由.(2)当b 取偶数(2,*)b k k N =∈时,{}n b 中所有项都是{}n a 中的项. …………8分 证: 由题意:b 1,b 2均在数列a n {}中,。
上海市上师大附中2014届高三5月模拟考试数学试题 Word版含答案

上师大附中2014届高三模拟考试数学试题2014.5一、填空题1.设复数,则等于.2.集合集合,则等于.3.PA、PB、PC是从P点引出的三条射线,每两条夹角都是60°,那么直线PC与平面PAB所成角的余弦值是.4.设是定义在上的偶函数,其图像关于直线对称,对任意,,有,,则.5.设为函数的最大值,则二项式的展开式中含项的系数是.6.已知数列是等差数列, 若,则该数列前11项的和为.7.已知命题“,”是假命题,则实数的取值范围是.8.已知函数,若函数图象上的一个对称中心到对称轴的距离的最小值为,则的值为.9.正方形的边长为2,点、分别在边、上,且,,将此正方形沿、折起,使点、重合于点,则三棱锥的体积是.10.设是双曲线的两个焦点,点P在双曲线上且满足,则的面积为.11.在中,已知分别为,,所对的边,为的面积.若向量满足,则= .12.若、为两条不重合的直线,、为两个不重合的平面,则下列命题中的真命题个数是_ .①若、都平行于平面,则、一定不是相交直线;②若、都垂直于平面,则、一定是平行直线;③已知、互相垂直,、互相垂直,若,则;④、在平面内的射影互相垂直,则、互相垂直。
13.已知直线(为参数)与圆(为参数),则上各点到的距离的最小值为。
14.将侧棱相互垂直的三棱锥称为“直角三棱锥”,三棱锥的侧面和底面分别叫直角三棱锥的“直角面和斜面";过三棱锥顶点及斜面任两边中点的截面均称为斜面的“中面”.已知直角三角形具有性质:“斜边的中线长等于斜边边长的一半”。
仿照此性质写出直角三棱锥具有的性质:。
二、选择题15.过点P(1,1)作直线L与两坐标轴相交所得三角形面积为10,直线L有()A.一条B.两条C.三条D.四条。
上海市华师大二附中高三数学综合练习试题4苏教版

上海市华师大二附中高三数学综合练习试题4苏教版一、填空题(本大题满分48分) 本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分。
1. 复数=⎪⎭⎫⎝⎛-+=10011i i Z ___________.2. 函数x x y 2cos 2sin 3-=的最小正周期是____________.3. 函数1)1(log 2++=x y (x>0)的反函数是_____________.4. 某学校的某一专业从8名优秀毕业生中选派5名支援中国西部开发建设, 其中甲同学必须被选派的概率是____________.5. 已知ax x f +=1)(的反函数)(1x f -图像的对称中心坐标是(0, 2), 则a 的值为__________.6. 不等式0>-b ax 解集为(1, +∞), 则不等式02>+-bax x 的解集为___________.7. 已知等差数列{a n }前n 项和为Sn. 若m>1, m ∈N 且0211=-++-m m m a a a 3812=-m S , 则m 等于____________.8. 将7名学生分配到甲、乙两个宿舍中, 每个宿舍至少安排2名学生, 那么互不相同的分配方案共有________种.9. 函数)(x f 是定义在R 上以3为周期的奇函数, 若1)1(>f , 132)2(+-=a a f . 则实数a 的取值范围是________________.10. 已知等差数列{a n }公差不为0, 其前n 项和为S n , 等比数列{b n }前n 项和为B n , 公比为q, 且|q|>1, 则⎪⎪⎭⎫⎝⎛+∞→n n nn n b B na S lim =___________________. 11. 函数)1(-=x f y 的图象如图所示,它在R 上单调递减,现有如下结论: ⑴1)0(>f ;⑵1)21(<f ;⑶0)1(1=-f;⑷0)21(1>-f 。
华师大二附中高三数学综合练习7

高三数学综合练习七一.填空题1.集合{}{}{}{}1,2,3,4,5,2,4,3,4,5,3,4U A B C ====,则()()U A B C ⋃⋂=ð_________2.不等式211x x --<的解集是_________3.设1z 是复数,211z z iz =-(其中1z 表示1z 的共轭复数),已知2z 的实部是-1,则2z 的虚部为__________4.与直线20x y +-=和曲线221212540x y x y +--+=都相切的半径最小的圆的标准方程是__________5.若函数()y f x =的反函数()1123x f x x--=+,则()y f x =的图像关于点_______对称. 6.直线210x y -+=关于直线1x =对称的直线方程是__________7.已知n 的展开式中,各项系数的和与其二项式系数的和之比为64,则正整数n 等于__________8.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为__________9.已知直线1l 的极坐标方程为1sin cos ρθθ=+,直线2l 与1l 关于极点对称,则2l 的极坐标方程是__________10.已知数列{}n a 中,()*11111,3n n n a a a n N ++=-=∈,则lim n n a →∞=__________ 11.正五棱柱的侧面的所有对角线中,异面直线共有__________对12.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等,设四棱锥,三棱锥,三棱柱的高分别为123,,h h h ,则123::h h h =__________13.安排3名支教教师去6所学校任教,每校至多2人,则不同的分配方案共有__________种(用数字作答)14.设125236x x x t ⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则关于x 的方程()()()1230t t t ---=的所有实数解之和等于__________二.选择题1.“23πθ=”是“tan 2cos 2πθθ⎛⎫=+ ⎪⎝⎭”的---------------------------------------------() A.充分非必要条件B.必要非充分条件C.充要条件D.即非充分又非必要条件2.设()2,1,1x x f x x x ⎧≥⎪=⎨<⎪⎩,()g x 是二次函数,若()()f g x 的值域是[)0,+∞,则()g x 的值域是----------------------------------------------------------------------------------()A.(][),11,-∞-⋃+∞B.(][),10,-∞-⋃+∞C.[)0,+∞D.[)1,+∞3.如果正数,,,a b c d 满足4a b cd +==,那么--------------------------------------()A.ab c d ≤+,且等号成立时,,,,a b c d 的取值唯一B.ab c d ≥+,且等号成立时,,,,a b c d 的取值唯一C.ab c d ≤+,且等号成立时,,,,a b c d 的取值不唯一D.ab c d ≥+,且等号成立时,,,,a b c d 的取值不唯一4.在正方体1111ABCD A B C D -中,,E F 分别为棱11,AA CC 的中点,则在空间中与三条直线1,,A D EF CD 都相交的直线------------------------------------------------------ ( )A.不存在B.有且只有两条C.有且只有三条D.有无数条三.解答题1.已知函数()()()()7cos sin sin cos ,,12f t g x xf x xf x x ππ⎛⎤==+∈ ⎥⎝⎦. (1)将函数()g x 化简成()[)()sin 0,0,0,2A x B A ωϕωϕπ++>>∈的形式;(2)求函数()g x 的值域.2.如图,在Rt ABC ∆中,6OAB π∠=,斜边4AB =,Rt AOC ∆可以通过Rt AOB ∆以直线AO 为轴旋转得到,且二面角B AO C --是直二面角,动点D 在斜边AB 上.(1)求证:平面COD ⊥平面AOB ;(2)当D 为AB 的中点时,求异面直线AO 与CD 所成角的大小;(3)求CD 与平面AOB 所成角的最大值.3.某项选拔共有三轮考试,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某位选手能正确回答第一,二,三轮问题的概率分别为432,,555,且各轮问题能否正确回答互不影响.(1)求该选手被淘汰的概率;(2)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望.4.已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若直线1:l y kx m =+与椭圆C 相交于,A B 两点(,A B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求该定点坐标.5.在数列{}n a 中,()()1*112,22n n n n a a a n N λλλ++==++-∈,其中0λ>. (1)求数列{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S ;(3)证明存在*k N ∈,使得11n k n ka a a a ++<对*n N ∈恒成立.高三数学综合练习七一. 填空题1.{}2,52.()0,23.14.()()22222x y -+-= 5.()2,3--6.230x y +-=7.69.1sin cos ρθθ=-+ 10.762:213.21014.4二.选择题1.A2.C3.A4.D三.解答题1.(1)()24g x x π⎛⎫=+- ⎪⎝⎭(2))23⎡---⎣ 2.(1)证明略 (2)arctan 3.(1)0.808(2)分布列略,期望为2.28 4.(1)22143x y +=.(2)2,07⎛⎫ ⎪⎝⎭5.(1)()21n n n a n λ=+-(2)()()1211211,2211n n n n n S λλλλλλ+++--≠=-++-- 211,222n n n n S λ+-==-+(3)1k =,证明略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市华师大二附中高三年级综合练习[1]数学一、填空题 (本大题满分48分) 本大题共有12题,只要求直接填写结果,每个空格填对得4分,否则一律得零分。
1.函数))((R x x f y ∈=图象恒过定点)1,0(,若)(x f y =存在反函数)(1x fy -=,则1)(1+=-x fy 的图象必过定点 。
2.已知集合{}Rx y y A x∈-==,12,集合{}Rx x x y y B ∈++-==,322,则集合{}B x A x x ∉∈且=。
3.若角α终边落在射线)0(043≤=-x y x 上,则=⎥⎦⎤⎢⎣⎡-+)22arccos(tan α 。
4.关于x 的方程)(01)2(2R m mi x i x ∈=+++-有一实根为n ,则=+ni m 1。
5.数列{}n a 的首项为21=a ,且))((21211N n a a a a n n ∈+++=+ ,记n S 为数列{}n a 前n 项和,则n S =。
6.(文)若y x ,满足⎪⎪⎩⎪⎪⎨⎧-≥-≤-≥+≤+1315y x y x y x y x ,则目标函数y x s 23-=取最大值时=x 。
(理)若)(13N n x x n∈⎪⎭⎫ ⎝⎛-的展开式中第3项为常数项,则展开式中二项式系数最大的是第项。
7.已知函数)20,0)(2sin()(πϕϕ<<>+=A x A x f ,若对任意R x ∈有)125()(πf x f ≥成立,则方程0)(=x f 在[]π,0上的解为 。
8.某足球队共有11名主力队员和3名替补队员参加一场足球比赛,其中有2名主力和1名替补队员不慎误服违禁药物,依照比赛规定,比赛后必须随机抽取2名队员的尿样化验,则能查到服用违禁药物的主力队员的概率为 。
(结果用分数表示)9.将最小正周期为2π的函数)2,0)(sin()cos()(πϕωϕωϕω<>+++=x x x g 的图象向左平移4π个单位,得到偶函数图象,则满足题意的ϕ的一个可能值为 。
10.据某报《自然健康状况》的调查报道,所测血压结果与相应年龄的统计数据如下表,观察表中数据规律,并将最适当的数据填入表中括号内。
11.若函数⎭⎬⎫⎩⎨⎧+=x x x f 241log ,log 3min )(,其中{}q p ,min 表示qp ,两者中的较小者,则2)(<x f 的解为 。
12.如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为21的半圆得到图形2P ,然后依次剪去一个更小的半圆(其直径是前一个被剪掉半圆的半径)可得图形,,,,43n P P P ,记纸板nP 的面积为nS ,则=∞→n n S lim 。
二、选择题 (本大题满分16分) 本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号,选对得4分,不选、错选或者选出的代号超过一个(不论是否都写在圆括号内),一律得零分。
13.已知c b a ,,满足0<<<ac a b c 且,则下列选项中不一定能成立的是( ) A 、ac ab > B 、0)(>-a b c C 、22ca cb < D 、0)(<-c a ac14.下列命题正确的是( )A 、若A a n n =∞→lim ,B b n n =∞→lim ,则)0(lim≠=∞→n n n n b B Ab a 。
B 、函数)11(arccos ≤≤-=x x y 的反函数为R x x y ∈=,cos 。
C 、函数)(12N m x y m m∈=-+为奇函数。
D 、函数21)32(sin )(2+-=x x x f ,当2004>x 时,21)(>x f 恒成立。
15.函数11)(2-+-=x x a x f 为奇函数的充要条件是( )A 、10<<aB 、10≤<aC 、1>aD 、1≥a16.不等式)10(2sin log ≠>>a a x x a 且对任意)4,0(π∈x 都成立,则a 的取值范围为( )A 、)4,0(π B 、)1,4(π C 、)2,1()1,4(ππ⋃ D 、)1,0(三、解答题 (本大题满分86分) 本大题共有6题,解答下列各题必须写出必要的步骤。
17.(本题满分12分)ABC ∆中角C B A ,,所对边分别为c b a ,,,若,2,32==c a b ctgB tgA 21=+,求ABC ∆的面积S 。
18.(本题满分12分)设复数)0,,(1≠∈+=y R y x yi x z ,复数)(sin cos 2R i z ∈+=ααα,且1121,2z R z z ∈+在复平面上所对应点在直线x y =上,求21z z -的取值范围。
19.(本题满分14分)已知关于x 的不等式052<--a x ax 的解集为M 。
(1)当4=a 时,求集合M ;(2)若M M ∉∈53且,求实数a 的取值范围。
20.(本题满分14分)如图,一个计算装置有两个数据输入口Ⅰ、Ⅱ与一个运算结果输出口Ⅲ,当Ⅰ、Ⅱ分别输入正整数n m ,时,输出结果记为),(n m f , 且计算装置运算原理如下:①若Ⅰ、Ⅱ分别输入1,则1)1,1(=f ;②若Ⅰ输入固定的正整数,Ⅱ输入的正整数增大1,则输出结果比原来增大3;③若Ⅱ输入1,Ⅰ输入正整数增大1,则输出结果为原来3倍。
试求:(1))1,(m f 的表达式)(N m ∈;(2)),(n m f 的表达式),(N n m ∈;(3)若Ⅰ,Ⅱ都输入正整数n ,则输出结果),(n n f 能否为2006?若能,求出相应的n ;若不能,则请说明理由。
21.(本题满分16分)对数列{}n a ,规定{}n a ∆为数列{}n a 的一阶差分数列,其中)(1N n a a a n n n∈-=∆+。
对自然数k ,规定{}nka ∆为{}n a 的k阶差分数列,其中)(1111n k n k n k n k a a a a --+-∆∆=∆-∆=∆。
(1)已知数列{}n a 的通项公式),(2N n n n an∈+=,试判断{}n a ∆,{}n a 2∆是否为等差或等比数列,为什么?(2)若数列{}n a 首项11=a ,且满足)(212N n a a a n n n n ∈-=+∆-∆+,求数列{}n a 的通项公式。
(3)(理)对(2)中数列{}n a ,是否存在等差数列{}n b ,使得nnn n n n a C b C b C b =+++ 2211对一切自然N n ∈都成立?若存在,求数列{}n b 的通项公式;若不存在,则请说明理由。
22.(本题满分18分)已知函数)(x f 是定义在[]2,2-上的奇函数,当)0,2[-∈x 时,321)(xtx x f -=(t 为常数)。
(1)求函数)(x f 的解析式;(2)当]6,2[∈t 时,求)(x f 在[]0,2-上的最小值,及取得最小值时的x ,并猜想)(x f 在[]2,0上的单调递增区间(不必证明);(3)当9≥t 时,证明:函数)(x f y =的图象上至少有一个点落在直线14=y 上。
上海市华师大二附中高三年级数学综合练习[1] 参考答案1.()1,1 2.()+∞,2 3. 71-4.i 2121- 5.1232-⎪⎭⎫ ⎝⎛⋅n 6.(文)4 ;(理)57.326ππor8.9125 9. 4π 10.140,88 11. 404<<>x or x 12. 3π13. C 14.C 15.B 16.B17.解:由b c tgB tgA 21=+及正弦定理,得 ()B CB B B A B A sin sin 2cos sin cos cos sin =+,即 21cos =A ,(其余略)。
18.解:⎩⎨⎧=∈+11121Im Re 2z z R z z ⎩⎨⎧≠=∈-++-⇒022222y x R yi x xyi y x ⎩⎨⎧≠==-⇒0022y x y xy1==⇒y x i z +=⇒11,21z z -()()⎪⎭⎫ ⎝⎛+-=-+-=4sin 223sin 1cos 122πααα ∴21z z -[]12,12+-∈。
19.解:(1)4=a 时,不等式为04542<--x x ,解之,得()⎪⎭⎫ ⎝⎛⋃-∞-=2,452,M ; (2)25≠a 时,⎩⎨⎧∉∈M M 53 ⎪⎪⎩⎪⎪⎨⎧≥--<--⇒025550953a a a a ⎪⎩⎪⎨⎧<≤<>251359a ora a ()25,935,1⋃⎪⎭⎫⎢⎣⎡∈⇒a ,25=a 时,不等式为0255252<--x x , 解得()⎪⎭⎫ ⎝⎛⋃-∞-=5,515,M ,则 M M ∉∈53且,∴25=a 满足条件,综上,得 (]25,935,1⋃⎪⎭⎫⎢⎣⎡∈a 。
20.解:(1)()()()()11231,131,231,131,--===-=-=m m f m f m f m f ,(2),()()()()()()133131,232,31,,1-+=-+==⨯+-=+-=-n n m f n m f n m f n m f m ,(3)()()133,1-+=-n n n f n ,∵()20067471837,76<=+=f ,()200622082138,87>=+=f ,∴),(n n f 输出结果不可能为2006。
21.解:(1)()()()2211221+=+-+++=-=∆+n n n n n a a a n n n ,∴{}n a ∆是首项为4,公差为2的等差数列。
()()2222122=+-++=∆n n a n ,∴{}na 2∆是首项为2,公差为0的等差数列;也是首项为2,公比为1的等比数列。
(2)nn n n a a a 212-=+∆-∆+,即nn n n n a a a a 211-=+∆-∆-∆++,即nn n a a 2=-∆,∴nn n a a 221+=+,∵11=a ,∴12224⨯==a ,232312⨯==a ,342432⨯==a ,猜想:12-⋅=n n n a ,证明:ⅰ)当1=n 时,01211⨯==a ;ⅱ)假设k n =时,12-⋅=k k k a ;1+=k n 时,()()111212222-++⋅+=+⋅=+=k k k k k k k k a a 结论也成立, ∴由ⅰ)、ⅱ)可知,12-⋅=n n n a 。