Single spin asymmetry for $p^{uparrow}p to pi X$ in perturbative QCD
单细胞singler代码

单细胞singler代码【实用版】目录1.单细胞 singler 代码概述2.单细胞 singler 代码的编写3.单细胞 singler 代码的应用4.单细胞 singler 代码的优缺点分析5.总结正文【1.单细胞 singler 代码概述】单细胞 singler 代码是一种用于分析单细胞 RNA 测序数据的生物信息学方法。
它可以帮助研究者更好地理解单个细胞的基因表达模式,揭示细胞之间的异质性和相关性。
通过使用单细胞 singler 代码,研究者可以更加深入地探索单细胞生物学的奥秘。
【2.单细胞 singler 代码的编写】单细胞 singer 代码的编写主要依赖于编程语言,如 Python 和 R。
编写过程中,需要对单细胞 RNA 测序数据进行质量控制、筛选和归一化等处理。
接着,通过应用聚类算法对数据进行分析,得到细胞间的关系和基因表达模式。
最后,利用可视化工具将分析结果以直观的形式展示出来。
【3.单细胞 singler 代码的应用】单细胞 singler 代码在单细胞生物学研究中具有广泛的应用。
例如,它可以用于研究细胞发育过程中的基因表达变化,揭示细胞在组织和器官中的功能和定位,以及探讨细胞间的相互作用和调控关系。
此外,单细胞singler 代码还可以应用于疾病研究,如肿瘤发生发展过程中的细胞异质性和功能失调等。
【4.单细胞 singler 代码的优缺点分析】单细胞 singler 代码具有以下优点:(1)能够对单细胞 RNA 测序数据进行深入分析,揭示细胞间的异质性和相关性;(2)可以应用于多种生物学问题的研究,如细胞发育、疾病发生等;(3)可视化工具丰富多样,能够以直观的形式展示分析结果。
然而,单细胞 singler 代码也存在一定的局限性:(1)对编程技能有一定要求,需要研究者具备一定的编程基础;(2)分析过程较为复杂,需要消耗大量的计算资源和时间。
【5.总结】单细胞 singler 代码作为一种生物信息学方法,对于研究单细胞生物学具有重要意义。
细胞形态学英语

细胞形态学英语Cell MorphologyCells are the fundamental units of life, and understanding their structure and function is essential for comprehending the complex processes that govern living organisms. Cell morphology, or the study of cell shape and structure, is a critical aspect of cell biology that provides valuable insights into the roles and behaviors of different cell types. This essay will explore the various aspects of cell morphology, including the different shapes and structures observed in different cell types, the functional significance of these characteristics, and the techniques used to study cell morphology.One of the most striking features of cell morphology is the diversity of cell shapes observed across different cell types. Cells can range from the simple, spherical shape of red blood cells to the highly complex and branched structures of neurons. The shape of a cell is largely determined by its internal cytoskeleton, a network of protein filaments that provide structural support and facilitate the movement of organelles and other cellular components.Certain cell shapes are particularly well-suited to the specificfunctions of the cell. For example, the long, slender shape of nerve cells, or neurons, allows them to efficiently transmit electrical signals over long distances. The flattened, disk-like shape of red blood cells, on the other hand, maximizes their surface area-to-volume ratio, enabling them to efficiently transport oxygen and carbon dioxide throughout the body.In addition to cell shape, the internal structure and organization of cells also play a crucial role in their function. Cells contain a variety of specialized organelles, each with its own unique structure and purpose. For instance, the mitochondria, the "powerhouses" of the cell, have a distinctive, folded inner membrane that increases the surface area for the process of cellular respiration. Similarly, the nucleus, which houses the cell's genetic material, is typically a spherical or ovoid structure surrounded by a double-layered membrane.The study of cell morphology involves a range of techniques, including light microscopy, electron microscopy, and advanced imaging technologies. Light microscopy, which uses visible light to magnify and observe cells, is a widely used tool in cell biology. This technique allows researchers to study the overall shape and structure of cells, as well as the distribution and arrangement of organelles within the cell.Electron microscopy, on the other hand, uses a beam of electrons to produce high-resolution images of cellular structures. This technique can reveal the intricate details of cell morphology, including the fine structure of organelles and the organization of the cytoskeleton. Electron microscopy has been instrumental in advancing our understanding of cell biology, as it has enabled researchers to visualize cellular structures at a level of detail that is not possible with light microscopy.In addition to these traditional microscopy techniques, advances in imaging technology have led to the development of new tools for studying cell morphology. Techniques such as confocal microscopy, which uses a focused laser beam to create high-resolution, three-dimensional images of cells, and super-resolution microscopy, which can achieve resolutions beyond the diffraction limit of light, have provided researchers with unprecedented insights into the structure and organization of cells.The study of cell morphology has far-reaching implications for our understanding of biology and medicine. By understanding the relationship between cell structure and function, researchers can gain valuable insights into the underlying mechanisms of various biological processes, from cellular signaling and metabolism to tissue development and disease pathogenesis.For example, changes in cell morphology can be indicative of various disease states. Cancer cells, for instance, often exhibit abnormal shapes and structural features, such as enlarged nuclei and irregular cell borders, which can be used as diagnostic markers. Similarly, the morphological changes observed in neurodegenerative diseases, such as Alzheimer's disease, can provide clues about the underlying pathological processes.In addition to its diagnostic applications, the study of cell morphology has also informed the development of new therapeutic strategies. By understanding the structural and functional characteristics of different cell types, researchers can design targeted interventions that specifically address the needs of particular cell populations. This has led to the development of novel drug delivery systems, tissue engineering approaches, and regenerative medicine therapies.In conclusion, the study of cell morphology is a critical aspect of cell biology that provides valuable insights into the structure and function of living organisms. From the diverse shapes and structures observed across different cell types to the advanced imaging technologies used to study them, the field of cell morphology continues to evolve and inform our understanding of the fundamental processes of life. As we continue to unravel the mysteries of cell biology, the study of cell morphology willundoubtedly play a crucial role in advancing our knowledge and improving our ability to address a wide range of medical and biological challenges.。
回文对称特异核苷酸序列

回文对称特异核苷酸序列
在DNA序列中,回文对称特异核苷酸序列通常以一定长度的重
复单元出现,例如“AGCT”序列的回文对称序列是“AGCT”,而“ATCG”序列的回文对称序列是“CGAT”。
这种结构在DNA复制和
修复过程中可能起到重要作用,也可能与染色体结构和稳定性有关。
在RNA序列中,回文对称特异核苷酸序列同样具有重要意义。
一些RNA分子的结构和功能受到回文对称序列的影响,例如在RNA
剪接和翻译过程中可能起到调控作用。
此外,回文对称特异核苷酸序列在分子生物学实验中也常被用
作分子标记或引物设计。
通过设计特异性的回文对称序列,可以实
现对特定DNA或RNA序列的特异性识别和放大。
总的来说,回文对称特异核苷酸序列在生物学中具有多种重要
作用,涉及到DNA和RNA的结构、功能和实验应用等多个方面。
对
这种特殊序列的研究有助于深入理解生物分子的特性和相互作用。
不对称PCR

• LATE-PCR创造了一个用于检测温度的空间,再延 LATE-PCR创造了一个用于检测温度的空间,再延
伸期间,允许探针与一股单链靶子结合,并且不 需要干扰或降解就能使链断裂。在低温分子信标 作用下,颈环变短,因此更容易识别等位基因。 Wangh认为这是一个重大突破,LATE-PCR的Ct值 Wangh认为这是一个重大突破,LATE-PCR的Ct值 依赖于目标基因组的原始数目,与对称PCR很相 依赖于目标基因组的原始数目,与对称PCR很相 似。但是,不管你怎样开始操作,所有的LATE似。但是,不管你怎样开始操作,所有的LATEPCR反应都会产生许多单链产物,不需要任何清 PCR反应都会产生许多单链产物,不需要任何清 除,直接将这些产物用于循环测序法,因此我们 将之称为Dilute- Go测序。 将之称为Dilute-N-Go测序。
不对称PCR的新发展: 不对称PCR的新发展:
• 由Brandeis大学的Wangh与他人合作发明的 Brandeis大学的Wangh与他人合作发明的
指数线性PCR(LATE-PCR)是一种新技术,属 指数线性PCR(LATE-PCR)是一种新技术,属 于不对称PCR的高级形式,在引物设计时进 于不对称PCR的高级形式,在引物设计时进 行革新,并采用一种改良的热循环,可以 完成可靠地不对称放大。如果产生单链, 在反应过程中就会积累下来,因此在退火 期间,不需要探针就可以获得结果。
• 目前,整个细胞生物学领域中所用的原材料正变
得越来越小,尤其是PCR。这有许多优势,但在 得越来越小,尤其是PCR。这有许多优势,但在 对称PCR中,则会带来许多问题,如果必须采用 对称PCR中,则会带来许多问题,如果必须采用 更多的循环达到Ct,引物错配及扩增的废物就会增 更多的循环达到Ct,引物错配及扩增的废物就会增 加,这些不需要的产物会与目标扩增物相竞争, 会破坏实验结果,在对称PCR中,需要花费大量 会破坏实验结果,在对称PCR中,需要花费大量 的时间去优化反应,才能解决这个问题,LATE的时间去优化反应,才能解决这个问题,LATEPCR设计了高度特异性引物,Elixirs使得反应更快 PCR设计了高度特异性引物,Elixirs使得反应更快 更容易的进行,采用PurAmp方法,可以利用单细 更容易的进行,采用PurAmp方法,可以利用单细 胞中少量的DNA和RNA分子进行反应。 胞中少量的DNA和RNA分子进行反应。
单细胞singler代码

单细胞singler代码摘要:1.单细胞singler 代码概述2.单细胞singler 代码的编写流程3.单细胞singler 代码的应用实例4.单细胞singler 代码的未来发展正文:1.单细胞singler 代码概述单细胞singler 代码是一种用于分析单细胞RNA 测序数据的生物信息学方法。
它可以帮助研究者更好地理解单个细胞的基因表达模式,揭示细胞之间的异质性,以及研究细胞发育和分化的途径。
单细胞singler 代码基于Python 编程语言,通过整合多种数据分析方法和算法,为研究者提供了一个全面且高效的单细胞数据处理和分析平台。
2.单细胞singler 代码的编写流程编写单细胞singler 代码主要包括以下几个步骤:(1)数据预处理:首先,需要对原始的RNA 测序数据进行质量控制、筛选和归一化等预处理操作,以提高数据质量。
(2)数据可视化:通过绘制直方图、热图等图表,对数据进行初步的分析和观察。
(3)聚类分析:基于数据中的相似性,将相似的细胞归为一类,便于后续的比较和分析。
(4)差异表达分析:对不同细胞类别之间的基因表达差异进行统计分析,挖掘具有生物学意义的差异表达基因。
(5)功能富集分析:对差异表达基因进行功能富集分析,以了解其所参与的生物过程和通路。
(6)数据输出:将分析结果以可视化的方式展示,如网络图、条形图等。
3.单细胞singler 代码的应用实例单细胞singler 代码在单细胞RNA 测序数据分析中有广泛的应用,例如:(1)单个细胞的基因表达模式分析,揭示细胞之间的异质性。
(2)单细胞发育轨迹分析,研究细胞发育和分化的途径。
(3)单细胞转录因子调控网络分析,了解基因调控关系。
(4)单细胞染色质结构和功能的研究。
4.单细胞singler 代码的未来发展随着单细胞RNA 测序技术的不断发展,单细胞singler 代码也将不断完善和优化,以适应更多的分析需求。
未来的发展方向包括:(1)算法的优化和改进,提高数据分析的准确性和效率。
Cell跨膜蛋白SWELL1发现揭晓细胞生物学谜题

Cell跨膜蛋白SWELL1发现揭晓细胞生物学谜题斯克利普斯研究所的科学家解决了一个三十年的细胞生物学谜题,他们鉴定出一种称为SWELL1的跨膜蛋白,它位于细胞膜上,该蛋白的特定突变能改变VRAC通道的性能。
斯克利普斯研究所(TSRI)的科学家解决了一个三十年的细胞生物学谜题,他们鉴定出一种称为SWELL1的跨膜蛋白,它位于细胞膜上,该蛋白的特定突变能改变VRAC(体积调控的阴离子通道)通道的性能。
这项研究表明,该SWELL1是VRAC通道的一个主要部件,是细胞生物学家长期追寻的蛋白相关文章发表于2014年4月10日的《Cell》杂志上。
所有细胞都有一个最为基础的功能,即控制自己的体积避免过度膨胀。
数十年来,人们一直在寻找实现这一功能的蛋白,现在Scripps研究所(TSRI)的科学家们终于找到了它。
这个称为SWELL1的蛋白解决了一个重要的细胞生物学谜题,并且与健康和疾病有着密切的关联。
例如,该蛋白的功能出现异常,会造成一种严重的免疫缺陷。
“认识这种蛋白及其编码基因,为人们开辟了新的研究方向,”领导这项研究的Ardem Patapoutian教授说。
这项研究作为封面文章发表在四月十日的Cell杂志上。
揭晓谜底水分子能够轻松穿过绝大多数细胞的膜,而水分子的流动倾向于平衡膜内外的溶质浓度。
“实际上水是跟着溶质走的,”文章的第一作者Zhaozhu Qiu说。
“细胞外溶质浓度减少或者细胞内溶质浓度增加,都会使细胞被水充满。
”几十年前人们通过实验发现,细胞膜上存在着某种离子通道,能够作为细胞膨胀的关键安全阀,他们将这种未知离子通道称为VRAC(体积调控的阴离子通道)。
当细胞膨胀时VRAC就会开启,允许氯离子和其他一些带负电的分子流出。
这时水分子也会跟着流出,从而减轻细胞的膨胀。
“在过去三十年中,科学家们已经知道VRAC通道的存在,但对它并不了解,” Patapoutian说。
由于技术限制,人们一直未能找到组成VRAC的蛋白及其编码基因。
castep搜索过渡态

优化后
整理ppt
优化前
33
3 定义原子配对
从菜单栏中选择File | Save Project,然后在选中Window | Close All。我们可以进行下一步操作。
对CASTEP来说,为了完成过度态搜索,反应物文档和产物文 档中的所有原子都需要配对。此任务可以使用Reaction Preview工 具来完成,此工具可从工具栏中得到。
整理ppt
13
选中Pd (1 1 1).xsd把 它激活。从菜单栏中 选择Edit | Select All, 接着再选择Edit | Copy。
在Project Explorer中选择3D Atomistic Document.xsd把它激活。 从菜单栏中选择Edit | Paste。Pd (1 1 1)晶体结构出现在新文档中。 在文档中某处单击一下取消所选中的图形。
整理ppt
19
刚才所选中的Pd原子已经被束缚,我们可以通过改变显示 的颜色来看到它们。
在3D模型文档中单击以取消所选中的原子。右键单击选择 Display Style,在Atoms标签的Coloring部分,把Color by选项 改为Constraint。3D模型文档显示如下:
可见所有的Pd被束缚住。把Color by选项再改为
Add Atoms对话框如下: 选择Options标签,把Coordinate System设置为Fractional。返
回到Atoms标签,在Element文本框中,键入H。设置a 为0.56, b 为 0.47 和c 为0.70。按下Add按钮。一个氢原子出现在晶胞中 。
整理ppt
16
使用相同的步骤,把第二个氢原子添加到a = 0.47, b = 0.56和c = 0.70位置。关闭对话框。
恩格列净联合二甲双胍治疗2型糖尿病的效果评价

恩格列净联合二甲双胍治疗2型糖尿病的效果评价林智化厦门大学附属第一医院同安院区(厦门市第三医院)内分泌科,福建厦门361100[摘要]目的分析恩格列净联合二甲双胍治疗2型糖尿病的效果。
方法选取2021年3月—2022年4月厦门大学附属第一医院同安院区(厦门市第三医院)收治的98例2型糖尿病患者为研究对象,按照随机数表法分为观察组和对照组,每组49例。
两组均予以二甲双胍治疗,同时观察组加行恩格列净治疗。
比较两组血糖水平、血脂水平、胰岛β细胞功能、不良反应发生率以及临床疗效。
结果治疗6个月后,与对照组相比,观察组血糖水平、血脂水平均较低,胰岛β细胞功能的改善情况较好,差异有统计学意义(P<0.05)。
观察组不良反应发生率8.16%与对照组6.12%对比,差异无统计学意义(P>0.05)。
观察组治疗总有效率95.92%较对照组83.67%更高,差异有统计学意义(P<0.05)。
结论应用恩格列净联合二甲双胍治疗,效果突出,可有效调节糖脂代谢,纠正胰岛β细胞功能。
[关键词] 恩格列净;二甲双胍;2型糖尿病;糖脂代谢;胰岛β细胞功能[中图分类号] R446.1 [文献标识码] A [文章编号] 1672-4062(2023)08(a)-0087-04 Efficacy Evaluation of Empagliflozin Combined with Metformin in the Treatment of Type 2 Diabetes MellitusLIN ZhihuaDepartment of Endocrinology, Tong'an District of the First Affiliated Hospital of Xiamen University (Xiamen Third Hospital), Xiamen, Fujian Province, 361100 China[Abstract] Objective To analyze the effect of Empagliflozin combined with metformin in the treatment of type 2 dia⁃betes mellitus. Methods From March 2021 to April 2022, 98 patients with type 2 diabetes treated in Tong 'an District the First Affiliated Hospital of Xiamen University (Xiamen Third Hospital) were selected as the research objects. Ac⁃cording to the random number table method, they were divided into observation group and control group, 49 cases in each group. Both groups were treated with metformin, while the observation group was treated with empagliflozin. The blood glucose level, blood lipid level, islet β cell function, incidence of adverse reactions and clinical efficacy were compared between the two groups. Results After 6 months of treatment, compared with the control group, the blood glucose level and blood lipid level in the observation group were lower, and the improvement of islet β cell function was better, the difference was statistically significant (P<0.05). There was no statistically significant difference in the incidence of adverse reactions between the observation group (8.16%) and the control group (6.12%) (P>0.05). The to⁃tal effective rate of treatment in the observation group was 95.92% higher than that in the control group (83.67%), and the difference was statistically significant (P<0.05). Conclusion The treatment of Empagliflozin combined with metfor⁃min has a remarkable effect, which can effectively regulate the metabolism of glucose and lipid and correct the func⁃tion of islet beta cells.[Key words] Empagliflozin; Metformin; Type 2 diabetes; Glycolipid metabolism; Islet beta cell function2型糖尿病是最为常见的糖尿病类型,由于多发于成年,故又称成人发病型糖尿病,疾病早期症状不典型,随着疾病进展,患者可出现多饮、多食、多尿、消瘦或短期内体质量减轻等典型症状[1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :h e p -p h /9503290v 2 3 O c t 1995DFTT 48/94INFNCA-TH-94-27hep-ph/9503290Revised version -July 1995SINGLE SPIN ASYMMETRY FOR p ↑p →πX IN PERTURBATIVE QCD M.Anselmino 1,M.Boglione 1,F.Murgia 21Dipartimento di Fisica Teorica,Universit`a di Torino and INFN,Sezione di Torino,Via P.Giuria 1,10125Torino,Italy 2INFN,Sezione di Cagliari,Via A.Negri 18,09127Cagliari,Italy Abstract:Within the QCD-improved parton model and assuming the factorization theorem to hold in the helicity basis and for higher twist contributions,we show how non zero single spin asymmetries in hadron-hadron high energy and moderately large p T inclusive processes can be obtained,even in massless perturbative QCD,provided the quark intrinsic motion is taken into account.A simple model is constructed whichreproduces the main features of the data on the single spin asymmetry observed in inclusive pion production in p p collisions.1IntroductionSingle spin asymmetries in high energy and moderately large p T inclusive hadronic processes have recently received much attention,both experimentally[1]-[4]and the-oretically[5]-[13].Whereas they are expected to vanish at leading twist in massless perturbative QCD,higher twist effects might still be important in the kinematical region of the available data and may give origin to non zero values.Among the attempted explanations,quark-gluon correlations[5,8,13]and transverse k⊥effects in the quark distribution[6,7]or fragmentation functions[11]have been considered.We analyse here the large single spin asymmetries observed in the collision of transversely polarized protons offunpolarized protons,with the production of pions with p T values up to2GeV/c,p↑p→πX.(1) Several experimental results are available for such processes[2]-[4]and show clear patterns in the dependence of the spin asymmetrydσ↑−dσ↓A N=s,where p L is the pion longitudinal momentum in the p p c.m.√system,andWe know that the above hard scattering scheme works well for unpolarized pro-cesses and indeed it has been tested in many experiments.It has also been general-ized to the polarized case[18],so that it may be applied to the description of several processes involving polarized hadrons[19];however,the existing spin data do not allow yet a definite test of its validity.In Section2we adapt the formalism of Refs.[9]and[18]to the case of the single spin asymmetry(2).In order not to obtain a zero result higher twist effects have to be introduced;this can be done at different stages and several suggestions or attempts have been proposed in the literature[6]-[11],[20,21].Single spin effects in the elementary reactions alone are bound to be proportional toαs m q/√√√d3pπ∼1z(5)ρa/p↑λa,λ′af a/p↑(x a)f b/p(x b)ˆMλc,λd;λa,λbˆM∗λ′c,λd;λ′a,λbDλc,λ′cπ/c(z),where f a/p↑(x a)is the number density of partons a with momentum fraction x a inside the polarized proton[similarly for f b/p(x b)]andρa/p↑λa,λ′a(x a)is the helicity densitymatrix of parton a inside the polarized proton p↑.TheˆMλc ,λd;λa,λb’s are the helicityamplitudes for the elementary process ab→cd;if one wishes to consider higher order(inαs)contributions also elementary processes involving more partons should be included.Dλc,λ′cπ/c(z)is the product of fragmentation amplitudesDλc,λ′cπ/c= X,λX DλX;λc D∗λX;λ′c(6) where the X,λX stays for a spin sum and phase space integration of the undetected particles,considered as a system X.The usual unpolarized fragmentation function Dπ/c(z),i.e the density number of pions resulting from the fragmentation of an unpolarized parton c and carrying a fraction z of its momentum is given byDπ/c(z)=11Equation(5)holds as an equality if the elementary amplitudes are normalized so that (1/4) λa,λb,λc,λd|ˆMλa,λb,λc,λd|2=(1/π)(dˆσ/dˆt)final particle C with respect to the axis of the jet generated by parton c does not imply any more λc =λ′c and allows a non zero value of the asymmetrydσp ↑p →π,k ⊥X −dσp ↓p →π,k ⊥X .(9)The above asymmetry (9)is related to the so called Collins [11,24,25]or sheared jet [26]effect;it requires the measurement of the azimuthal angle φof the outgoing hadron around the jet axis,but,apart from a small sin φdependence,it is a leading twist effect and it depends on some non perturbative quark fragmentation analysing power.When integrating over the azimuthal angle the effect might not entirely disappear because of some φdependence in the elementary parton interaction.This idea was exploited in Ref.[11]where,essentially,the parton c is produced in the forward direction and the final hadron p T is due to its transverse k ⊥inside the jet.One cannot expect such a model to work at large p T .Another possible k ⊥effect,suggested by Sivers [6,7],may originate in the dis-tribution functions.To see how this comes out from the general scheme we rewrite Eq.(5)taking into account the parton intrinsic momentum in the number density f a/p :E πdσp ↑p →πX 2 a,b,c,d λa ,λ′a ;λb ;λc ,λ′c ;λd d 2k ⊥a dx a dxb1d 3p π−E πdσp ↓p →πX4 a,b,c,d λa ,λb ;λc ,λdd 2k ⊥a dx a dx b 1whereˆf a,λa /p↑(↓)(x a,k⊥a)is the number density of partons a with helicityλa,momen-tum fraction x a and intrinsic transverse momentum k⊥a in a transversely polarized proton[with spin↑or↓according to Eq.(3)or(4)].Eq.(13)follows from Eq.(12)by rotational invariance and explicitely shows that∆N f a/p↑(x,k⊥)=0when k⊥=0.This new quantity can be regarded as a single spin asymmetry or analysing power for the p↑→a+X process;if we define the polarized number densities in terms of distribution amplitudes asˆfa,λa/p↑(x a,k⊥a)= X p,λX p|G a/pλX p,λa;↑(x a,k⊥a)|2(14) then we have,in the helicity basis,∆N f a/p↑(x a,k⊥a)= X p,λX p λa2Im G a/pλX p,λa;+(x a,k⊥a)G a/p∗λX p,λa;−(x a,k⊥a)≡2I a/p+−(x a,k⊥a).(15) Eq.(15)simply follows from Eqs.(12)and(14)via Eqs.(3)and(4)and showsthe non diagonal nature,in the helicity indices,of I a/p+−(x a,k⊥a).Collins[9]has argued that a non zero value of I a/p+−(x,k⊥)is forbidden by the timereversal invariance of QCD;his argument is based on the analysis of the non diagonal matrix elements of the leading twist quark operator¯ψγ+ψ,whose diagonal matrixelements are related to the distribution functions f q/p(x,k⊥).For such operator his argument is correct and indeed time reversal invariance forces the matrix elements between proton states with different helicities to be zero.In a more physical languagethis amounts to say that single spin asymmetries for the process p↑→qX are forbidden by parity and time reversal invariance,which is true.However,as we said,initial state interactions(like soft gluon exchanges)between the incoming protons must certainly occur,and,at least in cases in which their neglect gives a zero result, one should consider them and relate the distribution functions to the inclusive cross-section for the process p1p2→qX;single(transverse)spin asymmetries are then certainly allowed(as the problem we are studying here confirms)via time reversal invariant scalar quantities likeεµνρσpµ1pν2qρsσ1.These soft gluon and initial state interactions which correlate partons from dif-ferent hadrons and allow a non zero value of I a/p+−can only survive at higher twist;ithas been shown[18]that at leading twist-2the proof of the factorization theorem for the unpolarized case–with the cancellation of all soft gluon contributions–holds for the polarized case as well.Eq.(11),as it will be shown in the next Section,onlygives higher twist contributions;assuming a non zero value of I a/p+−in the factorizedstructure of Eq.(11)amounts to assume the validity of the factorization theorem beyond leading twist.In the operator language this approach has been advocated by Qiu and Sterman [8]who use generalized factorization theorems valid at higher twist and relate nonzero single spin asymmetries in p p collisions to the expectation value of a higher twist operator,a twist-3parton distribution,which explicitly involves correlations between the two protons and combines quarkfields with a gluonicfield strength. However,they still consider only collinear partonic configurations so that,in order to obtain non zero results,they have to take into account the contributions of higher order elementary interactions.Our function I a/p+−(x a,k⊥a)introduced in Eqs.(15)and(12)can be consideredas a new phenomenological quantity which takes into account the non perturbative long distance physics,including initial state interactions,and plays,for single spin asymmetries in p p collisions,the same role plaid by the distributions functions f a/p(x a)in unpolarized processes.This function is zero in the absence of parton intrinsic motion,but,for k⊥=0,allows non zero single spin asymmetries even taking into account only lowest order perturbative QCD interactions among theconstituents.Measurements of the asymmetries supply information on I a/p+−,likemeasurements of unpolarized cross-sections supply information on f a/p.In the next Section we introduce a simple parametrization of I a/p+−,based on ourknowledge of the distribution functions,and show that it can reproduce with good accuracy the data on the single spin asymmetryA N=dσp↑p→πX−dσp↓p→πX2dσunp.(16)3A simple phenomenological modelInserting Eqs.(11)and(15),with the proper kinematical factors[23],into Eq.(16)yieldsA N= a,b,c,d dx a dx b d2k⊥a I a/p+−(x a,k⊥a)f b/p(x b)[dˆσ/dˆt(k⊥a)]Dπ/c(z)/zI a/p +−which does not originate from the k⊥a dependence is taken to be of the simpleformN a xαa a(1−x a)βa,(18) so that we approximately haved2k⊥a I a/p+−(x a,k⊥a)dˆσdˆt (+k⊥a)−dˆσMN a xαa a(1−x a)βa dˆσdˆt(−k0⊥a) ,(19)where M is a hadronic mass scale,M≃1GeV/c.A numerical estimate of k0⊥a/M can be found in Ref.[27]and can be accurately reproduced by the expressionk0⊥aAs the experimental data [2]cover a p T range between 0.7and 2.0GeV/c we have computed A N at a fixed value p T =1.5GeV/c .Our asymmetry decreases with increasing p T and increases at smaller p T ;however,we do not expect our approach to be valid at p T smaller than,say,1GeV/c .We will further comment on the p T range of our computation in the conclusions.Notice that the above values (21)are very reasonable indeed;actually,apart from an overall normalization constant,they might even have been approximately guessed.The exponents αu,d and βu,d are not far from the very na¨ıve values one canobtain by assuming,as somehow suggested by Eqs.(15)and (14),that I a/p +−(x a )∼2D π+/c +D π−/c .(22)Eq.(17)show that the relation (22)also holds for N 0and D 0,so thatA 0N =N ++N −A +N D −1+D −of polarized protons offunpolarized ones.Such region of p T is a delicate one;even if we assume,somewhat optimistically,that the hard scattering scheme is suitable for the description of these processes,we expect that,due to the moderate p T values, higher twist contributions may still be sizeable and important.Indeed,the leading twist contribution to the single spin asymmetries is zero and the large experimental data should be explained via non leading terms.In evaluating them one has to assume that the factorization theorem still holds at higher twist level;moreover,one can only take into account a few out of the many higher twist contributions and corrections to the simple hard scattering for-mulae.Here,we have considered the role of the parton intrinsic k⊥in the initial polarized proton[6,7],while neglecting other possible effects due,e.g.,to transverse k⊥in the fragmentation process.In this our model can only be regarded as a phe-nomenological approach to the description of the otherwise mysterious large single spin asymmetries.Further application of the same model should test its validity.We have shown how single spin asymmetries can be different from zero and originate from lowest order perturbative QCD interactions,provided some non per-turbative and intrinsic k⊥effects are properly taken into account.In the helicity basis,suitable for the use of the factorization theorem,this non perturbative longdistance information is contained in the function I a/p+−(x,k⊥),which has a simpleparton model interpretation in the transverse spin basis,Eqs.(12)-(15).Detailed data on single spin asymmetries in p p inclusive interactions would yield information on I a/p+−(x,k⊥),similar to the information gathered on the unpolarizedstructure functions;a knowledge of I a/p+−from some process could then be used topredict spin effects in other processes.Here we have shown how a simple and realisticparametrization of I a/p+−can easily explain the data on single spin asymmetries forthe process p↑p→πX at large energy and p T≃2GeV/c.Our model clearly exhibits the observed increase with x F,atfixed p T values,of the magnitude of the asymmetries.A more detailed application of our approach to other processes,like ¯p↑p→πX,p↑p→γX andπp↑→πX is in progress[31]:this should help in assessing the relevance and importance of our estimates.AcknowledgementsWe would like to thank J.C.Collins for useful correspondenceReferences[1]D.L.Adams et al.,Phys.Lett.B261(1991)201[2]D.L.Adams et al.,Phys.Lett.B264(1991)462[3]D.L.Adams et al.,Phys.Lett.B276(1992)531[4]D.L.Adams et al.,Z.Phys.C56(1992)181[5]M.G.Ryskin,Yad.Fiz.48(1988)1114[Sov.J.Nucl.Phys.48(1988)708][6]D.Sivers,Phys.Rev.D41(1990)83[7]D.Sivers,Phys.Rev.D41(1991)261[8]J.Qiu,G.Sterman,Phys.Rev.Lett.67(1991)2264[9]J.Collins,Nucl.Phys.B396(1993)161[10]C.Boros,Liang Zuo-tang and Meng Ta-chung,Phys.Rev.Lett.70(1993)1751[11]X.Artru,J.Czyzewski and H.Yabuki,preprint LYCEN/9423and TPJU12/94,May1994,hep-ph/9405426[12]M.Anselmino,M.Boglione and F.Murgia,Proceedings of the XI International Sym-posium on High Energy Spin Physics,Bloomington,Indiana,September1994,hep-ph/9410382[13]A.V.Efremov,V.M.Korotkiyan and O.V.Teryaev,Phys.Lett.B348(1995)577[14]S.Nurushev,Proceedings of the XI International Symposium on High Energy SpinPhysics,Bloomington,Indiana,September1994[15]J.Antille et al.,Phys.Lett.B94(1980)523[16]B.E.Bonner et al.,Phys.Rev.D41(1990)13[17]S.Saroffet al.,Phys.Rev.Lett.64(1990)995[18]J.C.Collins,Nucl.Phys.B394(1993)169[19]J.C.Collins,S.H.Heppelmann and dinsky,Nucl.Phys.B420(1994)565[20]J.Szwed,Phys.Lett.B105(1981)403[21]A.V.Efremov and O.V.Teryaev,Yad.Fiz.36(1982)242[Sov.J.Nucl.Phys.36(1982)140][22]G.Kane,J.Pumplin and W.Repko,Phys.Rev.Lett.41(1978)1698[23]D.Sivers,R.Blankenbecler and S.Brodsky,Phys.Rep.23C(1976)1[24]A.Kotzinian,preprint hep-ph/9412283[25]R.D.Tangerman and P.J.Mulders,preprint NIKHEF95-001,hep-ph/9501202[26]X.Artru and J.C.Collins,preprint PSU/TH/158,hep-ph/9504220[27]J.D.Jackson,G.G.Ross and R.G.Roberts,Phys.Lett.B226(1989)159[28]A.D.Martin,W.J.Stirling and R.G.Roberts,Phys.Rev.D50(1994)6734[29]R.D.Field,Applications of perturbative QCD,Redwood City,Addison Wesley(1989)[30]R.Cutler,D.Sivers,Phys.Rev.D17(1978)196[31]M.Anselmino,M.Boglione and F.Murgia,in preparationFigure captionFig.1Fit of the data on A N[2],with the parameters given in Eq.(21);the upper, middle and lower sets of data and curves refer respectively toπ+,π0andπ−.This figure "fig1-1.png" is available in "png" format from: /ps/hep-ph/9503290v2。