直线PPT课件

合集下载

直线与平面垂直的判定PPT课件

直线与平面垂直的判定PPT课件

例题二:求点到直线的距离
方法一
利用点到直线的距离公式,通过计算 点到直线上任意一点的向量在直线方 向向量上的投影长度,从而得出点到 直线的距离。
方法二
利用向量的叉积,通过计算点到直线上 两个点的向量与直线方向向量的叉积的 模,再除以直线方向向量的模,从而得 出点到直线的距离。
例题三:解决实际问题中的应用
方法三:结合图形进行判断
• 步骤 • 观察图形中已知直线与平面的位置关系; • 如果看起来垂直,则可以直接判断已知直线与平面垂直。 • 注意:以上三种方法都可以用来判断一条直线是否与一个平
面垂直,但具体使用哪种方法需要根据题目的具体情况来决 定。同时,在实际应用中,还需要注意一些特殊情况的处理, 例如当已知直线在平面内或与平面平行时,需要采用其他方 法进行判断。
点到直线距离公式可以用来辅助判断直线与平面是否垂直。
03
直线与平面垂直的判定方 法
方法一:利用定义直接判断
定义:如果一条直线与一个平面内的任意 一条直线都垂直,那么这条直线与这个平 面垂直。
如果都垂直,则已知直线与平面垂直。
步骤
验证已知直线与这两条相交直线是否垂直;
在平面内任意取两条相交直线;
方法二:利用判定定理进行判断
直线与平面垂直 的判定PPT课件
目录
• 直线与平面垂直的基本概念 • 直线与平面垂直的判定定理 • 直线与平面垂直的判定方法 • 直线与平面垂直的应用举例 • 直线与平面垂直的拓展延伸
01
直线与平面垂直的基本概 念
直线与平面的位置关系
01
02
03
直线在平面内
直线上的所有点都在平面 内。
直线与平面相交
步骤
验证这两条直线是否垂直;

两条直线平行ppt课件

两条直线平行ppt课件

例2 求过点A(-3,4),且与直线l:3x-4y+29=0平行的直线方程.
方法二 已知直线l的一个法向量n=(3,-4),所求直线平行于l,因 而有同样的法向量n=(3,-4),故可设其一般式方程为3x-4y+C=0. 将点A(-3,4)的坐标代入上述方程得3×(-3)-4×4+C=0,解得C= 25. 因此,所求直线的方程为3x-4y+25=0.
练习
1.已知直线l1的倾斜角为30°,直线l1∥l2,则直线l2的斜率为

练习
2.若直线x+ay-7=0与直线(a+1)x+2y-14=0平行,则a的值是
A.1
√B.-2
C.1或-2
D.-1或2
由已知,得a(a+1)-2=0,解得a=-2或a=1. 当a=1时,两直线重合,∴a=-2.
练习 3.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值
√为
A.-8
B.0
C.2
D.10
经检验,直线AB与2x+y-1=0不重合,符合题意.
练习 4.过点(5,0)且与x+2y-2=0平行的直线方程是
A.2x+y+5=0
√C.x+2y-5=0
B.2x+y-5=0 D.x+2y+5=0
由题意可设所求直线方程为x+2y+c=0(c≠-2). 因为(5,0)在该直线上,所以5+2×0+c=0,得c=-5, 故该直线方程为x+2y-5=0.
(1)如果直线l1,l2的斜率都存在
直线化为斜截式方程l1:y=k1x+b1和l2:y=k2x+b2,
k1=k2 b1= b2 l1与l2平行
k1=k2 b1 b2 l1与l2重合
k1 k2
l1与l2相交
例1 已知直线l1:3x+2y-6=0,l2:6x+4y-10=0,试判断直线l1与l2是否平行. 将直线l1:3x+2y-6=0化为斜截式,

直线、射线、线段 ppt课件

直线、射线、线段 ppt课件

解析:直线可以向两端无限延伸,射线向一端无限延伸, B 选项在图像左侧有交点,其余选项没有交点, 故选 B.
练习 7 如图,下列表述不正确的是( D )
A.直线 AC 和直线 BC 相交于点 C B.点 D 在直线 AB 外 C.线段 BD 和射线 AC 都是直线 CD 的一部分 D.直线 BD 不经过点 A
练习 11 如图,A,B,C,D 四点在同一平面内,并且每三点 都不在同一条直线上,读下列语句,按要求画出图形.
(1)连接AD,并延长线段DA; (2)连接BC,并反向延长线段BC; (3)连接AC,BD相交于点O; (4)DA的延长线与BC的反向延长线交于点P.
解:(1)(2)(3)(4)如图所示:
练习 10 如图,线段共有____3_____条,射线共有____6_____ 条,射线 AB 与射线____A__C___是同一条射线
解析:线段共有 3 条,即线段 AB,BC,AC; 射线共有 6 条,即以 A 为端点的射线有 2 条、以 B 为端点的 射线有 2 条、以 C 为端点的射线有 2 条; 射线 AB 与射线 AC 是同一条射线.故答案为 3,6,AC.
点与直线的位置关系:
一个点在直线上,也可以说直线经过这个点; 一个点在直线外,也可以说直线不经过这个点.
B
A
l
如图:点 A 在直线 l 上,点 B 在直线 l 外
或者说:直线 l 经过点 A,直线 l 不经过点B (点 B 不在直线 l 上)
【探究】如图,直线a与直线b有什么位置关系?
交点
a
O b
解析:A.直线 AC 和直线 BC 相交于点 C,此选项正确,故不符 合题意; B.点 D 在直线 AB 外,此选项正确,故不符合题意; C.线段 BD 是直线 CD 的一部分,射线 AC 不是直线 CD 的一部 分,此选项错误,故符合题意; D.直线 BD 不经过点 A,此选项正确,故不符合题意.故选 C.

《几何图形初步——直线、射线、线段》数学教学PPT课件(4篇)

《几何图形初步——直线、射线、线段》数学教学PPT课件(4篇)

直线公理
经过两点有一条直线,并且只有一条直线。 (两点确定一条直线。)
直线、线段、射线的表示
用两个大写字母表示; 用一个小写字母表示。
直线的表示
A
B
直线AB
线段的表示
A
B
线段AB
射线的表示
O
A
射线OA
l
直线l
a
线段a
l
射线l
1、如何比较两个人的身高? 我身高1.53米, 比你高3厘米。
目测法
我身高1.5米。
(1) 经过点 O 的三条线段 a,b,c; (2) 线段 AB,CD 相交于点 B.
解:(1)
a b
O c
A (2) C
B
D
针对训练
1、判断:
(1)射线是直线的一部分。 (2)线段是射线的一部分。 (3)画一条射线,使它的长度为3cm。 (4)线段AB和线段BA是同一条线段。 (5)射线OP和射线PO是同一条射线。 (6)如图,画一条线段ab。
解:(1) E
F
C
(2)
A
l
二 射线、线段
类比学习
问题1 类比直线的表示方法,想一想射线该如何表示?
O
A
d
1. 射线用它的端点和射线上的另一点来表示 ( 表示端 点的字母必须写在前面 ) 或用一个小写字母表示 记作: 射线 OA ( 或射线d )
思考: 射线 OA 与射线 AO 有区别吗
问题2 类比直线的表示方法,想一想线段该如何表示?
a
b
(√) (√ )
(× )
(√ )
(× ) (× )
2、用适当语句表述图中点与直线的关系

c

2.1.2两条直线平行与垂直的判定 课件(共15张PPT)

2.1.2两条直线平行与垂直的判定 课件(共15张PPT)
在同一条直线上,确定常数a的值.
2
复习回顾
复习2:平面上两条直线位置关系
y
o
x
有平行,相交两种
我们设想如何通过直线的斜率
来判定这两种位置关系.
3
学习新知 两条直线平行的判定
思考1:若两条不同直线的倾斜角相等,这两条直线
的位置关系如何?反之成立吗?
y
l1
α1
O
l2
α2
x
4
学习新知

思考2:若两条不同直线的斜率相等,这两
在两种情况求解.
两直线垂直的判定方法
3.两条直线垂直需判定k1k2=-1,使用它的前提条件
是两条直线斜率都存在,若其中一条直线斜率不存
在,另一条直线斜率为零,此时两直线也垂直.
9
例题讲解
例2:已知A(-2,m),B(m,4),M(m+2,3),N(1,1),若
AB∥MN,则m的值为
.
解析:当m=-2时,直线AB的斜率不存在,而直线MN的斜率存
D.若两条直线的斜率不相等,则两直线不平行
3.若经过点M(m,3)和N(2,m)的直线l与斜率为-4的直线互相
垂直,则m的值是________.
14
5 [由题意知,直线 MN 的斜率存在,因为 MN⊥l,
m-3 1
14
所以 kMN=
=4,解得 m= 5 .]
2-m
14
学完一节课或一个内容,
应当及时小结,梳理知识
1
即 1-3k=0,∴k=3.]
7
例题讲解
例1 已知A、B、C、D四点的坐标,试判断直线AB与CD
的位置关系.
(1)A(2,3), B(-4,0), C(-3,l), D(-l,2); 平行

直线的点斜式方程ppt课件

直线的点斜式方程ppt课件

解析:由已知可得直线的点斜式方程为 故选C.
整理得2x-3y=0.
2.已知直线的倾斜角为60°,在y 轴上的截距为-2,则此直线的方程为(
A.y=√3x+2
B.y=-√3x+2
C.y=-√3x-2
D.y=√3x-2
解析:直线的倾斜角为60°,则其斜率为 √3,利用斜截式得直线的方程为y= √3x-2.
方程y=kx+b 叫做直线的斜截式方程,简称斜截式. 其 中 ,k 是直线的斜率,b 是直线在y 轴上的截距.
例2已知直线 l:y=k₁x+b₁,l₂:y=k₂x+
(1)l₁ 1/l₂ 的条件是什么?
b₂ ,试讨论:
(2)l⊥l₂ 的条件是什么?
解:(1) 若l//l₂, 则k=k₂ ,此时l,l₂ 与y 轴的交点不同,即b₁ ≠b₂; 反之,若k₁=k₂, 且b₁≠b₂, 则₁// l₂.
解:直线1经过点P(-2,3),斜率k=tan45°=1, 代入点斜式方程得y-3=x+2.
画图时,只需再找出直线1上的另一点P(x,y₁),
例如,取x =-1, 则y₁=4, 得点P 的坐标为(-1,4), 过P₀,P 两点的直线即为所求,如图所示.
直线的斜截式方程
直线l与 y 轴的交点(0,b)的纵坐标b 叫做直线l在 y 轴上的截距. 这样,方程y=kx+b 由直线的斜率k 与它在y 轴上的截距b 确定,
第二章直线和圆的方程
2.2.1直线的点斜式方程

01 掌握直线方程的点斜式与斜截式方程.



02 了解斜截式方程与一次函数的关系.
直线的点斜式方程
方程y-yo=k(xx₀)

第一课时直线的点斜式方程ppt课件

第一课时直线的点斜式方程ppt课件

当直线l的倾斜角为90°时,斜率k不存在
此时直线与y轴平行或重合
方程为x-x0=0,即x=x0
直线的点斜式方程
直线l经过点P0(-2,3),且倾斜角α=45°,求直线l 的点斜式方程,并画出直线.
直线l的斜率k=tan45°=1 由直线的点斜式方程得y-3=x+2
y A
P
0
令x=-1,得y=4
O
x
直线的点斜式方程
2.判断A(1,3),B(5,7),C(10,12)三点是否共线, 并说明理由. 3.已知点A(7,-4),B(-5,6),求线段AB的垂直平分线 的方程. 4.一条直线经过点A(2,-3),并且它的斜率是直线y= 1 x
3
的斜率的2倍,求这条直线的方程.
直线的点斜式方程
5.求满足下列条件的直线的方程: (1)经过点A(3,2),且与直线4x+y-2=0平行; (2)经过点C(2,-3),且平行于过点M(1,2)和N(-1,-5) 的直线; (3)经过点B(3,0),且与直线2x+y-5=0垂直.
x 显然,过点P0(x0,y0),斜率为k的直线 上的每一点的坐标都满足该方程
反之,坐标满足该方程的点都在直线l上
直线的点斜式方程
经过点P0(x0,y0),且斜率为k的直线l的方程为y-y0=k(x-x0)
y
A
当直线l的倾斜角为0°时,k=0
P
此时直线与x轴平行或重合
0
O
x 方程为y-y0=0,即y=y0
直线的斜截式方程
如果直线l的斜率为k,且与y轴的交点为(0,b),直线l如何表示?
y
将点的坐标代入直线的点斜式方程,得
y-b=kx 即 y=kx+b

直线与平面垂直课件(共22张PPT)

直线与平面垂直课件(共22张PPT)
请你动手操作并思考:
(1)折痕AD与桌面垂直吗?
(2)如何翻折才能使折痕AD与桌面垂直?
探究:如图8.6-10,准备一块三角形的纸片ABC,过∆ABC 的顶点A翻折纸片, 得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD,DC 与桌面接触).
请你动手操作并思考:
(1)折痕AD与桌面垂直吗? (2)如何翻折才能使折痕AD与桌面垂直? 追问2:如何验证折痕AD与桌面垂直?
BD,CD
m= DB DC 则 m AD = DB AD DC AD =0 即 AD m ,所以 AD
2.线面垂直的判定定理:一条直线与平面内的两条相交直线垂直, 那么直线与该平面垂直.
l
①图形语言:
P
mn
lm
②符号语言: l n
mn P
l
m , n
③本质:线线垂直→线面垂直
垂直,则直线垂直于(×平)面.
1.线面垂直的定义:如果直线l与平面α内的任意一条直线都垂直, 则直线l与平面α互相垂直,
记作l⊥α.
追问2:临江门大桥的斜拉索所在直线与桥面垂直吗?
结论 1:平面 内存在一条直线与直线 l 不垂直 则直线 l 与平面 不垂直.
1.线面垂直的定义:如果直线l与平面α内的任意一条直线都垂直, 则直线l与平面α互相垂直,
古希腊数学家欧几里得《几何原本》中线面垂直的定义: 若一条直线垂直于平面上与该直线相交的所有直线,则该直线与平面垂直.
A
α
B
B
追问1:地面上不经过点B的直线与旗杆所在直线
满足垂直关系吗?
1.线面垂直的定义:如果直线l与平面α内的任意一条直线垂直,
则直线l与平面α互相垂直,
记作l⊥α.
平面的垂线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/3/1
闯关我最棒!
2021/3/1
第一关:
找出下图中的射线、线段和直线。
① ⑤
2021/3/1






第二关: 火眼金睛判对错。
1.射线只有一个端点。
() √
2.一条直线长5米。
() ×
3.直线都比射线长。
() ×
4.直线和射线都比线段长。 ( )√
2021/3/1
第三关: 想一想 画一画
从一点出发可以引出多少条射线? (无数条)
2021/3/1
经过一点可以画出多少条直线?
(无数条)
经过两点可以引出多少条直线?
2021/3/1
(只有一条)
第四关
画一条直线,并在它的上面截取一条4厘 米的线段。
2021/3/1
下图中一共有(6)条线段, (1)条直线,(8)条射线。
第五关
2021/3/1
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
第二单元 角的认识 第一课时:
线段、直线、射线

2021/3/1
2021/3/1
2021/3/1
像手电筒、 汽车灯和太阳 光等射出来的 光线,都可以 看成是射线。
2021/3/1
线段 AB
A
B
2021/3/1
同桌合作,完成表格
图形名称
图例
相同点
不同点 端点 延伸
同学们, 你学会了什么?
2021/3/1
谢谢大家!
2021/3/1
生活中的数学
想一想: 要将一个木条固定在墙上至少需要几颗钉子?
2021/3/1
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
20
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折 Nhomakorabea长度
线段
射线
直线
2021/3/1
同桌合作,完成表格
图形名称
图例
相同点
不同点 端点 延伸
长度
线段 射线 直线
2个
不能
可以 量出
都是
直的
1个
向一端 无限延

无法 量出
向两端 无法 0个 无限延 量出

2021/3/1
线条兄弟共有三, 直线射线与线段。 我们先来说直线, 它的两头无端点。 两端无限可延伸, 根本不能量长短。 射线只有一端点, 可向一端无限延。 直线射线无法量 , 能测量的是线段, 线段都有俩端点, 长度有限无法延。
相关文档
最新文档