CdS@SiO2
核壳结构CdS/SiO2纳米颗粒的制备及表征

维普资讯
18 4
广 西 大学 学 报 ( 自然 科 学 版 )
第 3 2卷
1 2 2 买验 步 骤 . .
用 高纯N 将 含有 以MP S为稳 定剂 的C C 的 甲醇溶 液在 密 闭体系 中脱 氧保 护 , 在适 当的搅 拌速 d1 并
荧光光谱的影响. 关键词 : 壳结构 ;d ; 核 C S 纳米 颗粒
中 图分 类 号 : 4 . O6 9 4 文献标识码 : A
半导 体纳 米粒 子 是指 粒径 在 1 0 m 的半 导体 颗 粒 , ~1 0n 因其 独特 的 荧光 性质 而 引起 人们 的普遍 关 注, 人们研 究 和发展 了多种 合成 方法 . d C S是 研究 较 多 的半 导 体 纳米 颗 粒 之一 , 合 成 主要 是 以巯 基 化 其 合物 为稳 定剂 的胶 体化 学法 [. 方 法 操作 简单 , 1该 ] 条件 温 和 , 但所 得 产 品荧 光量 子 产 率低 , 定 性 较差 . 稳 近年 来 , 壳结构 的半 导体 纳米微 粒 的研究 已成 热 点 , 献L 核 文 2 分别 制备 了 二氧化硅 包 覆 的 C Te或 C S 门 d d 纳米粒 子 , 体过 程包 括两 步 , 具 即先制 备 出C Te或C S作 为核 , 后再 在C T d d 然 d e或C S外 包覆 硅壳 层 , d 其
维普资讯
第3 2卷 第 2期 20 0 7年 6月
广西大学学报 ( 自然 科 学 版 )
J u n lo a g i iest ( tS i o r a fGu n x Unv riy Na e Ed)
V o .3 No.2 1 2。
过程繁 琐.
3巯 基 丙基 三 甲氧基硅 烷 ( S 是 一种 双官 能 团分 子 , 子 中的巯 基 可 与 C 离 子 配 位 ; 原子 一 MP ) 分 d 硅 上 的 甲氧 基水 解后 可 生 长成 网 络状 硅壳 . a l { 据 这 一 特性 将 胶 体 金 包 覆 于硅 壳 内, 备 了 大小 P u 等[根 制 为 1 m 的核/ ~5n 壳型 金颗 粒 ; e e 等 [根据 同一 原理 , 备 了核/ W lr s l 制 壳结 构 的 C TeSO 纳 米 粒子 . d /i 基 于以上工 作 , 为简 化硅 壳纳 米颗 粒 的制 备过 程 , 缩短 制备 时 间 , 文 以 MP 本 S为稳 定 剂 , 无 水 甲醇介 质 在 中 一 步合 成 C S SO d / i 核/ 结构 的纳 米粒 子 , 壳 以扫描 探 针显 微 镜及 荧 光 光谱 进 行表 征 , 考 察 了掺 杂 并 Z 抖和 C 离 子对其 光谱 性质 的影 响 , n u 结果表 明 , 掺杂 Z 离子 使得 光谱 蓝移 , 掺杂 C 离子 则使 得 n 而 u
SiO2干凝胶中CdS量子点的光致发光性质

步水 解法 ¨ …。该 方 法 以 T O E S为 SO i 的前 驱 体 ,
c ( O ) ・ H 0 为 镉 源 , C( H ) d N 4 。 S N :为 硫 源 。
首先 , 室 温 下 将 一 定 量 的 T O 在 E S加 到 H O、 , CH O 。 H和 H O N 的混 合溶 液 中, 烈搅拌 3 i, 剧 0 rn a
该 阶段 各 材 料 的 量 的 比 为 /( , : ( E s : / H O) n T 0 ) , ( : s H) 0 ) :: :. 5 cH 0 : ( 1 =J】 0∞1 。然 后 , 一 4 6 将 定量的 C ( O ) S ( H ) d N 、C N 乙醇 溶 液加 入 到部 分 水 解 的 SO i 溶 胶 中 , 足 水 , n( 补 使 H O):
关 键 词 : 氧 化 硅 凝 胶 ; 致 发 光 ; d 量 子 点 ; 胶 一 胶 法 二 光 CS 溶 凝 P CS 7 .5 一 A : 8 5 .m P CC: 85 A 7 5 文 献 标 识码 : A
中 图分 类号 :0 8 . 1 4 2 3
DO I: 1 37 /fx 2 1 2 0. 88 g b 01 3 03. 22 0 7
第3 2卷
第 3期
发 光 学 报
CH I NESE oURNAL j OF LUM I NESCENCE
V0 . 2
2 1年 3月 01
文 章 编 号 :10 -0 2 2 1 )30 2 -5 007 3 (0 0 -2 70 1
C S量子 点 发 光 效 率 的方 法 。溶 胶 一 胶 ( o— d 凝 Sl g 1 法 可 以在较 低温 度下 将光 活性 物 质与 无机 基 e)
空心SiO2综述

北京化工大学陈兴田陈劲春究采用反相微乳液法,在首先合成纳米硫化镉的基础上,在体系中原位合成CdS/SiO2复合材料,经过浓盐酸处理后,成功制备出分散均匀的空心纳米SiO2。
其中纳米微球的粒径平均分布在30~50nm,层得平均厚度为16nm,空心部分的厚度大约在10nm。
北京化工大学王洁欣文利雄和平陈建峰等以纳米碳酸钙颗粒为新颖的无机模板剂,硅酸钠为无机硅源,通过溶胶-凝胶法形成CaCO3/SiO2的核壳结构;随后通过高温煅烧、酸溶和干燥处理,合成出了具有高比表面积的球形纳米空心二氧化硅粒子。
其中微球空心部分的粒径在50~60 nm 左右,壁厚在10nm左右。
而SiO2壁上含有许多通道。
复旦大学材料科学系邓字巍陈敏周树学游波武利民等分别以分散聚合和无皂乳液聚合方法制得的不同粒径聚苯乙烯(PS)微球为模板,以正硅酸乙酯(TEOS)为前驱体,通过控制介质中氨水的初始体积,一步法制得了不同粒径的单分散SiO2空心微球。
可以通过改变TEOS的浓度来控制空球壁厚,一般随着TEOS浓度的增大,微球的壁厚与粒径也在增大,空心部分的粒径受PS模板粒径大小的影响。
SatoshiHorikoshi YuAkaob TakuOgurac HidekiSakai MasahikoAbe NickSerponed等先合成五种油包水的乳液,分别在这五种乳液的存在下,使TEOS (正硅酸乙酯)在油/水界面上发生水解,合成软模板,最终在环己烷乳液(该乳液最稳定)中合成SiO2空心球。
空心球的粒径在100±20nm。
球的壁厚受多种因素的影响:水相PH值、反应时间、TEOS的加入量等。
中国科学院大连化学物理研究所FeiTeng ZhijianTian GuoxingXiong ZhushengXu等在非离子反相微乳液中合成了SiO2空心微球。
其粒径可以在纳米到微米范围内波动。
空心部分的孔径以及SiO2层壁厚是随着反应原料的加入量和加入方式而变化的。
硫化镉_二氧化硅复合材料的合成_崔铁钰

檵檵檵檵檵檵檵檵檵檵殝殝殝殝研究简报硫化镉/二氧化硅复合材料的合成崔铁钰a崔放a *李垚b *(a 哈尔滨工业大学基础与交叉科学研究院哈尔滨150001;b哈尔滨工业大学复合材料与结构研究所哈尔滨150080)摘要结合亲核取代反应与硅氧烷水解和硅羟基缩合反应,制备了羧酸镉/二氧化硅复合材料。
通过硫化反应,实现了立方结构和六方结构硫化镉纳米粒子在复合材料中的原位制备。
复合材料中硫化镉纳米粒子的发射峰位在617nm ,属于红色荧光(三元色之一)。
硫化镉/二氧化硅复合材料在光学器件方面具有潜在的应用前景。
关键词二氧化硅,硫化镉,复合材料,原位,纳米粒子中图分类号:O641文献标识码:A文章编号:1000-0518(2013)06-0730-03DOI :10.3724/SP.J.1095.2013.205062012-11-06收稿,2012-12-03修回国家自然科学基金(51273051,21101011,21174033),中国博士后基金(20080440863,20090450978,201003417)资助项目通讯联系人:崔放,讲师;Tel :0451-********;E-mail :cuifang@hit.edu.cn ;研究方向:有机无机复合功能材料共同通讯联系人:李垚,教授;Tel :0451-********;E-mail :liyao@hit.edu.cn ;研究方向:功能复合材料二氧化硅由于具有强度高、耐高温、生物相容性、紫外可见光透过性好以及化学性质稳定等优势,成为各种纳米粒子理想的载体[1-2]。
近10年来,纳米粒子与二氧化硅复合材料的研究工作引起了人们的广泛关注,各种无机纳米粒子/二氧化硅复合材料的制备与性能研究陆续被报道[2-7]。
在众多纳米粒子中,CdS 纳米晶具有禁带范围较宽可以直接跃迁型能带结构的优势,在太阳能转化、非线性光学、光化学电池和光催化方面具有广泛的应用前景[8-9]。
处理温度及CdS量子点对Eu 3+掺杂SiO2干凝胶光致发光性质的影响

第 8期
发 光 学 报
CHI NES OURNAL OF L E J UM I NES CENCE
V0. No 8 132 .
21 0 1年 8月
Aug .,2 1 01
文章 编号 :1 0 -0 2 2 1 ) 8 ) 4 0 0 07 3 ( 0 0 <7 —5 1 8
2 2 实验步 骤 . 2 2 1 E ”掺杂 SO 凝胶 的割备 .. u i,
.
中, 结果表 明 : d C S纳米粒 子 表 面俘获 电子 以非辐 射形式将能量传 递 给 E “离 子 , u 增强 了 E “ 的荧 u
E “ 掺 杂 SO 干 凝 胶 是 以 正 硅 酸 乙 酯 为 u i, SO 的前驱 物 , 用 两 步水 解 法 制 得 。首 先 将 一 i: 采
谱 中, 没有 出现 64I 1 m发射峰 ,5 I处 的峰也很弱 ; l 45Hl l 随着干燥处理温度 的升高 , 5 m和 64n 4 5n 1 m处的发
射逐渐增强 ; 当温 度 高 于 4 0℃ 后 , 度 又 都 随 之 下 降 。 同时 , 考 察 了 20 ℃ 条 件 下 处 理 2h的 E C S 0 强 还 0 uV d 量 子 点 共掺 杂 的 SO 干凝 胶 的 发光 性 质 及 C S 子点 对 E 。 光 的 影 响 。 i d量 u 荧 关 键 词: 光致 发 光 ; d 子 点 ; u ; 掺 杂 ; i C S量 E 共 SO 干凝 胶
法把 C S纳 米 粒 子 吸 附 到 E “ 掺 杂 的 SO 凝 胶 d u i
2 实
2 1 试 剂 .
验
实验 所用 T O E S无水 乙醇 、 酸 、 硝 硝酸 镉 、 硫 脲均 为分 析纯 。E 度 为 9 . 5 , 适 量硝 uO 纯 99% 用 酸溶 解 , 得 浓 度 一 定 的 E ( O ) 溶 液 。实 验 制 u N , 用水 为二次 重蒸去 离 子水 。
反相微乳液法制备CdTe@SiO2荧光微球及其荧光性能研究

反相微乳液法制备CdTe@SiO2荧光微球及其荧光性能研究宁振动;张纪梅;魏君;成耀宇【摘要】利用巯基丙酸(MPA)为稳定剂,水相合成高质量的CdTe纳米晶,然后通过反相微乳液方法制备得到了具有明显核壳结构并单分散的CdTe@SiO2荧光复合纳米粒子;利用透射电子显微镜(TEM)、荧光分光光度计以及紫外可见光分光光度计对制备的纳米粒子进行表征;研究了未包裹的CdTe量子点与核壳型CdTe@SiO2纳米复合粒子分别对pH及离子强度的耐受性.研究发现:由于SiO2壳层的存在使得CdTe@SiO2能够在很高的离子强度及很广泛的pH范围下仍具有较强的荧光.由于这些优点,使其在生物标记、细胞成像等生物领域具有广泛应用.%High-quality CdTe nanocrystals capped by mercaptopropionic acid (MPA) were prepared in aqueous solution, then fluorescent, monodispersed, well-separated, core/shell CdTe@SiO2 particles were prepared via reverse microemulsion method. Obtained samples were characterized by means of transmission electron microscope (TEM), UV-vis and PL emission. The influences of ionic strength and pH on the PL emission of uncoated CdTe and CdTe/SiO2 composite nanoparticles were investigated thoroughly. The results show that due to the presence of SiO2 shell, CdTe@ SiO2 still remain a strong fluorescence at high ionic strength and a very broad pH range. Because of these advantages, it has broad applications in biological fields, such as biomarkers, cell imaging.【期刊名称】《天津工业大学学报》【年(卷),期】2012(031)001【总页数】4页(P49-52)【关键词】反相微乳液;CdTeSiO2荧光微球;荧光性能;核壳型;离子强度;pH【作者】宁振动;张纪梅;魏君;成耀宇【作者单位】天津工业大学环境与化学工程学院,天津300160;天津工业大学环境与化学工程学院,天津300160;天津工业大学环境与化学工程学院,天津300160;天津工业大学理学院,天津300160【正文语种】中文【中图分类】O482.3由于量子点(quantum dots,QDs)具有发光性质的尺寸依赖性,近来引起了人们对其在生物标记、细胞成像、传感材料方面的广泛兴趣[1-3].特别是与传统的有机荧光染料分子相比,量子点具有许多特殊的光学性能.比如,激发光可选范围宽,可以用同一波长的光激发不同尺寸量子点,荧光发射波长可单纯地通过改变粒子尺寸进行调节,具有狭窄对称的荧光发射峰,光稳定性强不易发生荧光漂白等[4].水相合成方法制备的量子点存在着稳定性差,光学性质强烈依赖于其表面状态以及受应用环境的影响较大的缺点[5].如果将其用于生物领域还需解决重金属元素的毒性问题.目前的解决办法主要有利用无毒或者危害小的元素代替重金属元素[6],或者采用惰性物质,比如二氧化硅(SiO2)对量子点表面进行包覆[7-11].Liz-Marzán 及其合作者利用传统的Stöber法成功制备得到了具有核壳结构的CdS@SiO2纳米复合粒子,并且发现SiO2壳层能够有效的阻止CdS的光氧化[7].但是,利用Stöber法包裹量子点存在诸多缺点,例如包裹前需要对量子点进行复杂的预处理,导致量子点的发光效率急剧降低,另外还有发光蓝移现象的发生 [8].除了传统的Stöber法,反相微乳液法(油包水)也被用来制备SiO2包裹量子点纳米复合粒子[9-11].利用反相微乳液方法可以制备得到尺寸均一的、大小可调的球形纳米复合粒子.量子点表面包覆SiO2的目的主要有:①阻止量子点的光氧化;②解决量子点的生物毒性问题;③使得量子点能够更容易功能化.本文采用反相微乳液法合成核/壳型CdTe@SiO2荧光纳米复合粒子,并且对比研究CdTe量子点与CdTe@SiO2荧光纳米复合粒子在不同pH及不同离子强度下的性质.1 实验部分1.1 试剂和仪器氯化镉(CdCl2·2.5H2O)、碲粉(Te)、硼氢化钠(NaBH4)等,购于国药集团化学试剂有限公司;氨水(w=25%),环己烷,正己醇等购于天津科密欧化学试剂公司;正硅酸乙酯(TEOS),购于 TCI公司;TritonX-100、巯基丙酸(MPA),购于 Sigma-Aldrich公司,均为分析纯(AR级);实验中用水均为超纯水,Aquapro超纯水设备生产.制备得到的CdTe@SiO2的纳米复合粒子的尺寸和形态通过Hitachi H-7650型透射电镜(TEM)进行表征,操作电压80 kV;荧光发射光谱和紫外可见光吸收光谱分别利用天津港东F-380荧光分光光度计、美国热电Helios γ紫外可见光分光光度计进行表征.1.2 水溶性CdTe量子点的制备MPA稳定的CdTe量子点的制备采用常见的水相合成法[12].具体步骤为:首先制备NaHTe溶液,将80 mg硼氢化钠溶解在2 mL去离子水中,加入127.5 mg碲粉,低温反应8 h后,黑色的碲粉消失,并产生白色晶体;澄清的NaHTe溶液用来制备CdTe量子点.另外需要注意反应体系要留一小孔与大气相通以便反应产生的氢气可以排走;然后按照Cd2+、HTe-、MPA的摩尔比为1∶0.5∶2.4,分别将0.002 mol的CdCl2·2.5H2O、0.0048 mol的MPA加入到125 mL超纯水中,磁力搅拌下利用1 mol/L的NaOH调节溶液pH至9.1,然后通氮气30 min后,加入新制备的NaHTe溶液.最后,在没有氮气保护下,将前驱体溶液回流一段时间,即得到具有高量子效率的CdTe水溶胶.在不同的回流时间下取一定量样品利用荧光分光光度计和紫外可见光分光光度计进行表征.1.3 核壳型荧光纳米粒子的制备CdTe@SiO2的制备采用反相微乳液方法[9].详细步骤如下:将7.5 mL环己烷、1.77 mL TritonX-100以及1.8 mL正己醇混合,磁力搅拌至光学透明.然后加入250 μL 25%的氨水和500 μL上述回流24 h的CdTe QDs水溶液,搅拌30 min 形成油包水的微乳液.随后在剧烈搅拌下加入150 μL TEOS,密封避光反应24 h.反应结束后,加入20 mL丙酮破乳,在10000 r/min下离心分离,弃去上清液,将得到的沉淀分别用异丙醇、乙醇和水清洗离心,最后将得到的样品分散在超纯水中进行性能表征.2 结果与讨论2.1 光学性质新制备的CdTe前驱体溶液是没有荧光的,但是回流几分钟后,便出现了较强的绿色荧光.随着回流时间的增加,微粒的紫外吸收光谱和荧光发射光谱发生红移,如图1所示.由于纳米晶存在量子尺寸效应,通过改变纳米晶的粒径,可以调节其荧光的颜色.通过延长回流时间,可以制备得到不同粒径的纳米晶.随着粒径的改变,可以分别得到绿、黄、橙及红色荧光.吸收光谱与荧光光谱的红移说明粒径在随着回流时间的增加而增加[13].图2为CdTe@SiO2荧光复合纳米粒子的荧光发射光谱.从图2中可以看到,所制的纳米复合物仍具有较强的荧光.但是与包覆前相比却发生了蓝移(641 nm蓝移至632 nm).这一现象已有相关报道[8],分析认为发射峰蓝移的原因在于:随着硅层的包被,可能导致量子点表面结构的改变从而导致其发光行为的改变;另外,CdTe量子点在包被硅层的过程中,由于巯基丙酸大量地从量子点表面离去,使得CdTe量子点进一步发生光氧化,从而导致发射峰的蓝移.如图3所示为CdTe@SiO2复合纳米粒子的TEM照片,用反相微乳液法制备的荧光纳米复合粒子具有明显的核壳结构,粒子呈球形,平均粒径为(68±4.4)nm,尺寸分布均一,并且每个SiO2壳基本上只包覆1个CdTe量子点.另外还可以通过改变反应体系中TEOS、水及Triton X-100等的量来调节SiO2壳的厚度[10].2.2 pH及离子强度的影响在生物应用中,缓冲溶液的离子强度和pH值都是非常重要的参数,但是高离子强度及强酸性都会对CdTe量子点的发光行为造成影响.所以有必要研究离子强度和pH对CdTe量子点及CdTe@SiO2复合粒子的影响,结果如图4、图5所示.由图4可知,在不同的离子强度的溶液中,CdTe@SiO2比单独的CdTe要稳定,当NaCl浓度达到200 mmol/L时,CdTe@SiO2复合纳米粒子的荧光几乎没有变化;而对于CdTe量子点其荧光则下降的很明显,这是由于加入电解质后会使CdTe量子点聚集,粒子间发生荧光共振能量转移,使得发光变弱 [14].对于CdTe@SiO2由于SiO2壳的保护作用,使其能够在很大的离子强度范围内荧光基本上不受影响.又由于荧光共振能量转移发生的作用距离一般是小于10 nm,而SiO2壳层的厚度大于10 nm,所以一般情况下即便CdTe@SiO2复合纳米粒子产生聚集,荧光共振能量转移也不会对其发光性质造成较大影响[15].对于pH的影响,CdTe量子点在pH<5时便产生沉淀,pH<2时开始分解完全猝灭.这是由于在H+的作用下,表面配体MPA与Cd的相互作用逐渐减弱,使得量子点表面的缺陷增多导致发光减弱,当pH<2时,量子点开始分解最终导致其基本上完全猝灭.而对于CdTe@SiO2纳米复合物,由于SiO2壳层的存在,使其发光在pH=2.0左右时仍能保持原来的27%,而此时未包覆的量子点的发光基本上已完全猝灭.这说明SiO2壳可以很好的保护CdTe量子点的荧光发射,提高其稳定性.对于CdTe 量子点pH值刚开始下降时发光性质有所加强,这是因为不但巯基可以和Cd2+配位,羰基氧也存在和Cd2+的次级配位,pH值降低使CdTe表面MPA中羧基质子化使得羰基氧和Cd2+的次级配位作用加强,更好地钝化量子点的表面,提高发光效率[12].另外,CdTe量子点的发光不单纯由纳米晶表面的MPA的羧基的质子化决定,降低pH值也会使溶液中多余的Cd2+与MPA形成的复合物与纳米晶表面作用提高其发光效率和稳定性[5].但是如果pH太低,则会破坏形成的可以钝化量子点表面的物质及量子点本身的结构,从而使其发光猝灭.同样,对于CdTe@SiO2纳米复合物,由于SiO2壳层并非致密结构[16],故H+及其他小分子可以扩散到壳层里面与CdTe作用,也会在pH刚下降的时候使其发光增强.由于壳层的存在,使得其可以耐受比较低的pH.3 结论(1)通过反相微乳液方法成功制备得到核壳型、尺寸均一、分散性好的CdTe@SiO2荧光复合纳米粒子.(2)与未包裹SiO2壳的CdTe量子点相比,该复合纳米粒子具有很好的光学稳定性,如耐高离子强度以及对pH稳定的范围比较广.参考文献:【相关文献】[1]BRUCHEZ Jr M,MORONNE M,GIN P,et al.Semiconductor nanocrystals as fluorescent biological labels[J].Science,1998,281:2013-2016.[2]CHAN W C W,NIE SHUMING.Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J].Science,1998,281:2016-2018.[3]MEDINTZ I L,UYEDA H T,GOLDMAN E R,et al.Quantum dot bioconjugates for imaging,labelling and sensing[J].Nat Mater,2005,4:435-446.[4]RESCH-GENGER U,GRABOLLE M,CAVALIERE-JARICOT S,et al.Quantum dots versus organic dyes as fluorescent labels[J].Nat Methods,2008,5(9):763-775.[5]GAO M,KIRSTEIN S,MOHWALD H,et al.Strongly photoluminescent CdTe nanocrystals by proper surface modification[J].J Phys Chem B,1998,102:8360-8363. [6]ERWIN S C,ZU L,HAFTEL M I,et al.Doping semiconductor nanocrystals[J].Nature,2005,436:91-94.[7]CORREA-DUARTE M A,GIERSIG M,LIZ-MARZAN.Stabilization of CdS semiconductor nanoparticles against pho todegradation by a silica coating procedure[J].Chem Phys Lett,1998,286:497-501.[8]ROGACH A L,NAGESHA D,OSTRANDER J W,et al."Raisin Bun"-type composite spheres of silica and semiconductor nanocrystals[J].Chem Mater,2000,12:2676-2685. [9]YANG Y,GAO M.Preparation of fluorescent SiO2particles with single CdTe nanocrystal cores by the reverse microemulsion method[J].Adv Mater,2005,17:2354-2357.[10]YANG Y,JING L,YU X,et al.Coating aqueous quantum dots with silica via reverse microemulsion method:Toward size-controllable and robust fluorescentnanoparticles[J].Chem Mater,2007,19:4123-4128.[11]JING L,YAN C,QIAO R,et al.Highly fluorescent CdTe@SiO2 particles prepared via reverse microemulsion method[J].Chem Mater,2010,22:420-427.[12]ZHANG H,ZHOU Z,YANG B,et al.The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles[J].J Phys Chem B,2003,107:8-13.[13]ROGACH A L,FRANZL T,KLAR T A,et al.Aqueous synthesis of thiol-capped CdTe nanocrystals:State-of-the-art[J].J Phys Chem C,2007,111:14628-14637.[14]MAYILO S,HILHORST J,SUSHA A S,et al.Energy transfer in solution-based clusters of CdTe nanocrystals electrostatically bound by calcium ions[J].J Phys Chem C,2008,112:14589-14594.[15]CLAPP A R,MEDINTZ I L,MATTOUSSI H.Forster resonance energy transfer investigations using quantum-dot fluorophores[J].Chem Phys Chem,2006,7:47-57. [16]FINNIE K S,BARTLETT J R,BARBE C J,et al.Formation of silica nanoparticles in microemulsions[J].Langmuir,2007,23:3017-3024.。
发光功能化二氧化硅纳米材料的研究进展

收稿日期:2022-10-03基金项目:鲁米诺、银双功能化二氧化硅纳米材料的制备与分析应用研究(2022KY005);鲁米诺功能化的二氧化硅纳米材料的研究(X202210997138)作者简介:邱淑银,女,教师,研究方向:化学发光纳米材料,。
安徽化工ANHUI CHEMICAL INDUSTRYVol.49,No.4Aug.2023第49卷,第4期2023年8月发光功能化二氧化硅纳米材料的研究进展邱淑银,柳傲雪(昌吉学院化学与化工学院,新疆昌吉831100)摘要:发光功能化纳米材料因其良好的发光特性而备受关注,将发光试剂修饰于二氧化硅纳米材料上,获得发光功能化的二氧化硅纳米材料,基于其优良发光性能、热稳定性、生物相容性、无毒等优点,在环境监测、生物分析等领域具有广泛的应用。
从制备及分析应用两个方面综述了发光功能化二氧化硅纳米材料的研究进展。
关键词:二氧化硅;化学发光;制备;应用doi :10.3969/j.issn.1008-553X.2023.04.003中图分类号:TQ340文献标识码:A文章编号:1008-553X (2023)04-0009-04功能化发光纳米材料,是采取一定方法将大量化学发光试剂负载于纳米材料上,从而使材料具备发光性能,通常酶或发光底物也可以产生化学发光信号,负载于纳米材料上,可获得发光功能化纳米材料[1-4]。
依据发光功能化纳米材料的制备方式不同,其可分为如下几类:①掺杂或者包裹模式,将发光试剂通过包裹的形式掺杂于纳米材料内部,如掺杂联吡啶钌的二氧化硅、包裹鲁米诺的二氧化硅等[5-8];②侨联模式,利用一些具备特殊性能的侨联分子与产生发光信号的发光试剂进行反应,通过侨联分子做为纽带链接于纳米材料表面[9-12];③价键修饰模式,将产生发光信号的分子以共价键、非共价键等方式负载于纳米材料表面[13-16];④自身具有发光性能的纳米材料,如具有电致化学发光性能的量子点材料[17-20]。
SiO2的结构和性质

SiO2的结构和性质订阅字号2010-05-03 21:31:25| 分类:微电子材料| 标签:sio2psg氧化原子薄膜|(氧化硅的结构怎样?为什么SiO2能够用作为B、P、Sb、As等杂质扩散的掩蔽膜?)原创作者:Xie M. X. (UESTC,成都市)氧化硅(SiO2)有晶体与非晶体之分,例如水晶(石英)就是一种晶态氧化硅,而硅片上热生长的氧化膜则为非晶态氧化硅。
晶态氧化硅中的原子分布具有长程有序性;非晶态氧化硅中的原子分布也具有一定的有序性,但只是短程有序性。
在Si表面上制备氧化硅薄膜的方法有许多种,例如:热生长法;CVD(化学气相淀积)法,如烷氧基硅烷(如正硅酸乙酯[Si(OC2H5)4],TEOS)的热分解(或热解氧化)淀积法;PVD(物理气相淀积)法等。
(1)SiO2的一般性质:原子密度= 2.3×1022 cm-3;晶体密度= 2.27 g-cm-3;熔点≈1700 oC;比热Cp =1.0 J/g-oC;热导率= 0.014 W/cm-K;热膨胀系数(ΔL/LΔT)=0.5×10-6 [1/oC](比Si和GaAs的都小);禁带宽度Eg≈8eV;电阻率> 1016 Ω-cm(为绝缘体);击穿电场≈600 V/μm。
(2)SiO2的结构:氧化硅中的基本化学键是Si-O键(含有50 %的共价键和50 %的离子键)。
氧化硅中原子排列的基本结构是一种Si-O键构成的正四面体,即每一个Si离子的周围有4个按正四面体分布的O离子(Si离子中心与O离子中心之间的距离为1.6?,O离子与O离子中心之间的距离为2.27?)。
然后,这种Si-O正四面体通过顶角的O离子而规则地连接起来形成网络式的结构,即构成晶态氧化硅。
否则,若这些Si-O正四面体的连接不是很规则,即形成具有一些错乱的网络式结构,则为非晶态氧化硅。
显然,在氧化硅中存在许多由多个Si-O正四面体包围而成的空洞(网络中间的空洞),这些空洞的体积都比较大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Silica-coated and annealed CdS nanowires with enhanced photoluminescenceShan Liang,1 Min Li,2 Jia-Hong Wang,1 Xiao-Li Liu,1 Zhong-Hua Hao,1 Li Zhou,1,3 Xue-Feng Yu,1,4 and Qu-Quan Wang11Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics andTechnology, Wuhan University, Wuhan 430072, China2School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China3zhouli@4yxf@Abstract: The CdS/SiO2 core/shell nanowires (NWs) with controlled shellthickness were successfully synthesized and subsequently heat-treated at500 °C. The influences of silica shell coating and annealing processes ontheir optical properties have been investigated. Compared with original CdSNWs, the annealed CdS/SiO2 NWs exhibited an enhanced band-edgeemission with slowed photoluminescence lifetime, while the intensity ofdefect emission decreased. The results were ascribed to the surfacepassivation and recrystallization by shell coating and annealing. We believeour finding would help improving the optical properties of semiconductorNWs, and facilitate its applications in various realms, such as nanoscaleemitter, sensor, and photoelectric device.©2013 Optical Society of AmericaOCIS codes: (160.6000) Semiconductor materials; (250.5230) Photoluminescence; (300.6500)Spectroscopy, time-resolved.References and links1. O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatiallyresolved photon detection,” Nat. Mater. 5(5), 352–356 (2006).2. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett. 4(10), 1981–1985 (2004).3. Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H.Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res. 5(9), 595–604 (2012).4. Y. Liu, Q. Yang, Y. Zhang, Z. Yang, and Z. L. Wang, “Nanowire piezo-phototronic photodetector: theory andexperimental design,” Adv. Mater. (Deerfield Beach Fla.) 24(11), 1410–1417 (2012).5. Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, “Alternating the output of a CdS nanowire nanogeneratorby a white-light-stimulated optoelectronic effect,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3127–3130(2008).6. J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett. 6(9), 1887–1892 (2006).7. C. H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S. W. Nam, and R. Agarwal, “Tailoring hot-excitonemission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons,” Nat. Mater.10(9), 669–675 (2011).8. D. Li, J. Zhang, Q. Zhang, and Q. Xiong, “Electric-field-dependent photoconductivity in CdS nanowires andnanobelts: exciton ionization, franz-keldysh, and stark effects,” Nano Lett. 12(6), 2993–2999 (2012).9. Q. Zhang, X. Y. Shan, X. Feng, C. X. Wang, Q. Q. Wang, J. F. Jia, and Q. K. Xue, “Modulating resonancemodes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett. 11(10), 4270–4274 (2011).10. J. Puthussery, A. Lan, T. H. Kosel, and M. Kuno, “Band-filling of solution-synthesized CdS nanowires,” ACSNano 2(2), 357–367 (2008).11. R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,”Nano Lett. 5(5), 917–920 (2005).12. A. Pan, S. Wang, R. Liu, C. Li, and B. Zou, “Thermal stability and lasing of CdS nanowires coated byamorphous silica,” Small 1(11), 1058–1062 (2005).13. S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kühnel, K. A. Sunter, F. Capasso,and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology 23(36), 365204 (2012).14. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasersat deep subwavelength scale,” Nature 461(7264), 629–632 (2009).#181781 - $15.00 USD Received 14 Dec 2012; revised 17 Jan 2013; accepted 18 Jan 2013; published 1 Feb 2013 (C) 2013 OSA11 February 2013 / Vol. 21, No. 3 / OPTICS EXPRESS 325315. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature421(6920), 241–245 (2003).16. H. Lee, K. Heo, J. Park, Y. Park, S. Noh, K. S. Kim, C. Lee, B. H. Hong, J. Jian, and S. Hong, “Graphene–nanowire hybrid structures for high-performance photoconductive devices,” J. Mater. Chem. 22(17), 8372–8376 (2012).17. R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Qin, “High-performance logic circuits constructed on singleCdS nanowires,” Nano Lett. 7(11), 3300–3304 (2007).18. T. Dufaux, M. Burghard, and K. Kern, “Efficient charge extraction out of nanoscale Schottky contacts to CdSnanowires,” Nano Lett. 12(6), 2705–2709 (2012).19. M. I. Utama, J. Zhang, R. Chen, X. Xu, D. Li, H. Sun, and Q. Xiong, “Synthesis and optical properties of II-VI1D nanostructures,” Nanoscale 4(5), 1422–1435 (2012).20. B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individualsemiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).21. Z. X. Yang, W. Zhong, P. Zhang, M. H. Xu, Y. Deng, C. T. Au, and Y. W. Du, “Controllable synthesis,characterization and photoluminescence properties of morphology-tunable CdS nanomaterials generated inthermal evaporation processes,” Appl. Surf. Sci. 258(19), 7343–7347 (2012).22. D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, and Y. Tang, “Preparation and characterization of CdS nanowire arraysby DC electrodeposit in porous anodic aluminum oxide templates,” Chem. Phys. Lett. 325(4), 340–344 (2000). 23. H. Gai, Y. Wu, L. Wu, Z. Wang, Y. Shi, M. Jing, and K. Zou, “Solvothermal synthesis of CdS nanowires usingL-cysteine as sulfur source and their characterization,” Appl. Phys., A Mater. Sci. Process. 91(1), 69–72 (2008).24. K. B. Tang, Y. T. Qian, J. H. Zeng, and X. G. Yang, “Solvothermal route to semiconductor nanowires,” Adv.Mater. (Deerfield Beach Fla.) 15(5), 448–450 (2003).25. C. C. Kang, C. W. Lai, H. C. Peng, J. J. Shyue, and P. T. Chou, “Surfactant- and temperature-controlled CdSnanowire formation,” Small 3(11), 1882–1885 (2007).26. Q. Wang, G. Zhao, and G. Han, “Synthesis of single crystalline CdS nanorods by a PVP-assisted solvothermalmethod,” Mater. Lett. 59(21), 2625–2629 (2005).27. K. Pal, U. N. Maiti, T. P. Majumder, and S. C. Debnath, “A facile strategy for the fabrication of uniform CdSnanowires with high yield and its controlled morphological growth with the assistance of PEG in hydrothermal route,” Appl. Surf. Sci. 258(1), 163–168 (2011).28. M. A. Correa-Duarte, M. Giersig, N. A. Kotov, and L. M. Liz-Marzán, “Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2 coating by microwave irradiation,”Langmuir 14(22), 6430–6435 (1998).29. X. F. Yu, L. D. Chen, M. Li, M. Y. Xie, L. Zhou, Y. Li, and Q. Q. Wang, “Highly efficient fluorescence ofNdF3/SiO2 core/shell nanoparticles and the applications for in vivo NIR detection,” Adv. Mater. (DeerfieldBeach Fla.) 20(21), 4118–4123 (2008).30. S. T. Selvan, T. T. Tan, and J. Y. Ying, “Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficientphotoluminescence,” Adv. Mater. (Deerfield Beach Fla.) 17(13), 1620–1625 (2005).31. L. K. van Vugt, B. Piccione, C. H. Cho, P. Nukala, and R. Agarwal, “One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires,” Proc. Natl. Acad. Sci. U.S.A. 108(25), 10050–10055 (2011).32. A. Pan, X. Lin, R. Liu, C. Li, X. He, H. Gao, and B. Zou, “Surface crystallization effects on the optical andelectric properties of CdS nanorods,” Nanotechnology 16(10), 2402–2406 (2005).33. P. Liu, V. P. Singh, C. A. Jarro, and S. Rajaputra, “Cadmium sulfide nanowires for the window semiconductorlayer in thin film CdS-CdTe solar cells,” Nanotechnology 22(14), 145304 (2011).34. F. Wu, J. Z. Zhang, R. Kho, and R. K. Mehra, “Radiative and nonradiative lifetimes of band edge states and deeptrap states of CdS nanoparticles determined by time-correlated single photon counting,” Chem. Phys. Lett.330(3-4), 237–242 (2000).35. L. Yu, X. F. Yu, Y. Qiu, Y. Chen, and S. Yang, “Nonlinear photoluminescence of ZnO/ZnS nanotetrapods,”Chem. Phys. Lett. 465(4-6), 272–274 (2008).1. IntroductionAs a one-dimensional wide band gap (2.42 eV) semiconductor, CdS nanowires (NWs) have received considerable attention owing to their attractive optical properties [1–20]. Especially, the stimulated emission and lasing of CdS NWs have blossomed increasingly in recent years, attributed to the efforts from a large number of research groups [10–16]. For example, optically pumped lasing of CdS NWs at 75 K was reported by Lieber and associates in 2005 [11]. Stimulated emission was observed by Pan et al. for the silica coated CdS NWs under high-intensity excitation at room temperature [12]. Low threshold lasing of CdS NWs at room temperature was further revealed by Geburt’s group [13]. In addition, electrically pumped CdS NWs laser was also reported by Duan and associates [15], which demonstrated their feasibility for producing integrated electrically driven photonic devices. Based on these interesting optical properties, CdS NWs have been regarded as wonderful optical material for various applications, such as telecommunications, solar cells, highly integrated devices [1–4,16–18].#181781 - $15.00 USD Received 14 Dec 2012; revised 17 Jan 2013; accepted 18 Jan 2013; published 1 Feb 2013 (C) 2013 OSA11 February 2013 / Vol. 21, No. 3 / OPTICS EXPRESS 3254Based on above considerations, great recent efforts have been devoted to synthesize CdSNWs with high crystallinity and efficient photoluminescence (PL) [19–26]. Hydrothermal method is the most employed route for the preparation of CdS NWs due to some significantadvantages such as cost-effective, controllable particle size, low-temperature, and easy-operation techniques [24–27]. However, such as-prepared CdS NWs synthesized by hydrothermal method have defects inevitably owing to the surface absorption of surfactant, ligands, or other groups, which reduce the PL efficiency of the CdS NWs [25–27]. In order to further improve the PL efficiency of the as-prepared CdS NWs, the researchers have suggested several processing methods [28–32]. The typical strategy included growing silica shells to passivate the surface of CdS NWs [28–31]. Annealing is an efficient strategy for surface recrystallization [32,33], however the CdS NWs were often damaged under long-term heating in air due to the surface degradation.In this paper, we investigated the influences of silica shell coating and annealing processes on the PL of CdS NWs. The CdS/SiO2 core/shell NWs were synthesized, and annealed at 500 °C for 5 h. Compared with the original CdS NWs, such annealed CdS/SiO2 core/shell NWs exhibited highly efficient band-edge emission of CdS.2. Experimental sectionThe original CdS NWs were synthesized by the solvothermal method using ethylenediamine as a solvent [12,24]. In brief, 33.5 mL of ethylenediamine was added to a Teflon-lined stainless-steel autoclave of 45 mL capacity, then 0.0025 mol of cadmium nitrate hexahydrate and 0.002 mol of thiacetamide were dissolved in the above solvent. After stirring for about 10 mins, a viscous gel-like solution was obtained. Then, the Teflon-lined stainless-steel autoclave was sealed and heated without stirring at 180 °C for 24 h. The obtained yellow product was centrifuged (5 mins, 4500 rps) and washed with distilled water and ethanol.Subsequently, the CdS/SiO2 core/shell NWs were prepared by a modified Stöber method.10 mg of the as-prepared CdS NWs was dispersed in the mixed solution containing 10 mL ethanol, 450 μL distilled water, and 325 μL of 28% ammonia. Then, 35 μL of TEOS was added to the above mixture and sonicated for about 2 h at room temperature. A white-yellow precipitate was obtained by centrifugation at 4000 rpm, and then re-dispersed in ethanol. As thus, the high-yielded and uniform silica coated CdS NWs were successfully synthesized. In this method, the thickness of silica shell could be controlled by the amount of TEOS. In order to study the joint action of silica shell and annealing processes on the optical properties of the CdS NWs, part of the as-prepared sample was annealed at 500 °C in air atmosphere for 5 h.The transmission electron microscope (TEM) images were obtained with a JEOL 2010HT transmission electron microscope (operated at 200 kV). The absorption spectra weremeasured with a Varian Cary 5000 UV-Vis-NIR spectrophotometer. Powder X-ray diffraction (XRD) analyses were performed on a Bruker D8-advance X-ray diffractometer with Cu Kα irradiation (λ = 1.5406 Ǻ). The PL spectra of the samples were recorded using a spectrometer (Spectrapro 2500i, Acton) equipped with a liquid nitrogen cooled CCD (SPEC-10, Princeton). The excitation laser of 400 nm with a pulse width of around 3 ps and a repetition rate of 76 MHz was generated by a mode-locked Ti:sapphire laser (Mira 900, Coherent) equipped with an optical frequency doubling system.3. Results and discussion3.1 Controllable synthesis of CdS/SiO2 core/shell NWsThe CdS/SiO2 core/shell NWs with controlled shell thickness were produced in a modified Stöber method which is facile, high-yielded and reproducible. Compared with the typical procedure [12], methanol is replaced by ethanol in our method. Sonic oscillation was used as a stirring method during the synthesizing procedure, which greatly shortens the synthesis period of silica shell. Figure 1 displays the TEM images of the original CdS NWs and CdS/SiO2 core/shell NWs with different shell thickness. Figure 1(a) shows the low and high magnitude TEM images of original CdS NWs. It can be seen that the diameter of CdS NWs is#181781 - $15.00 USD Received 14 Dec 2012; revised 17 Jan 2013; accepted 18 Jan 2013; published 1 Feb 2013 (C) 2013 OSA11 February 2013 / Vol. 21, No. 3 / OPTICS EXPRESS 3255about 70 nm. In addition, the CdS/SiO2 core/shell NWs with different shell thickness could be obtained by changing the amount of TEOS in the synthesis. Typically, when 2.5 μL, 10 μL, and 35 μL of TEOS were used, the shell thickness was 11 nm, 25 nm, and 70 nm, respectively. Their TEM images of the corresponding CdS/SiO2 core/shell NWs are shown inFigs. 1(b)-1(d). From the images, it also can be seen that the silica shells are uniform and precisely controllable.Fig. 1. (a) Low and high magnitude TEM images of CdS NWs. (b-d) CdS/SiO2 core/shell NWswith shell thickness of around (b) 11 nm, (c) 25 nm and (d) 70 nm.3.2 Thermal stability of CdS/SiO2 core/shell NWsThe XRD patterns of the as-prepared CdS NWs, annealed CdS NWs, CdS/SiO2 core/shell NWs, and annealed CdS/SiO2 core/shell NWs are shown in Fig. 2. The annealed CdS NWs have a distinct XRD pattern from the others, which can be indexed as the orthorhombic Cd3O2SO4 phase (JCPDS card No.32-0140). It indicated that the structure of CdS NWs is damaged due to the surface degradation (such as oxidation) under long-term heating in air. All the other diffraction peaks in Fig. 2 can be clearly seen and indexed as the hexagonal CdS phase (JCPDS card No.41-1049). Meanwhile, due to the amorphous structure of silica shell, no peaks for silica were detected in the coated sample. The results imply that the silica shell can prevent CdS NWs from being oxidized by oxygen at high temperature, and it offers the feasibility for next optical properties research of CdS NWs under stronger laser excitation.Fig. 2. XRD patterns of (a) CdS NWs, (b) uncoated CdS NWs annealed at 500 °C, (c)CdS/SiO2 core/shell NWs, and (d) CdS/SiO2 core/shell NWs annealed at 500 °C.3.3 Optical properties of the annealed CdS/SiO2 core/shell NWsThe absorption spectra of the as-prepared CdS NWs, CdS/SiO2 NWs and annealed CdS/SiO2 core/shell NWs are shown in Fig. 3. All the samples have a pronounced absorption bump at#181781 - $15.00 USD Received 14 Dec 2012; revised 17 Jan 2013; accepted 18 Jan 2013; published 1 Feb 2013 (C) 2013 OSA11 February 2013 / Vol. 21, No. 3 / OPTICS EXPRESS 3256about 486 nm, which is similar with the results obtained by the other groups [26,27]. By comparing the absorption line shape of the CdS NWs, CdS/SiO2 NWs, and annealed CdS/SiO2 NWs, we found that the absorption bump position of CdS NWs is insensitive to theshell coating and annealing processes.Fig. 3. Normalized absorption spectra of CdS NWs, CdS/SiO2 NWs, and annealed CdS/SiO2core/shell NWs.The PL spectra of the CdS NWs, CdS/SiO2 NWs and annealed CdS/SiO2 NWs are presented in Fig. 4(a). The samples show a sharp emission band at around 505 nm with the excitation of a 400 nm laser, which is attributed to the typical band–band transitions of CdS crystal since the spectral position is very near the band gap of CdS at room temperature [31]. Meanwhile, a broad emission band at around 700 nm can also be observed in these samples, which may be ascribed to structural defects such as crystalline surface structure defects, ionized vacancies and/or impurities [26,27].Fig. 4. (a) PL spectra of CdS NWs, CdS/SiO2 NWs and CdS/SiO2 NWs annealed at 500 °C. (b)Time-resolved PL of CdS NWs, CdS/SiO2 NWs and annealed CdS/SiO2 NWs at ~505 nm.Most interesting, compared with the original CdS NWs, the band-edge emission of the silica coated CdS NWs enhances nearly 4 times, and that of the annealed CdS/SiO2 NWs enhances about 8 times. Here, silica coating could passivate the surface of CdS NWs, which prevent the surface adsorption of surfactant, ligands, or other chemical groups. Therefore, it could reduce the number of nonradiative energy channels so as to improve the band-edge emission efficiency. Furthermore, annealing process could improve the crystal quality of CdS NWs under the protection of silica shell. Then the defect (trap) emission was depressed and the band-edge emission efficiency was further enhanced. It can be seen that the defect emission at about 700 nm was decreased by nearly 50% when the CdS/SiO2 NWs were annealed at 500 °C, which also reveals the improvement of CdS crystal quality. In addition, the full width at half maximum (FWHM) of the band-edge emission peaks for the CdS NWs, CdS/SiO2 NWs, and annealed CdS/SiO2 NWs are 20 nm, 17 nm, and 16 nm, respectively. It demonstrates that both the shell coating and annealing processes induce the decreased FWHM of the band-edge emission, which indicate that the trap density near band edge decreases and the quality factor of band-edge emission increases.#181781 - $15.00 USD Received 14 Dec 2012; revised 17 Jan 2013; accepted 18 Jan 2013; published 1 Feb 2013 (C) 2013 OSA11 February 2013 / Vol. 21, No. 3 / OPTICS EXPRESS 3257To further investigate the dynamics of the band-edge emission, time-resolved PL experiments were performed. As shown in Fig. 4(b), two decay processes with fast lifetime(τf) and slow lifetime (τs) were observed for the CdS NWs, CdS/SiO2 NWs and annealed CdS/SiO2 NWs. We have fitted the PL decay rate of the samples by double exponential, andthe fitted values of τf are 0.86 ns (94%), 0.95 ns (89%) and 0.99 ns (85%) for the CdS NWs, CdS/SiO2 NWs, and annealed CdS/SiO2 NWs, respectively. The decrease of density of trap states was expected to reduce the exciton-trap interaction and thus increase the observed lifetime [34,35]. The increased lifetime of band-edge emission for annealed CdS/SiO2 NWs coincided with their enhanced emission efficiency induced by surface passivation and crystal improvement.Figure 5(a) displays the excitation power (P exc) dependence of the PL intensity (I PL) ataround 505 nm of the samples. From these data, the slopes (ν = ∂ log I PL/∂ log P exc) are fitted as 1.56, 1.76 and 1.82 for the original CdS, CdS/SiO2 and annealed CdS/SiO2 NWs, respectively. It can be seen that, with the increasing of excitation power, the PL intensity of CdS/SiO2 NWs and annealed CdS/SiO2 NWs increase nonlinearly. In contrast, as shown in Fig. 5(b), the defect emission at about 700 nm is nearly linear with slopes of 1.10, 1.19 and 1.11 for the original CdS NWs, CdS/SiO2 NWs and annealed CdS/SiO2 NWs, respectively.Fig. 5. Excitation power dependence of PL intensity for CdS NWs, CdS/SiO2 core/shell NWsand annealed CdS/SiO2 core/shell NWs at (a) 505 nm and (b) 700 nm with excitationwavelength of 400 nm.4. ConclusionIn summary, the thickness-controlled CdS/SiO2 core/shell NWs have been successfully prepared in an improved Stöber method, and the influences of silica shell coating and annealing processes on their optical properties have been investigated. The band-edge emission of the annealed CdS/SiO2 NWs was enhanced with slowed lifetime, and the defect emission was depressed. The results indicated that the joint action of silica coating and annealing processes was beneficial for the band-edge emission efficiency, owing to that silica coating could reduce the nonradiative energy channels by the surface state, and annealing process could improve the crystal quality. We believe our finding would help improving the optical properties of semiconductor NWs, and facilitate its applications in various realms, such as nanoscale emitter, sensor, and photoelectric device.AcknowledgmentsThis work was supported in part by NSFC (61008043, 11174229 and 11204221), Specialized Research Fund for the Doctoral Program of Higher Education of China (20100141120041) and the National Program on Key Science Research of China (2011CB922201).#181781 - $15.00 USD Received 14 Dec 2012; revised 17 Jan 2013; accepted 18 Jan 2013; published 1 Feb 2013 (C) 2013 OSA11 February 2013 / Vol. 21, No. 3 / OPTICS EXPRESS 3258。