2010高等数学校内竞赛试题答案

合集下载

2010年全国数学联赛一试、二试试题及答案

2010年全国数学联赛一试、二试试题及答案

(12 分)
8 3 8 x 4 x 2 x m ( m 为常数)满足题设条件,所以 a 最大值为 .(16 分) 3 3
2 解二: f ( x) 3ax 2bx c .
设 g ( x) f ( x) 1 ,则当 0 x 1 时, 0 g ( x) 2 . 设 z 2 x 1 ,则 x
由此可设 m (1,0,1), n (0,1, 3 ) ,
B1
z
A1 C1
P A O C B y
所以 m n m n cos ,
即 3
2 2 cos cos
6 . 4
x
3
所以 sin
10 . 4
A1 C1 E B1 O A P
2
整数的点)的个数是 1790 . 解:由对称性知,只要先考虑 x 轴上方的情况,设 y k ( k 1,2, ,9) 与双曲线右半支于 Ak ,交直
1
线 x 100 于 Bk ,则线段 Ak Bk 内部的整点的个数为 99 k ,从而在 x 轴上方区域内部整点的个数 为
(99 k ) 99 9 45 846 .
z 1 ,1 z 1 . 2 z 1 3a 2 3a 2b 3a h( z ) g ( ) z z b c 1. 2 4 2 4
(4 分) (8 分)
容易知道当 1 z 1 时,0 h( z ) 2,0 h( z ) 2 . 从而当 1 z 1 时, 0 即
3
3 3.
3 d q,
3(3 4d ) q 2 ,
(1)代入(2)得
(1) (2)
9 12d d 2 6d 9 ,求得 d 6, q 9 .

2010年全国高中数学联赛B卷(含详细解答)

2010年全国高中数学联赛B卷(含详细解答)

2010年全国高中数学联合竞赛一试 试题参考答案及评分标准(B 卷)说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不要增加其他中间档次。

一、填空题(本题满分64分,每小题8分) 1. 函数x x x f 3245)(---=的值域是 ]3,3[-.解:易知)(x f 的定义域是[]8,5,且)(x f 在[]8,5上是增函数,从而可知)(x f 的值域为]3,3[-. 2. 已知函数x x a y sin )3cos (2-=的最小值为3-,则实数a 的取值范围是 1223≤≤-a . 解:令t x =sin ,则原函数化为t a at t g )3()(2-+-=,即t a at t g )3()(3-+-=.由 3)3(3-≥-+-t a at , 0)1(3)1(2≥----t t at ,0)3)1()(1(≥-+--t at t 及01≤-t 知03)1(≤-+-t at 即 3)(2-≥+t t a (1)当1,0-=t 时(1)总成立; 对20,102≤+<≤<t t t ;对041,012<+≤-<<-t t t . 从而可知 1223≤≤-a .3. 双曲线122=-y x 的右半支与直线100=x 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是 9800 .解:由对称性知,只要先考虑x 轴上方的情况,设)99,,2,1( ==k k y 与双曲线右半支于k A ,交直线100=x 于k B ,则线段k k B A 内部的整点的个数为99k -,从而在x 轴上方区域内部整点的个数为991(99)99494851k k =-=⨯=∑.又x 轴上有98个整点,所以所求整点的个数为 98009848512=+⨯.4. 已知}{n a 是公差不为0的等差数列,}{n b 是等比数列,其中3522113,,1,3b a b a b a ====,且存在常数βα,使得对每一个正整数n 都有βα+=n n b a log ,则=+βα3. 解:设}{n a 的公差为}{,n b d 的公比为q ,则 ,3q d =+ (1) 2)43(3q d =+, (2)(1)代入(2)得961292++=+d d d ,求得9,6==q d .从而有 βα+=-+-19log )1(63n n 对一切正整数n 都成立,即 βα+-=-9log )1(36n n 对一切正整数n 都成立. 从而 βαα+-=-=9log 3,69log , 求得 3,33==βα, 333+=+βα. 5. 函数)1,0(23)(2≠>-+=a a a ax f x x在区间]1,1[-∈x 上的最大值为8,则它在这个区间上的最小值是 41-. 解:令,y a x=则原函数化为23)(2-+=y y y g ,)(y g 在3(,+)2-∞上是递增的.当10<<a 时,],[1-∈a a y ,211max 1()32822g y a a a a ---=+-=⇒=⇒=, 所以 412213)21()(2min -=-⨯+=y g ; 当1>a 时,],[1a a y -∈,2823)(2max =⇒=-+=a a a y g ,所以 412232)(12min -=-⨯+=--y g .综上)(x f 在]1,1[-∈x 上的最小值为41-.6. 两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则轮由另一人投掷.先投掷人的获胜概率是1217. 解:同时投掷两颗骰子点数和大于6的概率为1273621=,从而先投掷人的获胜概率为 +⨯+⨯+127)125(127)125(12742 17121442511127=-⨯=.7. 正三棱柱111C B A ABC -的9条棱长都相等,P 是1CC 的中点,二面角α=--11B P A B ,则=αsin4. 解一:如图,以AB 所在直线为x 轴,线段AB 中点O 为原点,OC 所在直线为y 轴,建立空间直角坐标系.设正三棱柱的棱长为2,则)1,3,0(),2,0,1(),2,0,1(),0,0,1(11P A B B -,从而,)1,3,1(),0,0,2(),1,3,1(),2,0,2(1111--=-=-=-=B A B BA .设分别与平面P BA 1、平面P A B 11垂直的向量是),,(111z y x m =、),,(222z y x =,则⎪⎩⎪⎨⎧=++-=⋅=+-=⋅,03,022111111z y x BP m z x BA ⎪⎩⎪⎨⎧=-+-=⋅=-=⋅,03,022221211z y x B x A B 由此可设 )3,1,0(),1,0,1(==,所以cos m n m n α⋅=⋅,2cos cos αα=⇒=.所以 410sin =α. 解二:如图,PB PA PC PC ==11, .设B A 1与1AB 交于点,O 则1111,,OA OB OA OB A B AB ==⊥ . 11,,PA PB PO AB =⊥因为 所以从而⊥1AB 平面B PA 1 .过O 在平面B PA 1上作P A OE 1⊥,垂足为E . 连结E B 1,则EO B 1∠为二面角11B P A B --的平面角. 设21=AA ,则易求得3,2,5111=====PO O B O A PA PB .在直角O PA 1∆中,OE P A PO O A ⋅=⋅11, 即 56,532=∴⋅=⋅OE OE .又 554562,222111=+=+=∴=OE O B E B O B . 4105542sin sin 111===∠=E B O B EO B α. 8. 方程2010=++z y x 满足z y x ≤≤的正整数解(x ,y ,z )的个数是 336675 .解:首先易知2010=++z y x 的正整数解的个数为 1004200922009⨯=C .把2010=++z y x 满足z y x ≤≤的正整数解分为三类:(1)z y x ,,均相等的正整数解的个数显然为1;(2)z y x ,,中有且仅有2个相等的正整数解的个数,易知为1003; (3)设z y x ,,两两均不相等的正整数解为k . 易知 100420096100331⨯=+⨯+k ,OEPC 1B 1A 1CBA110033*********-⨯-⨯=k200410052006123200910052006-⨯=-⨯+-⨯=, 3356713343351003=-⨯=k . 从而满足z y x ≤≤的正整数解的个数为 33667533567110031=++. 二、解答题(本题满分56分)9.(本小题满分16分)已知函数)0()(23≠+++=a d cx bx ax x f ,当10≤≤x 时,1)(≤'x f ,试求a 的最大值.解一: ,23)(2c bx ax x f ++='由 ⎪⎪⎩⎪⎪⎨⎧++='++='='cb a fc b a f c f 23)1(,43)21(,)0( 得 (4分))21(4)1(2)0(23f f f a '-'+'=. (8分) 所以)21(4)1(2)0(23f f f a '-'+'=)21(4)1(2)0(2f f f '+'+'≤ 8≤, 38≤a . (12分) 又易知当m x x x x f ++-=23438)((m 为常数)满足题设条件,所以a 最大值为38.(16分)解二:c bx ax x f ++='23)(2.设1)()(+'=x f x g ,则当10≤≤x 时,2)(0≤≤x g . 设 12-=x z ,则11,21≤≤-+=z z x . 14322343)21()(2++++++=+=c b az b a z a z g z h . (4分)容易知道当11≤≤-z 时,2)(0,2)(0≤-≤≤≤z h z h . (8分) 从而当11≤≤-z 时,22)()(0≤-+≤z h z h ,即 21434302≤++++≤c b a z a ,从而0143≥+++c b a ,2432≤z a, 由 102≤≤z 知38≤a . (12分)又易知当m x x x x f ++-=23438)((m 为常数)满足题设条件,所以a 最大值为38.(16分)10.(本小题满分20分)已知抛物线x y 62=上的两个动点1122(,)(,)A x y B x y 和,其中21x x ≠且421=+x x .线段AB 的垂直平分线与x 轴交于点C ,求ABC ∆面积的最大值.解一:设线段AB 的中点为),(00y x M ,则 2,22210210y y y x x x +==+=, 01221221212123666y y y y y y y x x y y k AB =+=--=--=.线段AB 的垂直平分线的方程是 )2(30--=-x y y y . (1) 易知0,5==y x 是(1)的一个解,所以线段AB 的垂直平分线与x 轴的交点C 为定点,且点C 坐标为)0,5(.(5分) 由(1)知直线AB 的方程为 )2(300-=-x y y y ,即 2)(300+-=y y y x . (2) (2)代入x y 62=得12)(2002+-=y y y y ,即 012222002=-+-y y y y .(3)依题意,21,y y 是方程(3)的两个实根,且1y 22200044(212)4480y y y ∆=--=-+>,32320<<-y .221221)()(y y x x AB -+-=22120))()3(1(y y y -+= ]4))[(91(2122120y y y y y -++=))122(44)(91(202020--+=y y y)12)(9(322020y y -+=. 定点)0,5(C 到线段AB 的距离 202029)0()25(y y CM h +=-+-==. (10分)220209)12)(9(3121y y y h AB S ABC +⋅-+=⋅=∆ )9)(224)(9(2131202020y y y +-+=3202020)392249(2131y y y ++-++≤7314=.(15分)当且仅当20202249y y -=+,即0y =,A B 或A B -时等号成立. 所以ABC ∆面积的最大值为7314.(20分) 解二:同解一,线段AB 的垂直平分线与x 轴的交点C 为定点,且点C 坐标为)0,5(.(5分)设4,,,222121222211=+>==t t t t t x t x ,则161610521222121t t t t S ABC =∆的绝对值, (10分) 2222122112))656665(21(t t t t t t S ABC --+=∆221221)5()(23+-=t t t t )5)(5)(24(23212121++-=t t t t t t3)314(23≤,7314≤∆ABC S , (15分)当且仅当5)(21221+=-t t t t 且42221=+t t ,即,6571-=t 6572+-=t,66((33A B 或A B -时等号成立. 所以ABC ∆面积的最大值是7314. (20分)11.(本小题满分20分)数列{}n a 满足),2,1(1,312211 =+-==+n a a a a a n n n n .求证:n n n a a a 2212312131211-<+++<-- . (1) 证明:由1221+-=+n n n n a a a a 知 111121+-=+n nn a a a ,)11(1111-=-+nn n a a a . (2) 所以 211,111n n n n n n na a aa a a a ++==----即 1111n n n n n a aa a a ++=---. (5分) 从而 n a a a +++ 211133222*********++---++---+---=n n n n a a a a a a a aa a a a 11111112111++++--=---=n n n n a a a a a a .所以(1)等价于n n n n a a 2112312112131211-<--<-++-, 即 nn n n a a 21123131<-<++- . (3) (10分)由311=a 及 1221+-=+n n n n a a a a 知 712=a .当1n =时 ,2216a a -=,11122363<<- ,即1n =时,(3)成立.设)1(≥=k k n 时,(3)成立,即 k k k k a a 21123131<-<++-. 当1+=k n 时,由(2)知kk k k k k k k a a a a a a a 2211111223)1()1(11>->-=-+++++++; (15分)又由(2)及311=a 知 )1(1≥-n a a nn 均为整数, 从而由k k k a a 21131<-++ 有 131211-≤-++k k k a a 即kk a 2131≤+ , 所以122211122333111+<⋅<-⋅=-+++++k k k k k k k k a a a a a ,即(3)对1+=k n 也成立.所以(3)对1≥n 的正整数都成立,即(1)对1≥n 的正整数都成立. (20分)2010年全国高中数学联合竞赛加试 试题参考答案及评分标准(B 卷)说明:1. 评阅试卷时,请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次。

2010年浙江省高等数学竞赛试题与答案(共4份)

2010年浙江省高等数学竞赛试题与答案(共4份)

试题共四套:数学类、工科类、经管类、文专类2010浙江省大学生高等数学(微积分)竞赛试题(数学类)一、计算题(每小题14分,满分70分)1.求极限1lim 2n →+∞+⎦2.计算()22222exp 21R x xy y dxdy ρρ⎡⎤-+⎢⎥--⎢⎥⎣⎦⎰⎰. 其中01ρ≤< 3.请用,a b 描述圆 222x y y +≤ 落在椭圆 22221x y a b+= 内的充分必要条件,并求此时椭圆的最小面积。

4.已知分段光滑的简单闭曲线Γ(约当曲线)落在平面π:10ax by cz +++=上,设Γ在π上围成的面积为A ,求()()()bz cy dx cx az dy ay bx dz ax by czΓ-+-+-++⎰其中n Γ与的方向成右手系。

5.设f 连续,满足()()() 22 02exp xf x x x t f t dt =--⎰且()11/f e =,求()()1n f 的值。

二、(满分20)定义数列{}n a 如下:{},,max ,211011dx x a a a n n ⎰-==,4,3,2=n ,求n n a ∞→lim 。

三、(满分20分)设函数)(2R C f ∈,且0)(lim =∞→x f x ,1)(≤''x f ,证明:0)(lim ='∞→x f x 。

四、(满分20分)设非负函数f 在[0,1]上满足)()()(,,y f x f y x f y x +≥+∀且1)1(=f ,证明:(1)]1,0[,2)(∈≤x x x f (2)21)(1≤⎰dx x f 五、(满分20分)设全体正整数集合为+N ,若集合+⊂N G 对加法封闭(即G y x G y x ∈+⇒∈∀,),且G 内所有元素的最大公约数为1,证明:存在正整数N ,当正整数n >N 时,G n ∈(工科类)一、计算题(每小题14分,满分70分)1.求极限1lim 2n →+∞+⎦2.计算()() +22 122dxx x x ∞-∞+-+⎰3.设ABC ∆为锐角三角形,求sin sin sin cos cos cos A B C A B C ++---的最大值和最小值。

大学生高等数学竞赛试题汇总与答案

大学生高等数学竞赛试题汇总与答案
令x=1/t,则
原式=
(ln(1t)t)1/(1t)111
2
2(1t)
t2t2
limelimelimee
t0t0t0
(3)
11
sxnnsxnsxsxn
Iexdx()xde()[xe|edx]
n0
000
ss
nnn(n1)n!n!
sxn1
exdxIII
n12n2n0n1
sssss
0
二、(15分)设函数f(x)在(,)上具有二阶导数,并且
''()(2'
t2t)2(t)''()(2'
3
dxdx/dt(22t)
=。。。
上式可以得到一个微分方程,求解即可。
四、(15分)设
n
a0,Sa,证明:
nnk
k1
(1)当1时,级数
a
n
S
nn
1
收敛;
(2)当1且()
sn时,级数
n
a
n
S
nn
1
发散。
解:
(1)
a>0,
n
s单调递增
n

n1
a收敛时,
n
aa
nn
一、(25分,每小题5分)
(1)设
n
22
x(1a)(1a)(1a),其中|a|1,求limxn.
n
n
(2)求
x
lim e1
x
1
x
2
x

(3)设s0,求
sxn
Iexdxn。
(1,2,)
0
(4)设函数f(t)有二阶连续导数,

第一届大学生数学竞赛(数学类)考题及答案

第一届大学生数学竞赛(数学类)考题及答案

考试形式: 闭卷 考试时间: 120 分钟 满分: 100 分.一、(15分)求经过三平行直线1:L x y z ==,2:11L x y z -==+,3:11L x y z =+=-的圆柱面的方程. 二、(20分)设n n C ⨯是n n ⨯复矩阵全体在通常的运算下所构成的复数域C 上的线性空间,121000100010001n n n a a F a a ---⎛⎫⎪- ⎪ ⎪=- ⎪ ⎪⎪-⎝⎭.(1)假设111212122212n n n n nn a a a a a a A aa a ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,若AF FA =,证明:121112111n n n n A a F a F a F a E ---=++++;(2)求n n C ⨯的子空间{}()|n n C F X C FX XF ⨯=∈=的维数.三、(15分)假设V 是复数域C 上n 维线性空间(0n >),,f g 是V 上的线性变换.如果fg gf f -=,证明:f 的特征值都是0,且,f g 有公共特征向量.四、(10分)设{}()n f x 是定义在[],a b 上的无穷次可微的函数序列且逐点收敛,并在[],a b 上满足'()n f x M ≤.(1)证明{}()n f x 在[],a b 上一致收敛;(2)设()lim ()n n f x f x →∞=,问()f x 是否一定在[],a b 上处处可导,为什么? 五、(10分)设320sin sin n nta t dt t π=⎰, 证明11n na ∞=∑发散. 六、(15分) (,)f x y 是{}22(,)|1x y x y +≤上二次连续可微函数,满足222222f fx y x y∂∂+=∂∂,计算积分221x y I dxdy +≤⎛⎫=⎰⎰. 七、(15分))假设函数 ()f x 在 [0,1]上连续,在(0,1)内二阶可导,过点 (0,(0))A f ,与点 (1,(1))B f 的直线与曲线 ()y f x =相交于点 (,())C c f c ,其中 01c <<. 证明:在 (0,1)内至少存在一点 ξ,使()0f ξ''=。

2010年全国大学生高等数学竞赛总决赛(答案)

2010年全国大学生高等数学竞赛总决赛(答案)

2010年全国大学生数学竞赛决赛答 tian27546这是献给博士论坛一个礼物 转载时请勿注明是博士论坛一、(20分)计算下列各题:1.求极限 211sin )1(lim n k n k n k n π∑-=→∞+解法1因211sin )1(n k n k n k π∑-=+211222sin sin 21(2sin 21n n k n k nn k πππ∑-=+=) )22cos 22(cos 1(2sin 2122112n k n k n k nn k πππππ+--+=∑-=) )22cos 22(cos 1(22112nk n k n k n n k πππππ+--+≈∑-=) 2112211222cos 1(22cos 1(n k nk n n k n k n n k n k ππππππ++--+=∑∑-=-=)) 222211222cos 11(22cos 1(n k n k n n k n k n nk n k ππππππ--+--+=∑∑=-=))2122222222cos 12)12(cos 11(2cos )11(n k n n n n n n n n n n n k πππππππ-+--+-+=∑-=) 21222222)12(cos 2)12(cos 12(2cos )11(nk n n n n n n n n n k ππππππ-+---+=∑-=)(*) 而2122)12(cos n k n k π-∑-=212222sin 2)12(cos22sin 21n n k nn k πππ∑-=-=])1(sin [sin2sin2121222n k n k nn k πππ--=∑-= 2222sin 2sin )1(sinn n n n πππ--=222sin2)2(sin 2cos n n n n πππ-=(**) 将(**)代入(*),然后取极限,得原式]2sin2)2(sin2cos2)12(cos 12(2cos )11([lim 222222n n n nn n n n n n n n n ππππππππ-+---+=→∞)]2)2(sin 2cos 2)8)12(1(12()11([lim 22342222n n n n n n n n n n n ππππππ-+----+=∞→) ]2)2(sin 2cos 2)21(12()11([lim 2232222n n n n n n n n n n ππππππ-+---+=∞→) )]48)2(2)2()(81(2)21(12()11([lim 633222232222nn n n n n n n n n n n πππππππ----+---+=∞→))]482)(81(2)21(12()11([lim 33222232222n n n n n n n n n n n ππππππππ---+---+=∞→) 65π=上式中含2n 的项的系数为0121=+-πππ,含n 的项的系数为0)2(111=-++πππ,常数项系数为656824ππππππ=-=--解法2 Step 1因∑-=112sin n k n k π211222sinsin 22sin 21n nk nn k πππ∑-==)22cos 22(cos2sin2122112n k n k nn k πππππ+--=∑-=)2)12(cos2(cos2sin21222n n n n πππ--=故)2)12(cos 2(cos 2sin 21lim sinlim 222112n n n nn k n n k n ππππ--=→∞-=→∞∑)2)12(cos2(cos1lim222n n n n n πππ--=→∞nn n n n 2sin 2)1(sin2lim22πππ-=→∞n n n n n 22)1(2lim22πππ-=∞→2π= Step 2因222)12(cosn k nk π-∑=22222sin 2)12(cos22sin21n n k nnk πππ∑=-=])1(sin [sin2sin212222nk n k nnk πππ--=∑= 2222sin 2sinsin n n n n πππ-=2222sin 2)1(sin 2)1(cos nn n n n πππ-+=因此∑-=112sin n k n k nk π211222sin sin 22sin 21n n k n k n n k πππ∑-== ]2)12(cos 2)12(cos [2sin 212112112n k n k n k n k nn k n k πππ+--=∑∑-=-= ]2)12(cos 12)12(cos [2sin 21222112n k n k n k n k nnk n k πππ----=∑∑=-=⎥⎦⎤⎢⎣⎡-+---=∑-=2122222)12(cos 12)12(cos 12cos 12sin 21n k n n n n n n n nn k ππππ ⎥⎦⎤⎢⎣⎡-+--=∑=222222)12(cos 12)12(cos 2cos 12sin 21n k n n n n nnnk ππππ(*) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++--=2222222sin 2)1(sin 2)1(cos 2)12(cos 2cos 12sin 21nn n n n n n n n n n ππππππ 于是∑-=→∞112sin lim n k n n k nk π⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++--=→∞2222222sin 2)1(sin 2)1(cos 2)12(cos 2cos 12sin 21lim nn n n n n n n n n n n ππππππ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++---=→∞n n n n n n n n n n 22)1(sin2)1(cos 8)12(11lim 224222πππππ)( ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---+-++-=∞→n n n n n n n n n n n 2)48)1(2)1()(8)1(1211lim 6332422222ππππππ(⎥⎦⎤⎢⎣⎡----++-=∞→)24)1(1)(81211lim 52322222n n n n n n n n n ππππ( ⎥⎦⎤⎢⎣⎡---++-=∞→)241()(81211lim 2222222n n n n n n n n ππππ( ⎥⎦⎤⎢⎣⎡---++-=∞→)2411)(81211lim 2222222n n n n n n n ππππ( )(222222282411211lim n n n n n n n ππππ---++-=→∞ )(22222228242lim n n n n n ππππ--=∞→62ππ-=3π=原式6532πππ=+=2.计算⎰⎰∑++++2222)(zy x dxdya z axdydz ,其中 ∑为下半球面222y x a z ---= 的上侧, 0>a .解 记1∑为平面 222,0a y x z ≤+= 的上侧,2∑为下半球面 222y x a z ---= 的下侧,Ω是由1∑和2∑所围成的立体,则422222211)(adxdy a dxdy a dxdy a z axdydz ay x ⎰⎰⎰⎰⎰⎰≤+∑∑===++π,设,sin ,cos θθr y r x ==则⎰⎰∑+∑++212)(dxdy a z axdydz ⎰⎰⎰Ω+++=dxdydz a z a )220(⎰⎰⎰Ω+=dxdydz a z )32(⎰⎰⎰≤+---+=2222220)32(a y x y x a dz a z dxdy⎰⎰≤+---+=22222202]3[a y x y x a dxdy az z⎰⎰≤+--+++-=222)3(222222a y x dxdy y x a a y x a ⎰⎰≤≤≤≤-++-=πθθ2002222d d )3(ar r r r a a r a⎰-++-=a r r r a a r a 02222d )3(2π ⎰-++-=ar r a a r a 022222)d()3(π⎰-++-=22122d ))(3(a u u a a u a π223222)(42a u a a uu a ⎥⎦⎤⎢⎣⎡--+-=π274a π=⎰⎰∑++++2222)(zy x dxdya z axdydz⎰⎰⎰⎰∑∑+∑+++++-=12122)(1)(1dxdy a z axdydz a dxdy a z axdydz a 227333a a a πππ-=+-=3.现 设计一个容积为V 的圆柱体容器. 已知上下两底的材料费为单位面积a元,而侧面的材料费为单位面积b 元. 试给出最节省的设计方案;即高与的上下底直径之比为何值时所需费用最少?解 设圆柱体的底半径为r ,高为h ,则h r V 2π=,2rVh π=总造价为222r a rh b P ππ+=222r a rbVπ+=, 则2322242r r a bV r a r bV P ππ--=+-=',由0='P 知,解得312⎪⎭⎫⎝⎛=πa bV r ,312⎪⎭⎫ ⎝⎛=ππa bV V h , 因为是惟一的驻点,所以当3122323131222222:2⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=Vab a bV V a bV a bV V h r ππππππ 时,所需费用最少.4.已知 x x x f 33cos sin 1)(+=',)21,41(∈x ,求)(x f 解 因x x x f 33cos sin 1)(+=',)21,41(∈x ,故 ⎰+=x xx x f d cos sin 1)(33⎰+-+=x x x x x x x d )cos )(sin cos sin cos (sin 122⎰+-=x x x x x d )cos )(sin cos sin 1(1⎰+-=x x x d )4sin()2sin 211(21π⎰+⎪⎭⎫ ⎝⎛++=x x x d )4sin()22cos(211121ππ⎰+⎪⎭⎫ ⎝⎛++=x x x d )4sin()4(2cos 211121ππ 令)4(21π+=x t ,则⎰+=t tt x f d 2sin )4cos 211(2)(⎰+=t tt t d cos sin )4cos 2(2⎰-+=t t t t t d cos sin )2sin 2cos 2(222⎰+=t t t t t d cos sin )2sin 2cos 3(222 ⎰+-=t tt t t t t d cos sin )cos sin 4)sin (cos 3(222222⎰-++=t t t t t t t t t d cos sin )cos sin 2sin 3cos 3()cos (sin 22244222 ⎰-+++=t t t t t t t tt t t d cos sin )cos sin 2sin 3cos 3(cos sin 2sin cos 222442244⎰-+++=t t t t tt tan d tan )tan 2tan 33(tan 2tan 122424 令t u tan =,2u v =,则⎰-+++=u u u u u u x f d )233(212)(2424⎰-+++=224224d )233(2122u u u u u u ⎰-+++=v v v v v v d )233(212222⎰+-++=v v v v v v d )323(122222 令)()323(1222v R vAv v v v v +=+-++,则31=A ,)323(332336331)323(12)(22222+--+-++=-+-++=v v v v v v v v v v v v v v R )323(382+-=v v 因此⎰⎰+-+=323d 324d 62)(2v v vv v x f ⎰+-+=323d 324ln 622v v vv ⎰+-+=98)31(d 924ln 622v v v C v v +-+=32231arctan 3221924ln 62C v v +-+=2213arctan 32ln 62 C t t +-+=221tan 3arctan 32tan ln 6222C t t +-+=221tan 3arctan 32tan ln 6222C x x +-+++=221)82(tan 3arctan 32)82(tan ln 6222ππ 二、(10分)求下列极限1.⎪⎭⎫ ⎝⎛-+∞→e n n n n )11(lim解 设xx x f 1)1()(+=, 则))1ln()1(1()1()(21xx x x x x f x+-++=')1()1ln()1()(2x x x x x x f +++-= 原式=)(lim )1(lim010x f x e x x xx '=-+→→)()(lim )(lim 00x f x f x f x x '=→→)1()1ln()1(lim)(lim 20x x x x x x f x x +++-=→→20)1ln()1(limx x x x e x ++-=→22)1ln(lim 0e x x e x -=+-=→2.nnn n n c b a ⎪⎪⎪⎭⎫⎝⎛++∞→3lim 111,其中0>a ,0>b ,0>c 解 因300ln 3ln ln ln 3ln ln ln lim 33lim abc c b a c c b b a a x c b a x x x x x x x x =++=++=-++→→ 故 原式=333lim)13(1lim 10003lim abc ee c b a x c b a c b axxxx x x x x x x xx xx ===⎪⎪⎭⎫⎝⎛++-++-++→→→三、(10分)设)(x f 在1=x 处可导,0)1(=f ,2)1(='f ,求xx x x x f x tan )cos (sin lim 220++→ 解 设)(x f 在1=x 处可导,0)1(=f ,2)1(='f ,则xx x f x x f x x x x x f x x tan )1()cos (sin lim tan )cos (sin lim 220220+-+=++→→ 1cos sin )1()cos (sin lim 1cos sin lim tan lim 220220220-+-+-++=→→→x x f x x f x x x x x x x x x x 1cos sin )1()cos (sin lim 2sin cos sin 2lim cos 111lim220020-+-+-+=→→→x x f x x f x x x x xx x x 1cos sin )1()cos (sin lim 2sin cos sin 2lim 212200-+-+-=→→x x f x x f x x x x x x 1cos sin )1()cos (sin lim 21cos 2lim sin lim 2122000-+-+-=→→→x x f x x f x x x x x x1cos sin )1()cos (sin lim 41220-+-+=→x x f x x f x 1)1()(lim 411--=→t f t f t )1(41f '=21= 四、(10分)设)(x f 在),0[+∞上连续,⎰+∞0d )(x x f 收敛,求⎰+∞→yy x x xf y 0d )(1lim.解 令⎰=xt t f x G 0d )()(,则因⎰+∞0d )(x x f 收敛,故)(lim y G y +∞→,不妨设R A y G y ∈=+∞→)(lim ,则[]}d )()(1{lim )(d 1lim d )(1lim0000⎰⎰⎰-==+∞→+∞→+∞→y yy y y y y x x G x xG yx G x y x x xf y)d )(1)((lim 0⎰-=+∞→yy x x G yy G ⎰+∞→-=yy x x G y A 0d )(1lim 0)(lim =-=-=+∞→A A y G A y五、(12分)设函数)(x f 在]1,0[上连续,在)1,0(内可微,且0)1()0(==f f ,1)21(=f ,证明:(1)存在⎪⎭⎫⎝⎛∈1,21ξ使得ξξ=)(f ;(2)存在()ξη,0∈使得1)()(+-='ηηηf f .证 (1)记x x f x F -=)()(,则函数)(x F 在]1,21[上连续,且1)1(-=F ,21)21(=F ,故由零点存在性定理知存在⎪⎭⎫⎝⎛∈1,21ξ使得0)(=ξF ,即ξξ=)(f . (2)因x x x f x f e x d )1)()((⎰+-'--x e x xe x x f e x x f e x x x x d d d )(d )(⎰⎰⎰⎰----+-'-= x e e x x f e x x f e x x x x d d )(d d )(⎰⎰⎰⎰----++-=x x xe x f e --+-=)(故令x e x x f x F --=))(()(, 则函数)(x F 在],0[ξ上连续,在()ξ,0内可微,0)0(=F ,0)(=ξF ,x x e x x f e x f x F -----'='))(()1)(()(, 故由罗尔定理知,存在()ξη,0∈使得0)(='ηF , 1)()(+-='ηηηf f .六、设)(x f 在),(+∞-∞上有定义,在0=x 的某邻域内有一阶连续导数,且0)(lim 0>=→a x x f x ,证明级数∑∞=-1)1()1(n n n f 条件收敛. 证 因 0)(lim>=→a xx f x ,故存在一个正数δ,使得当δ<-<00x 时,有 2)(aa x x f <-因此x x f a )(2<(δ<-<00x ),于是,当δ1>n 时, δ<-<010n ,nn f a 1)1(2<,n a n f 2)1(>,这表明级数∑∞=1)1(n n f 发散,即级数∑∞=-1)1()1(n n n f 发散.下证原级数收敛:由0)(lim0>=→a xx f x 知,0)(lim lim )(lim )0(000====→→→a x x f x x f f x x x ,0)(lim )0()(lim )0(00>==-='→→a xx f x f x f f x x由)(x f 在0=x 的某邻域内有一阶连续导数知,)(lim )0(0x f f a x '='=→,因此存在一个正数η,使得当η<-0x 时,有2)(aa x f <-' 因此)(20x f a '<<(),(ηη-∈x ). 特别地,)(x f 在),0(η上单调增,于是当η1>n 时,)1()11(n f n f <+,且0)0()1(lim ==∞→f nf .最后由Leibniz 判别法知,原级数收敛.综上可知,原级数条件收敛.六、(14分)设1>n 为整数,⎰⎪⎪⎭⎫ ⎝⎛++++=-x n tt n t t t e x F 02d !!2!11)( ,证明:方程 2)(n x F =在⎪⎭⎫⎝⎛n n ,2内至少有一个根. 证 记!!2!11)(2n t t t t p nn ++++= ,)!!2!11()(2n t t t e t r ntn ++++-= ,则)()(t r e t p n t n -=,且当0>t 时,0)(>t p n , 0)(>t r n ,0)(>-t r e n t .记2)()(n x F x -=ψ,则⎰--=n n t t t r e nx 0d )(2)(ψ,因⎰⎪⎪⎭⎫⎝⎛++++=-x n tt n t t t e x F 02d !!2!11)( ,故函数)(x ψ在],2[n n 上连续,在⎪⎭⎫⎝⎛n n ,2内可微,且2)2()2(n n F n -=ψ⎰⎰<-=--=--20200d )(2d ))(1(nn t n n tt t r e n t t r e ,2d )()(0nt t p e n nn t -=⎰-ψ⎰⎰⎰⎰----+-=+--=202220d )(d )(d )(2d ))(1(n nn n t n t n n n t n n t tt p e t t r e tt p e nt t r e⎰⎰++-=---20202d )2(d )(n n n n t n tt n t p et t r e⎰⎰+++-=---20202d )2(d )!1(1nnn nt t t n t p e t e e n ξ ⎰⎰+-++-=+---202022d ))2((d )!1(1nnn nt nt t t n t r e e t e e n ξ ⎰⎰+---+-+-=202022d )!1(1d )!1(121nnnnt t t e e n t e e n n ξξ ⎰⎰--+-+-=2020d )!1(1d )!1(121n nt t t e e n t e e n n ξξ ⎰-+->202d )!1(22n nt t e e n n []202)!1(22nt ne e n n -++= )1()!1(222-+-=ne n n )!1(2)!1(222+++-=n n e n n )!1(22)!1(2222+-=+->n en n e n n n012>->n(若2>n ,则左边的两个不等式都成立) ()()⎰⎰-+-=-+=-=--101021d 121d 121)1()1(t te t t t e F ψ()[]⎰-++-=--101021d 1t e e t t t 032321)1(2111>-=--+-=--ee e 031)2(>->eψ01223!4223)3(1223144144314923232333>-=->⇒>⇒>>>e e e e ψ 01232452!522)4(2>->->->e e e ψ,0122212e e 12)(>->++->n n n n n e n n ψ 故由零点存在性定理知, 存在),2(n n ∈ξ使得0)(=ξψ, 即2)(nF =ξ.七、(12分)是否存在R 中的可微函数)(x f 使得53421))((x x x x x f f --++=? 若存在,请给出一个例子;若不存在,请给出证明.解 不存在假如存在R 中的可微函数)(x f 使得54321))((x x x x x f f -+-+=,则4325432)))((x x x x x f x f f -+-=''(, 若1)1(=f ,则025432)1))1(()]1[2<-=-+-=''='((f f f f 矛盾。

2010年大学生数学竞赛试题及解答

2010年大学生数学竞赛试题及解答

(1)计算积分222,0,0.xxee dx xαβαβ--+∞->>⎰解 方法一 直接利用分部积分法得222xxee dx xαβ--+∞-⎰221()()xxeedx xαβ+∞--'=--⎰221(22)()xxxexe dx xαβαβ+∞--=--+-⎰22(22)xxeedx αβαβ+∞--=--⎰)22(2πβπα⋅-⋅-=)(αβπ-=;方法二 不妨设0αβ<<,由于dyexe e yxxx⎰---=-βαβα2222,而积分2yxe dx +∞-⎰关于y 在[,]αβ上一致收敛,故可交换积分次序222xxee dx xαβ--+∞-⎰2yxdx edy βα+∞-=⎰⎰2yxdy edxβα+∞-=⎰⎰dy y⎰=βαπ21)(αβπ-=;方法三 将0β>固定,记222(),0xxee I dx xαβαα--+∞-=>⎰ , 可证()I α在(0,)+∞上收敛.设[,),0αδδ∈+∞> , 因为22xxe eαδ--≤,而2xedx δ∞-⎰+0收敛,所以由Weierstrass 判别法知道2xedx α∞-⎰+0对[,)αδ∈+∞一致收敛.所以可以交换微分运算和积分运算的次序, 即222()()xxee I dx xαβαα--+∞∂-'=∂⎰2()xedx α+∞-=-⎰12πα=-.由δ的任意性,上式在(0,)+∞上成立. 所以 ()I C απα=-+,由于()0,,I C βπβ==所以)()(αβπα-=I ,即dx xe exx⎰∞+---0222βα)(αβπ-=.(2)若关于x 的方程211kx x +=,()0k >在区间()0,+∞内有唯一的实数解,求常数k.解:设()211f x kx x=+-,则有()32f x k x'=-,当1320,x k ⎛⎫⎛⎫ ⎪∈ ⎪ ⎪⎝⎭⎝⎭时,()0f x '<;当132,x k ⎛⎫⎛⎫ ⎪∈+∞ ⎪ ⎪⎝⎭⎝⎭时,()0f x '>. 由此()f x 在132x k ⎛⎫= ⎪⎝⎭处达到最小值,又()211f x kx x=+-在()0,+∞内有唯一的零点,必有1320f k ⎛⎫⎛⎫ ⎪= ⎪ ⎪⎝⎭⎝⎭,13322102k k k ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭, 3212331214k ⎛⎫⎛⎫ ⎪+= ⎪ ⎪⎝⎭⎝⎭,22714k ⋅=, 所以233k =.(3)设函数()f x 在区间[],a b 上连续,由积分中值公式,有()()()xaf t dt x a f ξ=-⎰,()a x b ξ≤≤≤,若导数()f a +'存在且非零,求lim x aax aξ+→--.解:()()()()()()()xaf t f a dt x a f f a ξ-=--⎰,()()()()()()21xaaa f t f a dt x af f a x a ξξξ--=⋅----⎰, 由条件,可知()()()1l i m x aaf f a f a ξξ+→+-='-,()()()()()()()()21lim lim 22xax ax af t f a dtf x f a f a x a x a +++→→--'==--⎰,故有1lim 2x aax aξ+→-=-.二、设函数()f x 在0x =附近可微,()00f =,()0f a '=,定义数列22212n n x f f f n n n ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.证明:{}n x 有极限并求其值.证明:由导数的定义, 对于任意0ε>,存在0δ>,当0||x δ<<时,有()f x a xε-<.于是()()()a x f x a x εε-<<+,()0x δ<<从而,当1nδ->时,有21k nnδ<<,()()222kk k a f a n n n εε⎛⎫-<<+ ⎪⎝⎭,其中1,2,,k n = .对于上式求和,得到()()2211nnn k k k k a x a nnεε==-<<+∑∑,即()()1122n n n a x a nnεε++-<<+,令n →∞,有()()11lim lim 22nn n n a x x a εε→∞→∞-≤≤≤+,由0ε>的任意性,得到 lim 2n n a x →∞=.设()f x 在()1,1-上有定义,在0x =处可导,且()00f =.证明:()210lim2nn k f k f n →∞='⎛⎫= ⎪⎝⎭∑.三、设函数f在[0,)+∞上一致连续,且对任何[0,1]x ∈,有()0limn f x n →∞+=,证明:()0lim x f x →+∞=。

2010年全国高中数学联合竞赛试题及解答.(A卷)

2010年全国高中数学联合竞赛试题及解答.(A卷)

2010 年全国高中数学联合竞赛试题(A 卷)
第 1 页 共 12 页
3a 5 b3 ,且存在常数 , 使得对每一个正整数 n 都有 a n log bn ,则
◆答案:
3
3 3
2
★解析:设 {a n } 的公差为 d , {bn } 的公比为 q ,则 3 d q, (1) , 3(3 4d ) q (2) (1)代入(2)得 9 12d d 6d 9 ,求得 d 6, q 9 . 从而有 3 6( n 1) log 9
h( z ) h( z ) 3a 2 3a 2 , 即0 z b c 1 2, 2 4 4 3a 3a 8 b c 1 0 , z 2 2 ,由 0 z 2 1 知 a . 从而 4 4 3 8 3 8 2 又易知当 f ( x ) x 4 x x m ( m 为常数)满足题设条件,所以 a 最大值为 . 3 3 0
2010 年全国高中数学联合竞赛试题(A 卷) 第 4 页 共 12 页

8 . 3
解法二: f ( x ) 3ax 2bx c .
2
设 g ( x ) f ( x ) 1 ,则当 0 x 1 时, 0 g ( x ) 2 .
设 z 2 x 1 ,则 x
2
x1 x 2 y y2 , 2, y 0 1 2 2
k AB
y 2 y1 y y1 6 3 . 22 2 x 2 x1 y 2 y1 y 0 y 2 y1 6 6 y0 ( x 2) . (1) 3
线段 AB 的垂直平分线的方程是 y y 0
2010A 10、 (本题满分 20 分) 已知抛物线 y 6 x 上的两个动点 A( x1 , y1 ) 和 B ( x 2 , y 2 ) , 其中 x1 x 2 且 x1 x 2 4 ,线段 AB 的垂直平分线与 x 轴交于点 C ,求 ABC 的面积的最大值。 ★解析:解法一:设线段 AB 的中点为 M ( x 0 , y 0 ) ,则 x 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国民航大学 高等数学竞赛试卷答案 (2010年)一. 填空题 (每题3分,共30分)1.已知函数⎩⎨⎧>≤=1||01||1)(x x x f ,则函数=)]([x f f .解:1)]([=x f f .2.函数222111)(xx x x x f +--=的间断点是 ,它们的类型分别为 .解:0=x 和1±=x .0=x 是跳跃间断点,1-=x 是无穷间断点,1=x 是可去间断点.由于111)1(lim )(lim 2200-=-+--=--→→x x x x f x x ,111)1(lim )(lim 2200=-+-=++→→x x x x f x x ; +∞=--→)(lim 1x f x ,-∞=+-→)(lim 1x f x ;22111lim )(lim 211=++=--→→x x x x f x x ,22111lim )(lim 211=++=++→→xx x x f x x .因此0=x 是跳跃间断点,1-=x 是无穷间断点,1=x 是可去间断点.3.设⎪⎩⎪⎨⎧<-≥+=02sin 10)1ln()(2x x e x ax x f x b 在0=x 可导,则=a ,=b .解:212lim 2sin 1lim )0()(lim )0(220002==-=-='---→→→-x x x x e x f x f f x x x x ; a xax x ax x f x f f bx b x x ==+=-='+++→→→+000lim )1ln(lim )0()(lim )0((仅当1=b ).)0(-'f =)0(+'f ,故21=a ,1=b .4.函数)0(1)(2>='x xx f ,则=)(x f .解:1)(2='x f x C x dx x f x x f 21)()(2122+='=⇒⎰C x x f +=⇒2)(.5.设)(x f 在1=x 处连续,且2)1(5)(lim1=-→x x f x ,则)1(f '= .解:由条件可知0)(lim )1(1==→x f f x ,2)1(51)1(5)1()(lim )1(5)(lim11='=--=-→→f x f x f x x f x x ,因此)1(f '=10 .6.设y 是由方程⎰=+xyx t ye dt e 022所确定的隐函数,则0|=x dxdy= . 解:在方程⎰=+xyx t ye dt e 022中取0=x ,得2)0(=y .方程两边对x 求导,得:0)()(22='++'+y y e e y x y x y x ,代入0=x ,2)0(=y ,得4|0-==x dxdy.7.设⎰+++=1022)()1(11)(dx x f x xx f ,则⎰10)(dx x f = . 解:令⎰=10)(dx x f A ,则A x xx f )1(11)(22+++=两边从0到1积分,得: A x x A x dx x f A 344|)31(|arctan )(1031010+=++==⎰π, π43)(10-==⇒⎰dx x f A .8.定积分⎰-20244dx x x = .解:令t x sin 2=,则dt t t tdt t t dx x x)sin 1(sin 2cos 2cos 2)sin 2(42246204224-=⋅⋅=-⎰⎰⎰ππππ22]2461352413[26=⨯⨯⨯⨯⨯-⨯⨯⨯= . 9.对数螺线θe r =在点)2,(2ππe 处的切线方程是 .解:⎪⎩⎪⎨⎧==θθθθsin cos e y e x ,1|sin cos cos sin |22-=-+===πθπθθθθx dx dy ,因此切线方程为: )0(2--=-x e y π,即2πe y x =+ .10.设1||=a ,1||=b ,a 与b 的夹角30),(=∧b a ,则以b a 2+和b a +3 为邻边的平行四边形面积S = .解:由向量外积的几何意义可得:2521115||5|)3()2(|=⨯⨯⨯=⨯=+⨯+=b a b a b a S.二. 计算下列各题(每题5分,共30分)解:解:原式=])()2()1[(1lim 313131n n n n n n +++∞→ =n nk nk n 1)(lim 131⋅∑=∞→=⎰1031dx x =.433.设x x y ln =,求)1()(n f解:使用莱布尼兹高阶导数公式121)1()()()!2()1()!1()1()(ln )(ln )(------+--=+=n n n n n n n xn n x n x x n x x x f =121121)!2()1(])1([)!2()1(-------=+----n n n n n xn x n x n n所以)!2()1()1(2)(--=-n f n n .4. 解:.)sin 1tan 1(lim .1310x x x x ++→310)]1sin 1tan 1(1[lim x x x x -+++=→原式310]sin 1sin tan 1[lim x x x x x +-+=→301sin 1sin tan limx x x x x ⋅+-→ 301cos )sin 1()cos 1(sin lim x x x x x x ⋅+-=→x x x x x x x cos )sin 1(1cos 1sin lim 20+⋅-⋅=→⋅=21.321lim .2353330n n n ++++→ .)1ln(arctan 2⎰+dx x x x 求dx x x )1ln(2⎰+ )1()1ln(2122x d x ++=⎰.21)1ln()1(21222C x x x +-++=]21)1ln()1(`21[arctan 222x x x xd -++=⎰原式x x x x arctan ])1ln()1[(`21222-++=dx x x x ]1)1[ln(21222+-+-⎰5. 解:6.⎰+∞++0)1)(1(1dx x x x 求解法一:令u x =,则⎰⎰+∞+∞++=++020)1)(1(12)1)(1(1du u u dx x x x⎰⎰⎰+∞+∞+∞+-++=++=02002)1(1)1(1)1)(1(1du u u du u du u u 22|11ln |]arctan )1ln(21)1[ln(0202ππ=+++=++-+=∞+∞+uu u u u .].3)1ln()1[(`arctan 21222--++=x x x x .2)1ln(22C x x x +++-.},1max{⎰dx x 求},,1max{)(x x f =设,1,11,11,)(⎪⎩⎪⎨⎧>≤≤--<-=x x x x x x f 则,),()(上连续在+∞-∞x f ).(x F 则必存在原函数.1,2111,1,21)(32212⎪⎪⎩⎪⎪⎨⎧>+≤≤-+-<+-=x C x x C x x C x x F 须处处连续,有又)(x F )21(lim )(lim 12121C x C x x x +-=+-+-→-→,21112C C +-=+-即)(lim )21(lim 21321C x C x x x +=+-+→→,12123C C +=+即,1C C =联立并令.1,2132C C C C +==+可得.1,12111,211,21},1max{22⎪⎪⎪⎩⎪⎪⎪⎨⎧>++≤≤-++-<+-=⎰x C x x C x x C x dx x 故解法二:令t x tan =,则⎰⎰⎰+=+⋅=++∞+2020220cos sin sin 2sec )tan 1(tan sec tan 2)1)(1(1ππdtt t t dt t t t t t dx x x x ⎰+=20cos sin sin πdt t t t 2cos sin cos 2020πππ==++⎰⎰dt dt t t t .(注:解法二利用了以下公式:⎰20)(sin πdt x f ⎰=20)(cos πdt t f )三. 求满足方程)()()(2121x f x f x x f =+的)(x f 表达式,其中1x 、2x 为任意实数,且已知2)0(='f . (本题7分) 解:由)()()(2121x f x f x x f =+,令021==x x ,则有0]1)0()[0(=-f f .于是有0)0(=f 或1)0(=f .如果0)0(=f ,则由导数定义有0)0()()0(lim )0()(lim )0(00=-=-='→→xf x f f x f x f f x x显然,这与已知2)0(='f 相矛盾,故舍去0)0(=f . 当1)0(=f 时,由导数定义有xx f f x f x f x x f x x f x f x x ∆-∆=∆-∆+='→∆→∆)()0()()(lim)()(lim )(00 x x f x f x ∆-∆=→∆1)()(lim 0x f x f x f x ∆-∆+=→∆)0()0()(lim 0)(2)0()(x f f x f ='= 由2)()(='x f x f 得2))((ln ='x f ,所以C x x f ln 2)(ln +=,故x ce x f 2)(=, 因为1)0(=f ,所以1=c ,故x e x f 2)(=.四. 求函数⎪⎩⎪⎨⎧<<∞-<≤+∞<≤=-0101)(321x x x x x e x f x 的导数. (本题5分)解:在各开区间内分别对)(x f 求导有⎪⎩⎪⎨⎧<<∞-<<+∞<<=-031021)(21x x x x x e x f x下面考察分界点0=x 与1=x 处的可导性. 当0=x 时,03lim )(lim )0(20=='='--→→-x x f f x x02lim )(lim )0(0=='='++→→+x x f f x x所以0)0(='f ,即)(x f 在0=x 处可导.当1=x 时,22lim )(lim )1(11=='='--→→-x x f f x x1lim )(lim )1(111=='='-→→+++x x x e x f f得≠'-)1(f )1(+'f ,故)(x f 在1=x 处不可导.因此⎪⎪⎩⎪⎪⎨⎧<<∞-<≤=+∞<<='-031021 1)(21x x x x x x e x f x 不存在 五. 求曲线与x 轴围成的封闭图形绕直线3=y 旋转所得的旋转体体积. (本题7分) 解:利用对称性,在第一象限故旋转体体积为:六. 对t 的不同取值,讨论函数2221)(xxx f ++=在区间),[∞+t 上是否有最大值或最小值,若存在最大值或最小值,求出其结果. (本题7分)解:显然)(x f 的定义域为:),(∞+-∞,22222)2()1)(2(2)2()21(2)2(2)(x x x x x x x x f +-+=++-+=',得驻点:1,221=-=x x . 于是有:x )2,(--∞ 2- ⎪⎭⎫ ⎝⎛--212 21- ⎪⎭⎫ ⎝⎛-1,21 1 ),1(∞+ y ' - 0 + + + 0 - y ↘ 极小值21- ↗ 0 ↗ 极大值1 ↘132--=x y ⎩⎨⎧=y ,22+x ,42x -10≤≤x 21≤<x =V 432⋅⋅πx x d )]2(3[21022⎰+--πxx d )]4(3[22122⎰---πy o 312x x d )1(2361022⎰--=πππ15448=又:0)(lim ,0)(lim ==-∞→+∞→x f x f x x .记)(t M 与)(t m 分别表示)(x f 在区间),[∞+t 上的最大值与最小值. 从上表不难看出:① 2-≤t 时,1)1()(,21)2()(==-=-=f t M f t m ;② 212-≤<-t 时,1)1()(,221)()(2==++==f t M ttt f t m ; ③ 121≤<-t 时,无1)1()(,)(==f t M t m ;④ t <1时,无2221)()(,)(ttt f t M t m ++==. 七. 平面通过两直线152211:1-=+=-z y x L 和21331:2+=+=z y x L 的公垂线L ,且平行于向量}1,0,1{-=c,试求此平面方程. (本题7分)解:显然,所求平面的法向量n 同时垂直于c和公垂线L 的方向向量,取}1,1,1{}2,3,1{}1,2,1{21-=⨯=⨯=s s s,则: }1,2,1{}1,0,1{}1,1,1{}{21=-⨯-=⨯⨯=c s s n为了求出平面上的某一点,只要确定公垂线上的一点.按照1L ,2L 的参数方程,可设公垂线L 与直线1L ,2L 分别交于点)5,22,1(+-+t t t A ,)12,33,(--λλλB ,则}62,123,1{------=t t t AB λλλ.因为AB 平行于s,所以162112311--=---=--t t t λλλ 解之得5,6==λt ,从而)11,10,7(A ,故所求平面方程为:0)11()10(2)7(=-+-+-z y x ,即0382=-++z y x .八. 设函数)(x f 在]1,0[上二阶可导,0)1()0(==f f ,且)(x f 在]1,0[ 上的最小值为1-,证明:至少存在)1,0(∈ξ,使8)(≥''ξf .证明:由已知,存在)1,0(∈c ,使得1)(-=c f 是)(x f 在]1,0[上的最小值,即为极小值,所以0)(='c f 。

相关文档
最新文档