选修1—1 第一章 常用逻辑用语 第二章 圆锥曲线与方程 单元测试卷
高中数学选修1-1第二章《圆锥曲线与方程》单元测试卷及答案2套

高中数学选修一第二章《圆锥曲线与方程》单元测试卷及答案2套单元测试卷一(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是( ) A.14 B.12C .2D .4 2.设椭圆x 2m 2+y 2n 2=1 (m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为( )A.x 212+y 216=1B.x 216+y 212=1C.x 248+y 264=1 D.x 264+y 248=1 3.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.x 236-y 2108=1B.x 29-y 227=1 C.x 2108-y 236=1 D.x 227-y 29=1 4.P 是长轴在x 轴上的椭圆x 2a 2+y 2b2=1上的点,F 1、F 2分别为椭圆的两个焦点,椭圆的半焦距为c ,则|PF 1|·|PF 2|的最大值与最小值之差一定是( )A .1B .a 2C .b 2D .c 25.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.x 24-y 24=1B.y 24-x 24=1C.y 24-x 28=1 D.x 28-y 24=1 6.设a >1,则双曲线x 2a 2-y 2a +12=1的离心率e 的取值范围是( )A .(2,2)B .(2,5)C .(2,5)D .(2,5)7.过点M (2,4)作直线与抛物线y 2=8x 只有一个公共点,则这样的直线的条数是( ) A .1 B .2 C .3 D .08.设F 为抛物线y 2=4x 的焦距,A 、B 、C 为该抛物线上三点,若FA →+FB →+FC →=0,则FB →|+|FB →|+|FC →|等于( )A .9B .6C .4D .39.已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)10.若动圆圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过定点( )A .(4,0)B .(2,0)C .(0,2)D .(0,-2)11.抛物线y =x 2上到直线2x -y =4距离最近的点的坐标是( )A.(32,54) B .(1,1)C. (32,94) D .(2,4)12.已知椭圆x 2sin α-y 2cos α=1 (0≤α<2π)的焦点在y 轴上,则α的取值范围是( )A.(34π,π)B.(π4 ,π)C.(π2 ,π)D.(π2 ,34π)二、填空题(本大题共4小题,每小题5分,共20分)13.椭圆的两个焦点为F 1、F 2,短轴的一个端点为A ,且三角形F 1AF 2是顶角为120°的等腰三角形,则此椭圆的离心率为________.14.点P (8,1)平分双曲线x 2-4y 2=4的一条弦,则这条弦所在直线的方程是______________.15.设椭圆x 2a 2+y 2b 2=1 (a >b >0)的左、右焦点分别是F 1、F 2,线段F 1F 2被点(b2,0)分成3∶1的两段,则此椭圆的离心率为________.16.对于曲线C :x 24-k +y 2k -1=1,给出下面四个命题:①曲线C 不可能表示椭圆;②当1<k <4时,曲线C 表示椭圆;③若曲线C 表示双曲线,则k <1或k >4;④若曲线C 表示焦点在x 轴上的椭圆,则1<k <52.其中所有正确命题的序号为________. 三、解答题(本大题共6小题,共70分)17.(10分)已知点M 在椭圆x 236+y 29=1上,MP ′垂直于椭圆焦点所在的直线,垂足为P ′,并且M 为线段PP ′的中点,求P 点的轨迹方程.18.(12分)双曲线C 与椭圆x 28+y 24=1有相同的焦点,直线y =3x 为C 的一条渐近线.求双曲线C 的方程.19.(12分)直线y =kx -2交抛物线y 2=8x 于A 、B 两点,若线段AB 中点的横坐标等于2,求弦AB 的长.20.(12分)已知点P (3,4)是椭圆x 2a 2+y 2b2=1 (a >b >0)上的一点,F 1、F 2为椭圆的两焦点,若PF 1⊥PF 2,试求:(1)椭圆的方程; (2)△PF 1F 2的面积.21.(12分)已知过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A 、B 两点,且|AB |=52p ,求AB 所在的直线方程.22.(12分)在直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4,设点P 的轨迹为C ,直线y =kx +1与C 交于A 、B 两点.(1)写出C 的方程;(2)若OA →⊥OB →,求k 的值.答案1.A 2.B 3.B 4.D 5.B 6.B 7.B8.B 9.C 10.B 11.B 12.D13.3214.2x -y -15=015.2216.③④17.解 设P 点的坐标为(x ,y ),M 点的坐标为(x 0,y 0).∵点M 在椭圆x 236+y 29=1上,∴x 2036+y 209=1.∵M 是线段PP ′的中点,x 0=x , x 0=x ,∴ y 0=y 2, 把 y 0=y2,代入x 2036+y 209=1,得x 236+y 236=1,即x 2+y 2=36. ∴P 点的轨迹方程为x 2+y 2=36.18.解 设双曲线方程为x 2a 2-y 2b2=1.由椭圆x 28+y24=1,求得两焦点为(-2,0),(2,0),∴对于双曲线C :c =2.又y =3x 为双曲线C 的一条渐近线, ∴b a=3,解得a 2=1,b 2=3,∴双曲线C 的方程为x 2-y 23=1.19.解 将y =kx -2代入y 2=8x 中变形整理得:k 2x 2-(4k +8)x +4=0, 由⎩⎪⎨⎪⎧k ≠04k +82-16k 2>0,得k >-1且k ≠0. 设A (x 1,y 1),B (x 2,y 2),由题意得:x 1+x 2=4k +8k2=4⇒k 2=k +2⇒k 2-k -2=0.解得:k =2或k =-1(舍去) 由弦长公式得:|AB |=1+k 2·64k +64k 2=5×1924=215. 20.解 (1)令F 1(-c,0),F 2(c,0),则b 2=a 2-c 2.因为PF 1⊥PF 2,所以kPF 1·kPF 2=-1,即43+c ·43-c=-1,解得c =5,所以设椭圆方程为x 2a 2+y 2a 2-25=1.因为点P (3,4)在椭圆上,所以9a 2+16a 2-25=1.解得a 2=45或a 2=5.又因为a >c ,所以a 2=5舍去. 故所求椭圆方程为x 245+y 220=1.(2)由椭圆定义知|PF 1|+|PF 2|=65, ①又|PF 1|2+|PF 2|2=|F 1F 2|2=100, ② ①2-②得2|PF 1|·|PF 2|=80,所以S △PF 1F 2=12|PF 1|·|PF 2|=20.21.解 焦点F (p2,0),设A (x 1,y 1),B (x 2,y 2),若AB ⊥Ox ,则|AB |=2p <52p ,不合题意.所以直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k (x -p2),k ≠0.由⎩⎪⎨⎪⎧y =k x -p 2,y 2=2px消去x ,整理得ky 2-2py -kp 2=0.由韦达定理得,y 1+y 2=2p k,y 1y 2=-p 2. ∴|AB |=x 1-x 22+y 1-y 22= 1+1k2·y 1-y 22=1+1k2·y 1+y 22-4y 1y 2=2p (1+1k 2)=52p .解得k =±2.∴AB 所在的直线方程为y =2(x -p 2)或y =-2(x -p2).22.解 (1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3)、(0,3)为焦点,长半轴为2的椭圆,它的短半轴b =22-32=1,故曲线C 的方程为x 2+y24=1.(2)设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1.消去y 并整理得(k 2+4)x 2+2kx -3=0. 其中Δ=4k 2+12(k 2+4)>0恒成立.故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4.OA →⊥OB →,即x 1x 2+y 1y 2=0.而y 1y 2=k 2x 1x 2+k (x 1+x 2)+1,于是x 1x 2+y 1y 2=-3k 2+4-3k 2k 2+4-2k2k 2+4+1=0,化简得-4k 2+1=0,所以k =±12.单元测试卷二(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )A.x 281+y 272=1 B.x 281+y 29=1C.x 281+y 245=1 D.x 281+y 236=1 2.平面内有定点A 、B 及动点P ,设命题甲是“|PA |+|PB |是定值”,命题乙是“点P 的轨迹是以A 、B 为焦点的椭圆”,那么甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.设a ≠0,a ∈R ,则抛物线y =ax 2的焦点坐标为( )A.(a 2,0) B .(0, 12a )C. (a 4,0) D .(0, 14a)4.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是( )A .x 2+y 2=2B .x 2+y 2=4C .x 2+y 2=2(x ≠±2)D .x 2+y 2=4(x ≠±2)5.已知椭圆x 2a 2+y 2b2=1 (a >b >0)有两个顶点在直线x +2y =2上,则此椭圆的焦点坐标是( )A .(±3,0)B .(0,±3)C .(±5,0)D .(0,±5)6.设椭圆x 2m 2+y 2m 2-1=1 (m >1)上一点P 到其左焦点的距离为3,到右焦点的距离为1,则椭圆的离心率为( )A.22B.12C.2-12D.347.已知双曲线的方程为x 2a 2-y 2b2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,F 1为另一焦点,则△ABF 1的周长为( )A .2a +2mB .4a +2mC .a +mD .2a +4m8.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的距离为d 2,则d 1+d 2的最小值是( )A.125 B.65 C .2 D.559.设点A 为抛物线y 2=4x 上一点,点B (1,0),且|AB |=1,则A 的横坐标的值为( ) A .-2 B .0C .-2或0D .-2或210.从抛物线y 2=8x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△PFM 的面积为( )A .5 6B .6 5C .10 2D .5 211.若直线y =kx -2与抛物线y 2=8x 交于A ,B 两个不同的点,且AB 的中点的横坐标为2,则k 等于( )A .2或-1B .-1C .2D .1± 512.设F 1、F 2分别是双曲线x 25-y 24=1的左右焦点。
苏教版高中数学选修1-1同步全解答案

选修1-1参考答案第一章 常用逻辑用语 第一节 针对训练答案:1.必要不充分 2. 32,10x x x ∃∈-+>R 3 若12,m m+≥则m>0 4 _存在矩形对角线不相等 5 ②③④ ①正确, ②中B ≤0时不成立, ③中的定义域为φ, ④中应是随机抽样. 6 ②④ 7 必要不充分 8充分而不必要条件 9 ② ③ 10,11a b a b ≤-≤-若则 11充分不必要 12充分非必要 13 (3)14 C 15A 16 2,217A 18C 19 A 20 逆命题:若有两个不等实根则(假) 否命题:若则没有两个不等实根(假) 逆否命题:若没有两个不相等实根则(真)21D 22A 23 A 24B 25A 26D 27C 28. D 29. A 30 D 31. C . 32. 33. 真命题:或,非;假命题:且,非 第二节 针对训练1B2.D 原命题是真命题,所以逆否命题也为真命题3.A ①,仅仅是充分条件 ② ,仅仅是充分条件;③,仅仅是充分条件4.B “”为假,则为真,而(且)为假,得为假 5.D 当时,都满足选项,但是不能得出 当时,都满足选项,但是不能得出6.B 当时,,所以“过不去”;但是在△中, ,即“回得来” 02=++c bx ax 0<ac 0≥ac 02=++c bx ax 02=++c bx ax 0≥ac 20<<m p q p p q q 220a b a b >>⇒>0a b >>⇒ba 11<330a b a b >>⇒>p ⌝p p q ∧q 1,0a b ==,A B 1a b +>0.5,0.5a b ==C 1a b +>0170A =001sin170sin102=<ABC 0001sin 30150302A A A >⇒<<⇒>7.D 当时,从不能推出,所以假,显然为真 8.解:而,即。
高中数学选修1-1第二章圆锥曲线与方程-单元测试-及答案

高中数学选修1-1第二章圆锥曲线与方程-单元测试-及答案高中数学选修1-1第二章圆锥曲线与方程 单元测试一、选择题(每小题5分,共60分) 1.椭圆122=+my x的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( )A .41B .21C .2D .4 2.过抛物线xy 42=的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则||AB 等于( ) A .10 B .8 C .6D .43.若直线y =kx +2与双曲线622=-y x的右支交于不同的两点,则k 的取值范围是( )A .315(-,)315 B .0(,)315 C .315(-,)0D .315(-,)1-4.(理)已知抛物线xy 42=上两个动点B 、C 和点A (1,2)且∠BAC =90°,则动直线BC 必过定点( )A .(2,5)B .(-2,5)C .(5,-2) D .(5,2) (文)过抛物线)0(22>=p px y的焦点作直线交抛物线于1(x P ,)1y 、2(x Q ,)2y 两点,若px x 321=+,则||PQ 等于( ) A .4p B .5p C .6pD .8p5.已知两点)45,4(),45,1(--N M ,给出下列曲线方程:①0124=-+y x ;②322=+y x;③1222=+y x ;④1222=-y x .在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( )(A )①③ (B )②④ (C )①②③ (D )②③④ 6.已知双曲线12222=-by a x (a >0,b >0)的两个焦点为1F 、2F ,点A 在双曲线第一象限的图象上,若△21F AF 的面积为1,且21tan 21=∠FAF ,2tan 12-=∠F AF ,则双曲线方程为( ) A .1351222=-y x B .1312522=-y x C .1512322=-y xD .1125322=-y x7.圆心在抛物线)0(22>=y x y上,并且与抛物线的准线及x 轴都相切的圆的方程是( ) A .041222=---+y x y x B .01222=+-++y x y xC .01222=+--+y x y xD .041222=+--+y x y x8.双曲线的虚轴长为4,离心率26=e ,1F 、2F 分别是它的左、右焦点,若过1F 的直线与双曲线的右支交于A 、B 两点,且||AB 是||2AF 的等差中项,则||AB 等于( ) A .28 B .24 C .22D .8.9.(理)已知椭圆22221a y x=+(a >0)与A (2,1),B (4,3)为端点的线段没有公共点,则a 的取值范围是( )A .2230<<aB .2230<<a 或282>aC .223<a 或 282>a D .282223<<a(文)抛物线)2(2)2(2+-=-m y x 的焦点在x 轴上,则实数m 的值为( )A .0B .23 C .2D .310.已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于N M ,两点, MN 中点横坐标为32-,则此双曲线的方程是( ) (A) 14322=-y x (B)13422=-y x (C)12522=-y x(D)15222=-y x11.将抛物线342+-=x xy 绕其顶点顺时针旋转090,则抛物线方程为( )(A )x y -=+2)1(2(B )2)1(2-=+x y (C )xy -=-2)1(2 (D )2)1(2-=-x y12.若直线4=+ny mx 和⊙O ∶422=+y x 没有交点,则过),(n m 的直线与椭圆14922=+y x 的交点个数( )A .至多一个B .2个C .1个D .0个二、填空题(每小题4分,共16分) 13.椭圆198log 22=+y x a 的离心率为21,则a =________. 14.已知直线1+=x y 与椭圆122=+ny mx)0(>>n m 相交于A ,B 两点,若弦AB 的中点的横坐标等于31-,则双曲线12222=-n y m x 的两条渐近线的夹角的正切值等于________.15.长为l (0<l <1)的线段AB 的两个端点在抛物线2x y =上滑动,则线段AB 中点M 到x 轴距离的最小值是________.16.某宇宙飞船的运行轨道是以地球中心F 为焦点的椭圆,测得近地点A 距离地面)km (m ,远地点B 距离地面)km (n ,地球半径为)km (R ,关于这个椭圆有以下四种说法:①焦距长为m n -;②短轴长为))((R n R m ++;③离心率Rn m mn e 2++-=;④若以AB 方向为x 轴正方向,F 为坐标原点,则与F 对应的准线方程为)())((m n R n R m x -++2-=,其中正确的序号为________. 三、解答题(共44分)17.(本小题10分)已知椭圆的一个顶点为A (0,-1),焦点在x 轴上.若右焦点到直线22=+-y x 的距离为3.(1)求椭圆的方程;(2)设椭圆与直线)0(≠+=k m kx y 相交于不同的两点M 、N.当AN AM =时,求m 的取值范围.18.(本小题10分)双曲线)0,0(12222>>=-b a by a x 的右支上存在与右焦点和左准线等距离的点,求离心率e 的取值范围.19.(本小题12分)如图,直线与抛物线2交于),(,),(2211y x B y x A 两点,与x 轴相交于点M ,且121-=y y .(1)求证:M 点的坐标为)0,1(; (2)求证:OB OA ⊥;(3)求AOB ∆的面积的最小值.y x20.(本小题12分)已知椭圆方程为1822=+y x ,射线xy 22=(x ≥0)与椭圆的交点为M ,过M 作倾斜角互补的两条直线,分别与椭圆交于A 、B 两点(异于M ).(1)求证直线AB 的斜率为定值;(2)求△AMB 面积的最大值.三、解答题(20分) 11.(本小题满分10分)已知直线l 与圆0222=++x y x 相切于点T ,且与双曲线122=-y x相交于A 、B 两点.若T 是线段AB 的中点,求直线l 的方程.12.(10分)已知椭圆2222b y a x +(a >b >0)的离心率36=e ,过点),0(b A -和)0,(a B 的直线与原点的距离为23.(1)求椭圆的方程.(2)已知定点)0,1(-E ,若直线)0(2≠+=k kx y 与椭圆交于C 、D 两点.问:是否存在k 的值,使以CD为直径的圆过E 点?请说明理由.圆锥曲线单元检测答案1. A2.B 3 D 4 理C 文A 5 D 6 A 7 D 8A 9 理B 文B 10 D 11 B 12 B13.24或69 14.34 15.42l 16.①③④ 17.(1)依题意可设椭圆方程为 1222=+y ax ,则右焦点F (,12-a )由题设322212=+-a 解得32=a故所求椭圆的方程为1322=+y x .1322=+y x ………………………………………………4分.(2)设P 为弦MN 的中点,由⎪⎩⎪⎨⎧=++=1322y x m kx y 得)1(36)13(222=-+++m mkx x k由于直线与椭圆有两个交点,,0>∆∴即 1322+<k m①………………6分13322+-=+=∴k mkx x x N M p 从而132+=+=k mm kx yp pmkk m x y k pp Ap 31312++-=+=∴ 又MNAP AN AM⊥∴=,,则kmk k m 13132-=++-即1322+=k m②…………………………8分把②代入①得 22m m > 解得 20<<m 由②得 03122>-=m k解得21>m .故所求m 的取范围是(2,21)……………………………………10分 18.设M )(0,0y x是双曲线右支上满足条件的点,且它到右焦点F 2的距离等于它到左准线的距离2MN ,即MNMF =2,由双曲线定义可知eMF MF eMNMF =∴=211……5分 由焦点半径公式得000x eaex aex ∴=-+ee e a -+=2)1(…………………………7分 而a ee e a ax ≥-+∴≥20)1( 即122≤--e e 解得1221+≤≤-e 但1211+≤<∴>e e ……………………………………10分19. (1 ) 设M 点的坐标为)0,(0x , 直线l 方程为0x my x +=, 代入x y =2得002=--x my y ① 21,y y 是此方程的两根,∴1210=-=y y x ,即M 点的坐标为(1, 0). (2 ) ∵ 121-=y y∴ 0)1(21212122212121=+=+=+y y y y y y y y y y x x∴ OB OA ⊥.(3)由方程①,m y y =+21, 121-=y y , 且 1||0==x OM , 于是=-=∆||||2121y y OM S AOB 212214)(21y y y y -+=4212+m ≥1, ∴ 当0=m 时,AOB ∆的面积取最小值1. 20.解析:(1)∵ 斜率k 存在,不妨设k >0,求出M (22,2).直线MA 方程为)22(2-=-x k y ,直线AB 方程为)22(2--=-x k y .分别与椭圆方程联立,可解出2284222-+-=k k k xA,2284222-++=k k k x B .∴22)(=--=--BA B A B A B A x x x x k x x y y . ∴22=AB k (定值).(2)设直线AB 方程为mx y +=22,与1822=+y x 联立,消去y 得mxx24162+)8(2=-+m .由0>∆得44<<-m ,且0≠m ,点M 到AB 的距离为3||m d =.设AMB ∆的面积为S . ∴2)216(321)16(321||41222222=≤-==⋅m m d AB S .当22±=m 时,得2max=S.11.解:直线l 与x 轴不平行,设l 的方程为 a ky x += 代入双曲线方程 整理得12)1(222=-++-a kay y k ……………………3分 而12≠-k ,于是122--=+=k aky y y B A T 从而12--=+=k a a ky x T T 即)1,1(22kak ak T --……5分Θ点T 在圆上 012)1()1(22222=-+-+-∴k a k a kak即22+=a k①由圆心)0,1(-'O .l T O ⊥' 得 1-=⋅'l TO k k 则 0=k或 122+=a k当0=k 时,由①得 la ∴-=,2的方程为 2-=x ;当122+=a k时,由①得 1=a lK ∴±=,3的方程为13+±=y x .故所求直线l 的方程为2-=x 或13+±=y x …………………………10分12.解:(1)直线AB 方程为:0=--ab ay bx . 依题意⎪⎪⎩⎪⎪⎨⎧=+=233622ba ab ac , 解得⎩⎨⎧==13b a ,∴ 椭圆方程为 1322=+y x .(2)假若存在这样的k 值,由⎩⎨⎧=-++=033222y x kx y ,得)31(2k +09122=++kx x .∴)31(36)12(22>+-=∆k k .① 设1(x C ,)1y 、2(x D ,)2y ,则⎪⎪⎩⎪⎪⎨⎧+=+-=+⋅2212213193112k x x k k x x ,② 而4)(2)2)(2(212122121+++=++=⋅x x k x x k kx kx yy .要使以CD 为直径的圆过点E (-1,0),当且仅当CE ⊥DE 时,则1112211-=++⋅x y x y ,即)1)(1(2121=+++x x y y .∴5))(1(2)1(21212=+++++x x k x x k .③将②式代入③整理解得67=k .经验证,67=k ,使①成立.综上可知,存在67=k ,使得以CD 为直径的圆过点E .。
人教A版选修1-1第一章常用逻辑用语综合检测题(解析版)

人教A 版选修1-1第一章常用逻辑用语综合检测题(解析版)一、单选题 1.命题“c R ,22ac bc <”的否定是( ).A .c R ∀∉,22ac bc ≥B .c R ∃∉,22ac bc ≥C .c R ,22ac bc ≥D .c R ∃∈,22ac bc ≥【答案】D 【分析】根据全称命题的否定是特称命题进行判断即可. 【详解】 因为命题“c R ,22ac bc <”为全称命题,所以其否定为特称命题,即c R ∃∈,22ac bc ≥.故选:D .2.已知命题p :∃x 0∈(1,+∞),0012x x +=;命题q :∀x ∈R ,9x 2﹣6x +2>0.那么下列命题不正确的是( ) A .p q ⌝∨ B .p q ∨⌝C .p q ⌝∨⌝D .p q ∨【答案】B 【分析】由命题描述知p 为假,q 为真,判断由它们用逻辑联结词构成命题的真假,进而确定假命题的选项即可. 【详解】当且仅当x 0=1时,0012x x +=,故命题p 为假;对于方程9x 2﹣6x +2=0的2(6)4920∆=--⨯⨯<.故命题q 为真,∴p ⌝为真,q ⌝为假,故选项中只有p q ∨⌝为假, 故选:B.3.“0a b >>”是“222a b ab +<”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【分析】由题意分别考查充分性和必要性是否成立即可. 【详解】2202a b a b ab >>⇒+>,充分性成立,222a b ab a b +<⇒≠,a ,b R ∈,必要性不成立,故选A .【点睛】本题主要考查了充分性和必要性的判断,属于基础题.4.已知命题,cos()cos p x R x x π∃∈-=:;命题2:,10q x R x ∀∈+>.则下面结论正确的是( ) A .p q ∧是真命题 B .p q ∧是假命题C .p ⌝是真命题D .p 是假命题【答案】A 【分析】先确定命题,p q 真假性,再判断复合命题真假性. 【详解】,cos()cos 2x x x ππ∃=-=∴命题,cos()cos p x R x x π∃∈-=:为真命题;2,110x R x ∀∈+≥>∴命题2:,10q x R x ∀∈+>为真命题;因此p q ∧是真命题,p ⌝是假命题, 故选:A 【点睛】本题考查判断命题真假以及复合命题真假,考查基本分析判断能力,属基础题. 5.已知集合A ={x |x >5},集合B ={x |x >a },若命题“x ∈A ”是命题“x ∈B ”的充分不必要条件,则实数a 的取值范围是( ) A .(-∞,5) B .(-∞,5] C .(5,+∞) D .[5,+∞)【答案】A 【解析】 【分析】由“x ∈A ”是命题 “x ∈B ”的充分不必要条件可得A 是B 的真子集,结合数轴即可得解. 【详解】由题意可知,A ⫋B ,又A ={x |x >5}, B ={x |x >a },如图所示, 由图可知,a <5. 故选:A. 【点睛】本题考查了充分必要条件,考查了命题语言和集合语言的转化,考查转化思想,整体计算量不大,属于简单题.6.设m R ∈,命题“若0m <,则方程20x x m ++=有实根”的逆否命题是( ) A .若方程20x x m ++=有实根,则0m < B .若方程20x x m ++=有实根,则0m ≥ C .若方程20x x m ++=没有实根,则0m < D .若方程20x x m ++=没有实根,则0m ≥ 【答案】D 【分析】直接利用逆否命题的定义写出结果判断选项即可. 【详解】“0m <”的否定是“0m ≥”,“方程2+0x x m +=有实根”的否定是“方程2+0x x m +=没有实根”, 因此原命题的逆否命题是“若方程2+0x x m +=没有实根,则0m ≥”, 故选:D . 【点睛】该题考查的是有关写出命题的逆否命题的问题,在解题的过程中,注意原命题与逆否命题之间的关系,原命题确定之后,其逆否命题的形式,属于基础题.7.已知命题p :()22xxf x -=+是偶函数,命题q :若21a ≤,则1a ≤,则下列命题为真命题的是( ) A .p q ∧ B .()p q ∧⌝ C .()p q ⌝∧ D .()()p q ⌝∧⌝【答案】A 【分析】根据函数的奇偶性的判断可得命题p 是真命题,利用不等式的解法可得命题q 为真命题,再由复合命题的真假判断可得选项. 【详解】 因为()()22xx f x f x --=+=,所以函数()f x 是偶函数,所以p 是真命题,p ⌝是假命题,又21a ≤,解得11a -≤≤,满足1a ≤,所以q 是真命题,q ⌝是假命题,所以p q ∧是真命题,()p q ∧⌝是假命题,()p q ⌝∧是假命题,()()p q ⌝∧⌝是假命题,故选:A.8.已知1:2310l x y +-=,2:320l mx y +-=,则命题“m ∃∈R ,使1l 与2l 平行”的否定是( )A .m ∃∈R ,使1l 与2l 平行B .m ∃∈R ,使1l 与2l 不平行C .m R ∀∈,使1l 与2l 平行D .m R ∀∈,使1l 与2l 不平行【答案】D 【分析】根据特称命题的否定变换形式即可得出结果. 【详解】命题“m ∃∈R ,使1l 与2l 平行”, 命题的否定:m R ∀∈,使1l 与2l 不平行, 故选:D9.下列选项叙述错误的是( )A .命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =”B .若命题:p x AB ∈,则命题p ⌝是x A ∉或x B ∉C .若p q ∨为真命题,则p ,q 均为真命题D .“2x >”是“2320x x -+>”的充分不必要条件【答案】C 【分析】根据逆否命题的定义,即可判断A 的正误;根据命题的否定,可判断B 的正误;根据“或”命题的性质,可判断C 的正误;根据充分、必要条件的定义,可判断D 的正误,即可得答案. 【详解】对于A :命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =”,故A 正确,所以A 不符合题意; 对于B :若命题:p x AB ∈,即x A ∈且x B ∈,则命题p ⌝是x A ∉或x B ∉,故B正确,所以B 不符合题意;对于C :若p q ∨为真命题,则p ,q 有一个为真命题或两个都为真命题,故C 错误,所以C 符合题意;对于D :因为2320x x -+>,所以2x >或1x <,所以2x >”是“2320x x -+>”的充分不必要条件,故D 正确,所以D 不符合题意. 故选:C10.有下列四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题;③“若1m ,则x 2﹣2x +m =0有实数解”的逆否命题; ④“若AB B =,则A B ⊂”的逆否命题.其中为真命题的是( ) A .①② B .②③ C .④ D .①②③【答案】D 【分析】根据四种的形式及命题的等价关系,逐项判定,即可求解. 【详解】①中,命题“若xy =1,则x ,y 互为倒数”的逆命题是 “若x ,y 互为倒数,则xy =1”是真命题,故①正确;②中,命题“面积相等的三角形全等”的否命题是:“面积不相等的三角形不全等”是真命题,故②正确;③中,命题若x 2﹣2x +m =0有实数解,则440m ∆=-≥,解得1m ,所以若1m ,可得x 2﹣2x +m =0有实数解”是真命题,所以“若1m ,则x 2﹣2x +m =0有实数解”的逆否命题是“若x 2﹣2x +m =0没有有实数解,则m >1”是真命题,故③正确;④中,若A ∩B =B ,则B A ⊆,故原命题错误,所以若A ∩B =B ,则A ⊂B ”的逆否命题是错误, 故④错误; 故选:D .11.若命题P :1x ≠或2y ≠,命题Q :3x y +≠,则P 是Q 的( )条件 A .充分不必要 B .必要不充分C .充要D .既不充分又不必有 【答案】B 【分析】通过举反例,判断出P 成立推不出Q 成立,通过判断逆否命题的真假,判断出原命题的真假得到后者成立能推出前者成立,由充分条件、必要条件的定义得到结论. 【详解】当0x =,3y =时,Q 不成立,即P Q ⇒不成立,即充分性不成立; 判断必要性时,写出原命题:1x ≠或2y ≠时,则3x y +≠, 由于原命题不好判断,故转化为逆否命题进行判断,即原命题变为:若3x y +=,则有1x =且2y =,对于该命题,明显成立,所以,原命题也成立;即必要性成立;所以P 是Q 的必要而不充分条件, 故选B 【点睛】关键点睛:判断一个命题是另一个命题的什么条件,一般先判断前者成立是否能推出后者成立,再判断后者成立能否推出前者成立;本题难点在于:利用逆否命题的真假性判断原命题的真假性,属于中档题.12.在整数集Z 中,被6除所得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{}6k n k n Z =+∈,1k =,2,3,4,5给出以下五个结论:①[]55-∈;②[][][][][][]012345=⋃⋃⋃⋃⋃Z ;③“整数a 、b 属于同一“类””的充要条件是“[]0a b -∈”;④“整数a 、b 满足[]1∈a ,[]2b ∈”的充要条件是“[]3+∈a b ”,则上述结论中正确的个数是( ) A .1 B .2C .3D .4【答案】B 【分析】根据“类”的定义逐一进行判断可得答案. 【详解】①因为[]{}565|n n Z =+∈,令655n +=-,得10563n =-=-Z ∉,所以[]55-∉,①不正确;②[][][][][][]012345⋃⋃⋃⋃⋃{}{}{}1122336|61|62|n n Z n n Z n n Z =∈+∈+∈{}4463|n n Z +∈{}5564|n n Z +∈{}6665|n n Z +∈Z =,故②正确;③若整数a 、b 属于同一“类”,则整数,a b 被6除所得余数相同,从而-a b 被6除所得余数为0,即[]0a b -∈;若[]0a b -∈,则-a b 被6除所得余数为0,则整数,a b 被6除所得余数相同,故“整数a 、b 属于同一“类””的充要条件是“[]0a b -∈”,所以③正确;④若整数a 、b 满足[]1∈a ,[]2b ∈,则161a n =+,1n Z ∈,262b n =+,2n Z ∈, 所以126()3a b n n +=++,12n n Z +∈,所以[]3+∈a b ;若[]3+∈a b ,则可能有[][]2,1a b ∈∈,所以“整数a 、b 满足[]1∈a ,[]2b ∈”的必要不充分条件是“[]3+∈a b ”,所以④不正确. 故选:B 【点睛】关键点点睛:对新定义的理解以及对充要条件的理解是本题解题关键.二、填空题13.设r 是q 的充分条件,s 是q 的充要条件,t 是s 的必要条件,t 是r 的充分条件,那么r 是t 的_____. 【答案】充要根据题目已知的关系,分别列出推出关系即可得解. 【详解】由题意知,r q ⇒,q s ⇔,s t ⇒,t r ⇒,所以r t ⇔. 故答案为:充要 【点睛】此题考查充分条件和必要条件的判断,根据已知条件的关系,利用推出关系进行分析.14.若“0[1,2],x ∃∈20010x ax -->”为真命题,则实数a 的取值范围为________.【答案】32a < 【分析】将问题转化为“001x a x ->在[]1,2能成立”,根据函数的单调性以及最值,计算出实数a 的取值范围. 【详解】因为0[1,2],x ∃∈20010x ax -->,所以001x a x ->在[]1,2能成立,所以00max 1a x x ⎛⎫<- ⎪⎝⎭且[]01,2x ∈,又因为()1f x x x=-在[]1,2上是增函数,所以()()max 132222f x f ==-=,所以32a <. 故答案为:32a <. 【点睛】本题考查已知特称命题的真假求解参数范围,难度较易.()f x a ≥区间上恒成立的问题可转化为()min f x a ≥;()f x a ≥区间上能成立的问题可转化为()max f x a ≥. 15.已知命题:p x ∃∈R ,||10m x +≤,若p ⌝为假命题,则实数m 的取值范围是________.【答案】{|0}m m < 【分析】p ⌝为假命题,则p 为真命题,对m 进行分类讨论,即可求得答案.若p ⌝为假命题,则p 为真命题.当0m ≥时,||110m x +≥>,p 为假命题;当0m <时,取2x m=,则2||112110m x m m -++==-+<=,p 为真命题. 因此若p ⌝为假命题,则实数m 的取值范围是{|0}m m <. 故答案为:{|0}m m <. 【点睛】本题考查含有一个量词的命题的否定及其真假性判断、不等式的性质,考查函数与方程思想,考查逻辑推理能力和运算求解能力,求解时注意参变分离法的运用. 16.下列几个命题①方程2(3)0x a x a +-+=有一个正实根,一个负实根,则0a <.②函数y =是偶函数,但不是奇函数.③函数()f x 的值域是[2,2]-,则函数(1)f x +的值域为[3,1]-.④ 设函数()y f x =定义域为R ,则函数(1)y f x =-与(1)=-y f x 的图象关于y 轴对称.⑤一条曲线2||3y x =-和直线()y a a R =∈的公共点个数是m ,则m 的值不可能是1. 其中正确的有___________________. 【答案】①⑤ 【详解】因为命题①中,利用根与系数的关系可知成立,命题②中,由于函数化简为y=0,因此是奇函数还是偶函数,故错误,命题③,值域不变,错误,命题④中,应该是关系与x=1对称,错误,命题⑤成立,故填写正确命题的序号为①⑤三、解答题17.已知0,1a a >≠,命题:p “函数()x f x a =在()0,∞+上单调递减”;命题:q “关于x 的不等式21204x ax -+≥对一切的x ∈R 恒成立”,若p q ∧为假命题,p q ∨为真命题,求实数a 的取值范围. 【答案】1,12⎛⎫⎪⎝⎭根据()f x 的单调递减,可得a 的取值范围;根据命题q 恒成立,可得a 的取值范围.由p q ∧为假命题,p q ∨为真命题可知命题p 与命题q 一真一假,通过分类讨论即可得a的取值范围. 【详解】p 为真:01a <<q 为真:2410a ∆=-≤,得1122a -≤≤又0,1a a >≠,102∴<≤a 因为p q ∧为假命题,p q ∨为真命题,所以,p q 命题一真一假(1)当p 真q 假0111122a a a <<⎧⎪⇒<<⎨>⎪⎩ (2)当p 假q 真1102a a >⎧⎪⎨<≤⎪⎩,无解综上,a 的取值范围是1,12⎛⎫⎪⎝⎭【点睛】本题考查了复合命题真假的关系,不等式分类讨论的应用,属于基础题. 18.设p :实数x 满足x 2-4ax +3a 2<0(其中a≠0),q :实数x 满足302x x -≤- (1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围. 【答案】(1) (2,3) (2) (1,2] 【详解】试题分析:(1)当a =1时,解得1<x <3,即p 为真时实数x 的取值范围是1<x <3. 2分由2260280x x x x ⎧--≤⎨+->⎩,得2<x≤3,即q 为真时实数x 的取值范围是2<x≤3. 4分 若p ∧q 为真,则p 真且q 真,5分 所以实数x 的取值范围是(2,3).7分(2)p 是q 的必要不充分条件,即q ⇒p ,且p/⇒q ,8分设A ={x|p(x)},B ={x|q(x)},则A ⊂B ,又B =(2,3],由x 2-4ax +3a 2<0得(x -3a)(x -a)<0,9分当a >0时,A =(a,3a),有233a a ≤⎧⎨<⎩,解得1<a≤2;11分 当a <0时,A =(3a ,a),显然A∩B =∅,不合题意.13分所以实数a 的取值范围是(1,2].15分考点:解不等式及复合命题,集合包含关系点评:复合命题p ∧q 的真假由命题p ,q 共同决定,当两命题中有一个是真命题时复合后为假命题,由若p 是q 的必要不充分条件可得集合p 是集合q 的真子集19.已知命题p :函数()log 1a y x =+在定义域上单调递增;命题q :不等式()()222210a x a x -+-+>对任意实数x 恒成立.(1)若q 为真命题,求实数a 的取值范围;(2)若“()p q ∧¬”为真命题,求实数a 的取值范围.【答案】(1)23a ≤<(2)()1,2[3⋃,).+∞【分析】(1)分类讨论2a =恒成立和20a ->时,0<,结果求并集;2p ()为真时,1a >;q ¬为真,即q 为假时,2a <或3a ≥,结果再相交.【详解】解(1)因为命题q :不等式()()222210a x a x -+-+>对任意实数x 恒成立为真命题,所以2a =或()2024(2)421023a a a a ->⎧=---⨯<⇒<<⎨⎩综上所述:23a ≤<(2)因为“()p q ∧¬为真命题,故p 真q 假.因为命题p :函数()log 1a y x =+在定义域上单调递增,所以 1.a >q 假,由()1可知2a <或3a ≥所以()[)2311,23,a a a a <≥⎧>⇒∈⋃+∞⎨⎩或 所以实数a 的取值范围为()1,2[3⋃,).+∞【点睛】本题考查了复合命题及其真假,属基础题.20.已知命题p :实数x 满足3a x a -<<(其中0a >),命题q :实数x 满足14x << (1)若1a =,且p 与q 都为真命题,求实数x 的取值范围;(2)若p 是q 的必要不充分条件,求实数a 的取值范围.【答案】(1)()1,3;(2)4,3⎡⎫+∞⎪⎢⎣⎭.【分析】记命题p :x A ∈,命题q :x B ∈(1)当1a =时,求出A ,B ,根据p 与q 均为真命题,即可求出x 的范围; (2)求出A ,B ,通过p 是q 的必要不充分条件,得出B A ⊆,建立不等式组,求解即可.【详解】记命题p :x A ∈,命题q :x B ∈(1)当1a =时,{}13A x x =-<<,{}14B x x =<<, p 与q 均为真命题,则x A B ∈,∴x 的取值范围是()1,3.(2){}3A x a x a =-<<,{}14B x x =<<, p 是q 的必要不充分条件,∴集合B A ⊆,∴134a a -≤⎧⎨≥⎩,解得43a ≥, 综上所述,a 的取值范围是4,3⎡⎫+∞⎪⎢⎣⎭. 【点睛】1.命题真假的判断(1)真命题的判断方法:真命题的判定过程实际就是利用命题的条件,结合正确的逻辑推理方法进行正确地逻辑推理的一个过程,判断命题为真的关键是弄清命题的条件,选择正确的逻辑推理方法.(2)假命题的判断方法:通过构造一个反例否定命题的正确性,这是判断一个命题为假命题的常用方法.(3)一些命题的真假也可以依据客观事实作出判断.2.从逻辑关系上看,若p q ⇒,但q p ⇒/,则p 是q 的充分不必要条件;若p q ⇒/,但q p ⇒,则p 是q 的必要不充分条件;若p q ⇒,且q p ⇒,则p 是q 的充要条件;若p q ⇒/,且q p ⇒/,则p 是q 的既不充分也不必要条件. 21.已知幂函数f (x )=(3m 2﹣2m )x 12m -在(0,+∞)上单调递增,g (x )=x 2﹣4x +t . (1)求实数m 的值;(2)当x ∈[1,9]时,记f (x ),g (x )的值域分别为集合A ,B ,设命题p :x ∈A ,命题q :x ∈B ,若命题q 是命题p 的必要不充分条件,求实数t 的取值范围.【答案】(1)m =1(2)﹣42≤t ≤5【分析】(1)利用幂函数的性质即可求解;(2)先求出()f x ,()g x 的值域A ,B ,再利用命题q 是命题p 的必要不充分条件可以推出“A ⫋B ,”,由此即可求解.【详解】(1)∵f (x )=(3m 2﹣2m )x 12m -为幂函数,且在(0,+∞)上单调递增; ∴2321102m m m ⎧-=⎪⎨-⎪⎩>⇒m =1; (2)由(1)可得12()f x x =,当x ∈[1,9]时,f (x )值域为:[1,3],g (x )=x 2﹣4x +t 的值域为:[t ﹣4,t +45],∴A =[1,3],B =[t ﹣4,t +45];∵命题p :x ∈A ,命题q :x ∈B ,且命题q 是命题p 的必要不充分条件,∴A ⫋B ,∴41453t t -≤⎧⎨+≥⎩425t ⇒-≤≤, 故实数t 的取值范围为[42,5]-.【点睛】本题考查了幂函数的性质以及条件的充分性与必要性,考查学生分析与推理能力,属于中档题.22.设a R ∈,命题2:[1,2],0p x x a ∃∈->,命题2:,10q x R x ax ∀∈++>.(1)若命题p 是真命题,求a 的范围;(2)若命题()p q ⌝∨为假,求a 的取值范围.【答案】(1)4a <(2)2a ≤-或24a ≤<.【分析】(1)根据存在性问题的求解方法,得到a 与2x 之间的关系,即可求解出a 的范围; (2)根据()p q ⌝∨为假,判断出,p q 的真假,列出对应的不等式即可求解出a 的取值范围.【详解】(1)当p 为真命题时,则()2max a x <在[1,2]x ∈成立,解得4a <,∴p 为真时4a <;(2)当q 为真命题时,则240a -<,解得22a -<<,由(1)知p 为真时4a <,由()p q ⌝∨为假可得p 为真q 为假,则42a a <⎧⎨≤-⎩或42a a <⎧⎨≥⎩,则2a ≤-或24a ≤<. 【点睛】本题考查根据命题、含逻辑联结词的复合命题的真假求解参数范围,难度较易.其中对于存在性的分析,是求解问题的关键:若()a f x <存在解,则()max a f x <;若()a f x >存在解,则()min a f x >.。
高中高二数学选修11第二章圆锥曲线与方程测试题-最新学习文档

高中高二数学选修1-1第二章圆锥曲线与方程测试题圆锥曲线统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
以下是查字典数学网为大家整理的高二数学选修1-1第二章圆锥曲线与方程测试题,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。
目标认知考试大纲要求:使学生能灵活应用圆锥曲线的有关知识解决相关问题,培养数学理解能力及分析问题、解决问题的能力;重点:圆锥曲线的定义的应用及直线与圆锥曲线的位置关系难点:直线与圆锥曲线的位置关系知识要点梳理知识点一:圆锥曲线的统一定义椭圆、双曲线、抛物线统称圆锥曲线。
平面内,到一定点的距离与它到一条定直线(不经过定点)的距离之比是常数e的点的轨迹叫做圆锥曲线。
定点叫做焦点,定直线叫做准线、常数叫做离心率。
①e(0,1)时轨迹是椭圆;②e=1时轨迹是抛物线;③e(1,+)时轨迹是双曲线。
知识点二:圆锥曲线的标准方程和几何性质1.椭圆:(1)定义:平面内到两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫椭圆,这两个定点叫焦点.(2)标准方程当焦点在轴上时,椭圆的标准方程:,其中 ;当焦点在轴上时,椭圆的标准方程:,其中 ;(3)椭圆的的简单几何性质:范围:,,焦点,顶点、,长轴长= ,短轴长= ,焦距= ,2.双曲线(1)定义:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫双曲线的焦点.(2)标准方程当焦点在轴上时,双曲线的标准方程:,其中 ;当焦点在轴上时,双曲线的标准方程:,其中 .(3)双曲线的简单几何性质范围:, ;焦点,顶点,实轴长= ,虚轴长= ,焦距= ;离心率是,准线方程是 ;渐近线: .3.抛物线(1)定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l 叫做抛物线的准线.(2)标准方程四种形式:,,,。
新人教A版(选修1-1)第二章《圆锥曲线与方程》word单元测试

圆锥曲线与方程测试⑵第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一项是最符合题目要求的.)21、抛物线y =4x 的焦点坐标为( )A. (0,1)B. (1,0)C.(0,2)D. (2,0) 2、 在抛物线y 2=2px 上,横坐标为4的点到焦点的距离为 5,则p 的值为()A. 2B.1C.丄D.422 23、 若抛物线y2=2px(p 0)的焦点与双曲线X - y1的右焦点重合,则p 的值为124( )A.2B.4C.8D. 4 .. 224、已知抛物线y =2x 上的一个动点,则点p 到点(0,2)的距离与p 到该抛物线的距离 之和的最小值为()v 17A.B.326、当a 为任意实数时,直线(a -1)x - y • 2a 7=0恒过定点p ,则过点p 的抛物线的 标准方程是(C. 59 D. 25、抛物线y 2=4x 上的点 p 到抛物线的准线的距离为d 1,到直线3x-4y • 9=0的距离为d 2则d 1 d 2的最小值为(B.-)C.22A . y 2C.y 9十 2 x 或x29 2 x 或x24 =3y 42B .2D . y9十 24 x 或x y 23 9十 24或2y =2x(y 0)上,并且与抛物线的准线及x轴都相切的圆的方程是7、圆心在抛物线22 小丨小 2 2 c’cA. x y -x-2y - 0B. x y x-2y 1=0 41C.x y —x-2y 1=0D. x y -x-2y 048、抛物线(x-2)2 =2(y-m • 2)的焦点在x轴上,则实数m的值为()3A.0B.C.2D.329、过抛物线y2=4x的焦点作直线I交抛物线于A、B两点若线段AB中点的横坐标为3,则|AB|等于()A.2B.4C.6D.810、将抛物线y =x2 -4x绕其顶点顺时针旋转90°,则抛物线方程为()A. (y I)2 =2 _xB.(y 1)2 = x _2C.(y-1)2=2-xD.(y-1)2=x-211.一个动圆的圆心在抛物线y2=8x上,且动圆恒与直线 x ^0相切,则动圆必过定点()A. (0,2)B. (0, 2)C. (2,0)D. (4,0)12.过抛物线2y二ax (a 0)的焦点F作一直线交抛物线于A、B两点,若线段AF、BF的长分别为m、n,则』^等于()m n1 1 aA. 一B. 一C.2aD.-2a 4a 4第H卷(非选择题共90分)、填空题(本大题共4小题,每小题4分,共16分■把答案填在题中的横线上.)13、若直线ax — y+1 =0经过抛物线y2 =4x的焦点,则实数a= ___________14、已知抛物线y=ax2-1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为________15、已知圆C的圆心与抛物线y =4x的焦点关于直线y=x对称•直线4x —3y —2 =0与圆C相交与A、B两点,且| AB | = 6,则圆C的方程为_________21、(12 分)如图,直线丨与抛物线y 2=x 交于A(x 1 , yJ,B(x 2 , y 2)两点, 与x 轴相交于点M ,且 y 1 y 2 - -1 •(1) 求证:M 点的坐标为(1,0); (2) 求证:OA _ OB ; ⑶求 AOB 的面积的最小值•16、如图,过抛物线y 2=2px(p ■ 0)的焦点F 的直线丨交抛物线于点 A 、B,交其准线于点C,若|BC|=2|BF|, 且|AF|=3,则此抛物线的方程为 ____________ .三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及 演算步骤.)17、(12 分)已知顶点在原点,焦点在x 轴上的抛物线与直线 y =2x • 1交于P 、Q 两点,|PQ|= 15,求 抛物线的方程18、(12 分)某隧道横断面由抛物线和矩形的三边组成 ,尺寸 如图2所示,某卡车载一集装箱,箱宽3m,车与箱共高 此车能否通过此隧道巧青说明理由•19、(12 分) 过抛物线y 2=4x 的焦点引一直线,已知直线被抛物线截得的弦被焦点分成2:1,求这条直线的方程•20、(12 分)2 2抛物线的顶点在原点,它的准线过双曲线 —2-=1的一个焦点 a b ,且与双曲线实轴垂直已知抛物线与双曲线的交点为3,6 •求抛物线与双曲线的方程 22ni22、(14 分)已知抛物线y2 =4x及点P(2,2),直线l且不过点P ,与抛物线交于点 A,B,(1)求直线I在y轴上截距的取值范围;⑵若AP,BP分别与抛物线交于另一点C、D,证明:AD,BC交于定点.参考答案一、选择题2 P1.B 因为p=2,所以抛物线y =4x的焦点坐标是(”,0)=(1,0)22.A 抛物线的标准方程为x P,由抛物线的定义知4 •卫=5,解得p = 22 23.C 双曲线的右焦点为(4,0),卫=4= p=8.214.A 依题设P在抛物线准线的投影为P',抛物线的焦点为F,则F(—,0),依抛物线的定义2知P到该抛物线准线的距离为| PP'| PF |,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和d =| PF | | PA|_| AF卜9.D 易知线段AB的中点到准线的距离为4,设A,B两点到准线的距离分别为d1, d?由抛物5.D 抛物线的焦点为F(1,0),有4 = PF ,而点F到直线的距离d =3 1-4 0 9 12 d1 d26.A由直线方程得a(x+2)—x—y十1 =0,由«!x+2=01 0,得P(-2,3), _x _ y 1=0经检验知A正确.7.D由抛物线的定义可知,所求圆与x轴相切于抛物线的焦点P(^ ,0),从而可求得圆心2(丄,1),半径r =1,所以所求圆的方程为28.B依题意得该抛物线的焦点坐标为1 (x )21(2,; (m-2)),于22(y -1)^1 .故选 D1 3是2 (『2)7,解得m = 3 222线的定义知 | AB |=| AF | | BF |= 4 d 2 = 2 4=810. B 由y =x2-4x • 3=(x-2)2 -1得(x -2)2=:y ・1,绕其顶点顺时针旋转90后开口方向改变,得到(y • 1)2=x - 22 211. C 由抛物线y =8x 的准线方程为x- -2,由题可知动圆的圆心在 y = 8x 上,且恒与抛 物线的准线相切,由定义可知,动圆恒过抛物线的焦点(2,0)1 2 2 112. B 设直线方程为y =kx • 与y =ax 联立消去x 得ax -kx0 ,4a4a22k 122k 1设 A(x !,ax !),B(x 2,ax 2),则捲 x ?,xx 2,/ X 222,a4a a 2a2 221 * 1k 1 k 1n 二 ax 2 ,可得 mn ( ), m n 二 4a4a a a a amn 1 m n 4a填空题213•线 ax-y ,1=0经过抛物线 y =4x 的焦点 F(1,0),则 a • 1 = 0, a =-1211 1 214.由抛物线y =ax -1的焦点坐标(0,1)为坐标原点得,a ,则y x - 1的坐 4a 4 41标轴的交点为(0,-1),(-2,0),(2,0),则以这三点围成的三角形的面积为 4 1=22x 2 (y -1)2 =1016•设 A(x 「yj, Bg y ?),作 AM 、BN 垂直准线于点M 、N,则 BN = BF ,又 BC =2 BF ,得 BC =2 BN ,得/NCB =30”, 有 AC =2 AM =6,设 BF =x ,则 2x+x+3 = 6二 x=1,而捲 +^=3,22 221m =ax t4a 15•抛物线的焦点为 (1,0),所以圆心坐标为2(0,1),=32(0-3-2)25"= 10,圆C 的方程为x2 — = 1,且xx 二丄,••• (3 - R)(1 -卫)=卫=p 一 ,得y2 = 3x •2 4 2 2 4 2三、解答题17•解:设抛物线的方程为y2=2px,则y 2 Px ,消去y得ly = 2x+1把y 1,y 2代入①式得k = 2 2,故所求的直线方程为 2 2x 一 y - 2 2 = 0,20.解:由题意知,抛物线焦点在x 轴上,开口方向向右,可设抛物线方程为y 2=2px(p 0,24x -(2 p -4)x 1 = 0, X | x 2 p-22,X 1X 2AB = J i +k 2x 1 -x 2亦』(为 +X 2)2_4x i X 2 = ^{(■^^2)2_4= -、3, p - 4p -12 = 0, p _ -2,或6y 2 - -4x,或 y 2 =12x18.解:取抛物线顶点为原点,水平向右为 x 轴正方向建立直角坐标系 2x 二 ~2py(p 0),当x =3时,y = —3,即取抛物线与矩形的结合点 (3, — 3), 代入x 2- -2py ,得9 =6p ,贝U p = 3,故抛物线方程为x 2- -3y .2已知集装箱的宽为 3m,取x ,则y -」x 2 - - 3.2 3 4 、、、、 3 1而隧道高为 5m, 5m m =4—m 4m .4 4,设抛物线方程为19•解:由 y 2=4x 得焦点 F(1,0),设所求弦两端点为2,yJ ,B =(y : 4小),y2 - -y 14 22 'y 2 y 1 yr y 244①,y 1 y 2又 AB 过焦点 F(-,0),且 y 1y 2 2-p 2 ,故 yy 一4由②③解得丁1=2£y2 - - 2丫 1 = -<2Iy 2 = 22直线k AB将交点3, 6代入得p=2,故抛物线方程为y2=4x,焦点坐标为(1,0), V 丿这也是双曲线的一个焦点,则c =1.又点3, 6也在双曲线上,因此有-92_-^2 =1. [2丿 4a 2 b 2 又a 2 b 2 =1,因此可以解得a 2 =-, b 2 =3,44因此,双曲线的方程为Ax 2—4】/.3 21.解:⑴ 设M 点的坐标为(x 0,O),直线l 方程为= my x 0,代入y 2 =x 得2 y -my-x 0 =0 ① y 「y 2是此方程的两根,二 x()- -y 1y 2 =1,即 M 点的坐标为(i, 0).2 2 ⑵••• y“2 --1 ,•••Ex ? y 』2 y 2 y 〃2 =%丫2(%丫 2 1) =0 ••• OA _ OB .⑶由方程①,y 1 y 2 二 m , %y 2 - -1,且 |OM |=X o =1,于是 S^OB =1〔OM ||y^Y 2 |=*J(y 1 +y 2)2 —4^2 =*如2+4 > 1, •••当m = 0时,.\AOB 的面积取最小值1.22. 解:(1)设直线l 的方程为y = x • b(b = 0),由于直线不过点 P ,因此b = 0y = x + b 22 由」2 得x +(2b-4)x+b =0,由也> 0,解得by = 4x 所以,直线丨在y 轴上截距的取值范围是 (-::,0) 一 (0,1)2n ,m),( ,n),因为AB 斜率为1,所以m • n = 4,42设D 点坐标为, y D ),因为B 、P 、 42 直线 AD 的方程为 y - m 二 —^D —片(x - m) y _ m 2 444 2m 2 2 2m m - 2m即直线AD 与y 轴的交点为(0,2),同理可得BC 与y 轴的交点也为(0,2), 所以AD,BC 交于定点(0,2).2 一 m(2)设A,B 坐标分别为(—— D 共线,所以k PB = k DP ,得y D = =2 — n m — 2my 。
人教新课标版(A)高二选修1-1 第二章圆锥曲线与方程单元测试

人教新课标版(A )高二选修1-1 第二章 圆锥曲线与方程单元测试(时间:120分钟 分值:150分)一、选择题(每小题5分,共60分)1. 以112y 4x 22-=-的焦点为顶点,顶点为焦点的椭圆方程是A. 14y 16x 22=+B. 116y 4x 22=+C. 112y 16x 22=+D. 116y 12x 22=+2. 动圆的圆心在抛物线x 8y 2=上,且动圆恒与直线02x =+相切,则动圆必过点A. (4,0)B. (2,0)C. (0,2)D. (0,-2)3. AB 是抛物线x 18y 2=的一条过焦点的弦,20|AB |=,AD 、BC 垂直于y 轴,D 、C 分别为垂足,则梯形ABCD 的中位线长为A. 5B.211 C.29 D. 104. 方程2sin y 3sin 2x 22-θ++θ=1所表示的曲线是 A. 焦点在x 轴上的椭圆B. 焦点在y 轴上的椭圆C. 焦点在x 轴上的双曲线D. 焦点在y 轴上的双曲线5. 设P 为椭圆1by a x 2222=+上一点,1F 、2F 为焦点,如果∠75F PF 21=°,∠=12F PF 15°,则椭圆的离心率为A. 22B. 23C. 32D. 36 6. 以椭圆1144y 169x 22=+的右焦点为圆心,且与双曲线116y 9x 22=-的渐近线相切的圆的方程为A. 09x 10y x 22=+-+B. 09x 10y x 22=--+C. 09x 10y x 22=-++D. 09x 10y x 22=+++7. 椭圆11a 4y a 5x 222=++的焦点在x 轴上,而它的离心率的取值范围是A. ⎪⎭⎫ ⎝⎛51,0B. ⎪⎭⎫⎢⎣⎡1,51C. ⎥⎥⎦⎤ ⎝⎛55,0D. ⎪⎪⎭⎫⎢⎢⎣⎡1,55 8. 设双曲线1b y a x 2222=-与1by a x 2222=+-(0a >,0b >)的离心率分别为1e 、2e ,当a 、b 变化时,21e e +的最小值是A. 4B. 24C.2 D. 229. 设椭圆12y 6x 22=+和双曲线1y 3x 22=-的公共焦点分别为1F 、2F ,P 是两曲线的一个交点,则cos ∠21PF F 的值为A.41 B.31 C.32 D. 31-10. 过抛物线x 4y 2=的顶点O 作互相垂直的两弦OM 、ON ,则M 的横坐标1x 与N 的横坐标2x 之积为A. 64B. 32C. 16D. 411. 抛物线x y 2=和圆()1y 3x 22=+-上最近的两点之间的距离是A. 1B. 2C.1210- D.1211- 12. 已知圆的方程为4y x 22=+,若抛物线过点A (-1,0)、B (1,0),且以圆的切线为准线,则抛物线的焦点F 的轨迹方程是A. 14y 3x 22=+(0y ≠) B. 13y 4x 22=+(0y ≠) C. 14y 3x 22=+(0x ≠) D.13y 4x 22=+(0x ≠)二、填空题(每小题4分,共16分)13. (2004·湖南)1F 、2F 是椭圆C :14y 8x 22=+的焦点,在C 上满足1PF ⊥2PF 的点P的个数为__________。
高中数学选修1-1知识点及课本例题

第一章常用逻辑用语1.1 命题及其关系1、命题(1)一般地,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
(2)“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论。
2、四种命题(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题。
其中一个命题叫做原命题(“若p,则q”),另一个叫做原命题的逆命题(“若q,则p”)。
(2)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。
如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题(“若p⌝,则q⌝”)。
(3)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。
如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题(“若q⌝,则p⌝”)。
3、四种命题间的相互关系例1下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间中两条直线不相交,则这两条直线平行;(5)2)2-;(2=(6)15x。
>例2指出下列命题中的条件p和结论q:(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直且平分。
例3将下列命题改写成“若p,则q”的形式,并判断真假:(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等。
例4证明:若022=x,则0=+yx。
-y1.2 充分条件与必要条件1、充分条件与必要条件一般地,“若p,则q”为真命题,是指由p通过推理得出q。
这是,我们就说,由p可推出q,记作qp⇒,并且说p是q的充分条件,q是p的必要条件。
2、充要条件一般地,如果既有qq⇒,就记作qp⇔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修1—1 第一章 常用逻辑用语 第二章 圆锥曲线与方程 单元测试卷 班级: 姓名: 学号:
一、选择题(每小题5分,共45分)
1.命题“如果ab x b a x 2,22≥+≥那么”的逆否命题是( )
A.如果x <a 2+b 2,那么x <2ab
B.如果22,2b a ab x +≥≥那么
C.如果22,2b a ab x + 那么 D .如果ab x b a x 2,22 那么+≥
2.三角形全等是三角形面积相等的( )
A.充分但不必要条件
B.充要条件
C.既不充分也不必要条件
D.必要但不充分条件
3.命题“所有奇数的立方是奇数”的否定是( )
A.所有奇数的立方不是立方
B.不存在一个奇数,它的立方是偶数
C.存在一个奇数,它的立方是偶数
D.不存在一个奇数,它的立方是奇数
4. 以下说法错误的是( )
(A) 如果一个命题的逆命题为真命题,那么它的否命题也必为真命题
(B)如果一个命题的否命题为假命题,那么它本身一定为真命题
(C)原命题、否命题、逆命题、逆否命题中,真命题的个数一定为偶数
(D)一个命题的逆命题、否命题、逆否命题可以同为假命题
5. 与命题“能被6整除的整数,一定能被3整除”等价的命题是( )
(A)能被3整除的整数,一定能被6整除
(B)不能被3整除的整数,一定不能被6整除
(C)不能被6整除的整数,一定不能被3整除
(D)不能被6整除的整数,不一定能被3整除
6. 下列说法中,不正确的是( )
(A)“若p q 则”与“若q p 则”是互逆的命题
(B)“若非p q 则非“与“若q p 则”是互否的命题
(C)“若非p q 则非”与“若p q 则”是互否的命题
(D)“若非p q 则非”与“若q p 则”是互为逆否的命题
7. 抛物线 的准线方程是( )
A .1-=x
B .1-=y
C .161-=x
D .16
1-=y 8. 椭圆19
252
2=+y x 上有一点P 到左准线的距离是5,则点P 到右焦点的距离是( ) A.4 B.5 C.6 D.7
9. 抛物线)0(42 a ax y =的焦点坐标是( )
A. )0,41(a
B.)161,0(a
C. )161,0(a -
D. )0,161(a
二、填空题(每小题5分,共15分)
10.与椭圆14
92
2=+y x 有相同焦点且过点)2,3(-M 的椭圆方程是 。
11.过点(-2,3)的抛物线的标准方程为 .
12.已知点(-2,3)与抛物线)0(22>=p px y 的焦点的距离是5,则p=_________.
三、解答题(共40分)
13.设命题为“若0m >,则关于x 的方程20x x m +-=有实数根”,试写出它的否
命题、逆命题和逆否命题,并分别判断它们的真假.(6分)
14.椭圆的焦距为6且经过点)5
12,4(p ,求焦点在 轴上的椭圆的标准方程.(5分)
15.已知双曲线)0( 1222
>=-a y a
x 的一条准线与抛物线x y 62-=的准线重合,求该双曲线的离心率。
(5分)
16.求下列抛物线的焦点坐标和准线方程:(8分)
(1)0522=+x y (2)082=+y x
17.求下列椭圆的长轴、短轴、离心率、焦点坐标、顶点坐标。
(8分)
(1)16422=+y x (2)81922=+y x
18.求下列双曲线的实轴、虚轴的长,顶点、焦点的坐标、和离心率。
(8分)
328)1(22=-y x (2) 125492
2-=-y x。