最新人教版八年级数学下册第一次月考测试题

合集下载

人教版数学八年级(下)第一次月考测试卷(含答案)

人教版数学八年级(下)第一次月考测试卷(含答案)

人教版数学八年级(下)第一次月考测试卷(含答案)一.选择题(每小题3分,共30分)1.(3分)下列计算不正确的是()A.B.C.D.=2+32.(3分)下列根式中,属于最简二次根式的是()A.B.C.D.3.(3分)有下列各组数:①3,4,5;②62,82,102;③0.5,1.2,1.3;④1,,.其中勾股数有()A.1组B.2组C.3组D.4组4.(3分)下列条件中,不能判断一个三角形是直角三角形的是()A.三个角的比为1:2:3B.三条边满足关系a2=b2﹣c2C.三条边的比为1:2:3D.三个角满足关系∠B+∠C=∠A5.(3分)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,AD为△ABC的高,则AD的长为()A.B.C.D.6.(3分)如图,在平面直角坐标系中,点P坐标为(﹣3,2),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.﹣5和﹣4之间C.3和4之间D.4和5之间7.(3分)国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8km,又往北走2km,遇到障碍后又往西走3km,再向北走到6km处往东拐,仅走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.20km B.14km C.11km D.10km8.(3分)如果一个三角形的三边长分别为、k、,则化简﹣|2k﹣5|的结果是()A.﹣k﹣1B.k+1C.3k﹣11D.11﹣3k9.(3分)如图,是由四个全等的直角三角形拼成的“赵爽弦图”,得到正方形ABCD与正方形EFGH,连结DF.若S正方形ABCD=5,EF=BG,则DF的长为()A.2B.C.3D.10.(3分)如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是(用含n的代数式表示)()A.B.C.D.二.填空题(每小题3分,共15分)11.(3分)式子在实数范围内有意义,则实数x的取值范围是.12.(3分)α=﹣的倒数是.13.(3分)在△ABC中,若AB=AC=5,BC=6,则AC边上的高h=.14.(3分)若关于x的一元一次不等式组无解,则a的取值范围是.15.(3分)如图,△ABC中,∠ACB=90°,分别以AC、BC为斜边作等腰直角三角形S1、S2,以AB为边作正方形S.若S1与S2的面积和为9,则正方形S的边长等于.三.解答题(共9小题,共72分)16.(6分)计算:(1);(2).17.(6分)已知最简二次根式和可以合并,你能求出使有意义的x的取值范围吗?18.(6分)如图,有一个池塘,其底边长为10尺,一根芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B'.请你计算这个池塘水的深度和这根芦苇的长度各是多少?19.(8分)如图,学校有一块三角形空地ABC,计划将这块三角形空地分割成四边形ABDE 和△EDC,分别摆放“秋海棠”和“天竺葵”两种不同的花卉,经测量,∠EDC=90°,DC=3,CE=5,BD=7,AB=8,AE=1,求四边形ABDE的面积.20.(8分)如图,在梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.求AB的长.21.(8分)定义:若两个二次根式a,b满足ab=c,且c是有理数,则称a与b是关于c 的共轭(è)二次根式.问题解决:(1)若a与2是关于6的共轭二次根式,则a=;(2)若4+与8﹣m是关于26的共轭二次根式,求m的值.22.(10分)实数a在数轴上的对应点A的位置如图所示,b=|a﹣|+|2﹣a|.(1)求b的值;(2)已知b+2的小数部分是m,8﹣b的小数部分是n,求2m+2n+1的平方根.23.(11分)如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若动点P从点A出发,以每秒1cm的速度沿折线A﹣C﹣B运动,设运动时间为t秒(t>0).(1)当点P在AB边的垂直平分线上时,求t的值;(2)当点P在∠BAC的平分线上时,求t的值.24.(12分)规律探索题:细心观察如图,认真分析各式,然后解答问题.;(S1是△OA1A2的面积);;(S2是△OA2A3的面积);;(S3是△OA3A4的面积);…(1)请用含有n(n为正整数)的等式S n=;(2)推算出OA10=;(3)求出的值.参考答案一.选择题(每小题3分,共30分)1.D;2.C;3.A;4.C;5.D;6.A;7.D;8.D;9.B;10.C;二.填空题(每小题3分,共15分)11.x>5;12.+;13.;14.a≥1;15.6;三.解答题(共9小题,共72分)16.(1);(2).;17.x≥2.;18.;19.四边形ABDE的面积为18.;20.6.;21.;22.(1);(2)±.;23.;24.;.。

八年级下第一次月考数学试卷(有答案)(新课标人教版)

八年级下第一次月考数学试卷(有答案)(新课标人教版)

八年级下第一次月考数学试卷(有答案)(新课标人教版)一、选择题(把正确的答案填在表格内每题3分共30分)1.在直角坐标系中,点P(﹣2,3)到原点的距离是()A.B. C.15D.22.下列根式中,最简二次根式是()A.B. C.D.3.下列二次根式,不能与合并的是()A. B. C.D.4.是整数,则正整数n的最小值是()A.4 B.5 C.6 D.75.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1:B.1::2 C.1::D.1:4:16.如图,一架云梯25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了()A.4米B.6米C.8米D.10米7.能判定四边形ABCD为平行四边形的题设是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠C C.∠A=∠B,∠C=∠D D.AB=CD,∠D=∠B8.▱ABCD的周长为40 cm,△ABC的周长为25 cm,则对角线AC长为()A.5cm B.15cm C.6cm D.16cm9.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为()A.(2,0) B.()C.()D.()10.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D.40海里二、填空题11.三角形的一边长是cm,这边上的高是cm,则这个三角形的面积cm2.12.在平行四边形ABCD中,∠C=∠B+∠D,则∠A= ,∠D= .13.如图,在▱ABCD中,AB=4cm,BC=7cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF= .14.直角三角形的周长为24cm,斜边长为10cm,则其面积为cm2.15.若三角形的边长分别为6、8、10,则它的最长边上的高为.16.如果x=+3,y=﹣3,那么x2y+xy2= .17.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.18.观察下列一组等式:32=4+5,52=12+13,72=24+25,92=40+41…照此规律,若132=b+c,则b的值为,c的值为.三、解答题19.(1)(﹣4)﹣(3﹣2)(2)(5+﹣)÷.(3)(﹣2)2﹣(+1)2.20.已知a﹣=,求a+的值.四、解答题21.如图,在△ABC中,∠A=60°,AB=4,BC=,求△ABC的面积.22.如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=AB,点G、E、F分别为边AB、BC、AC 的中点.求证:DF=BE.23.(7分)如图,在Rt△ABC中,∠C=90°,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合.若CD=6,BD=10,求AC长.24.(7分)已知:在矩形ABCD中对角线AC、BD交于点O,∠AOB=60°,AB=1,求矩形ABCD的周长.五、解答题(27题8分、28题10分共18分)25.如图,四边形ABCD是平行四边形,E、F分别是AD、BC中点,BE、DF分别交AC于G、H.求证:四边形GBHD是平行四边形.26.已知:△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点M是BE的中点,连接CM、DM.(1)当点D在AB上,点E在AC上时(如图一),求证:DM=CM,DM⊥CM;(2)当点D在CA延长线上时(如图二)(1)中结论仍然成立,请补全图形(不用证明);(3)当ED∥AB时(如图三),上述结论仍然成立,请加以证明.八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(把正确的答案填在表格内每题3分共30分)1.在直角坐标系中,点P(﹣2,3)到原点的距离是()A.B. C.15D.2【考点】勾股定理;坐标与图形性质.【分析】在平面直角坐标系中找出P点,过P作PE垂直于x轴,连接OP,由P的坐标得出PE及OE的长,在直角三角形OPE中,由PE及OE的长,利用勾股定理求出OP的长,即为P到原点的距离.【解答】解:过P作PE⊥x轴,连接OP,∵P(﹣2,3),∴PE=3,OE=2,∴在Rt△OPE中,根据勾股定理得:OP2=PE2+OE2,∴OP==,则点P在原点的距离为.故选B.【点评】此题考查了勾股定理,以及坐标与图形的性质,勾股定理为:直角三角形中,两直角边的平方和等于斜边的平方,灵活运用勾股定理是解本题的关键.2.下列根式中,最简二次根式是()A.B. C.D.【考点】最简二次根式.【分析】要选择属于最简二次根式的答案,就是要求知道什么是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.由被选答案可以用排除法可以得出正确答案.【解答】A、可以化简,不是最简二次根式;B、,不能再开方,被开方数是整式,是最简二根式;C、,被开方数是分数,不是最简二次根式;D、,被开方数是分数,不是最简二次根式.故选B.【点评】本题考查了满足是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.3.下列二次根式,不能与合并的是()A. B. C.D.【考点】同类二次根式.【分析】把各二次根式化简,然后根据不能合并的不是同类二次根式进行判断即可.【解答】解: =2,A、=4,能合并,故本选项错误;B、=3,不能合并,故本选项正确;C、==,能合并,故本选项错误;D、﹣=﹣5,能合并,故本选项错误.故选B.【点评】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式,不能合并,说明不是同类二次根式.4.是整数,则正整数n的最小值是()A.4 B.5 C.6 D.7【考点】二次根式的定义.【分析】本题可将24拆成4×6,先把化简为2,所以只要乘以6得出62即可得出整数,由此可得出n的值.【解答】解:∵ ==2,∴当n=6时, =6,∴原式=2=12,∴n的最小值为6.故选:C.【点评】本题考查的是二次根式的性质.本题还可将选项代入根式中看是否能开得尽方,若能则为答案.5.已知△ABC中,∠A=∠B=∠C,则它的三条边之比为()A.1:1:B.1::2 C.1::D.1:4:1【考点】勾股定理.【专题】计算题.【分析】根据给出的条件和三角形的内角和定理计算出三角形的角,再计算出它们的边的比.【解答】解:∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,∴c=2a,b=a,∴三条边的比是1::2.故选:B.【点评】本题考查了三角形的内角和定理和勾股定理,通过知道角的度数计算特殊三角形边的比.6.如图,一架云梯25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了()A.4米B.6米C.8米D.10米【考点】勾股定理的应用.【分析】根据梯子长度不会变这个等量关系,我们可以根据BC求AC,根据AD、AC求CD,根据CD计算CE,根据CE,BC计算BE,即可解题.【解答】解:由题意知AB=DE=25米,BC=7米,AD=4米,∵在直角△ABC中,AC为直角边,∴AC==24米,已知AD=4米,则CD=24﹣4=20(米),∵在直角△CDE中,CE为直角边∴CE==15(米),BE=15米﹣7米=8米.故选:C.【点评】本题考查了勾股定理在实际生活中的运用,考查了直角三角形中勾股定理的运用,本题中正确的使用勾股定理求CE的长度是解题的关键.7.能判定四边形ABCD为平行四边形的题设是()A.AB∥CD,AD=BC B.AB∥CD,∠A=∠C C.∠A=∠B,∠C=∠D D.AB=CD,∠D=∠B【考点】平行四边形的判定.【分析】根据平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形分别进行分析即可.【解答】解:A、AB∥CD,AD=BC不能判定四边形ABCD为平行四边形,故此选项错误;B、AB∥CD,∠A=∠C可推出∠B=∠D,可判定四边形ABCD为平行四边形,故此选项正确;C、∠A=∠B,∠C=∠D,不能判定四边形ABCD为平行四边形,故此选项错误;D、AB=CD,∠D=∠B不能判定四边形ABCD为平行四边形,故此选项错误;故选:B.【点评】此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.8.▱ABCD的周长为40 cm,△ABC的周长为25 cm,则对角线AC长为()A.5cm B.15cm C.6cm D.16cm【考点】平行四边形的性质.【分析】由▱ABCD的周长为40 cm,可得AB+BC=20cm,又有△ABC的周长为25 cm,即可求对角线AC长.【解答】解:∵▱ABCD的周长为40 cm,∴AB+BC=20cm,又∵△ABC的周长为25 cm,∴对角线AC长为25﹣20=5cm.故选A.【点评】此题主要考查平行四边的性质:平行四边形的两组对边分别相等.9.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为()A.(2,0) B.()C.()D.()【考点】勾股定理;实数与数轴;矩形的性质.【专题】数形结合.【分析】在RT△ABC中利用勾股定理求出AC,继而得出AM的长,结合数轴的知识可得出点M的坐标.【解答】解:由题意得,AC===,故可得AM=,BM=AM﹣AB=﹣3,又∵点B的坐标为(2,0),∴点M的坐标为(﹣1,0).故选C.【点评】此题考查了勾股定理及坐标轴的知识,属于基础题,利用勾股定理求出AC的长度是解答本题的关键,难度一般.10.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D.40海里【考点】勾股定理的应用;方向角.【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了32,24.再根据勾股定理,即可求得两条船之间的距离.【解答】解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×2=32海里,12×2=24海里,根据勾股定理得: =40(海里).故选D.【点评】熟练运用勾股定理进行计算,基础知识,比较简单.二、填空题11.三角形的一边长是cm,这边上的高是cm,则这个三角形的面积6cm2.【考点】二次根式的应用.【分析】此题可由等式“三角形的面积=三角形的一边长×这边上的高”求得三角形的面积即可.【解答】解:∵角形的一边长是cm,这边上的高是cm,∴这个三角形的面积=×=6cm2,故答案为:6.【点评】本题考查了二次根式的应用,二次根式的运算与现实生活相联系,体现了所学知识之间的联系,感受所学知识的整体性,不断丰富解决问题的策略,提高解决问题的能力.二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念、性质和运算的方法.12.在平行四边形ABCD中,∠C=∠B+∠D,则∠A= 120°,∠D= 60°.【考点】平行四边形的性质.【专题】常规题型.【分析】根据平行四边形的对边平行,对角相等,可得AD∥BC,∠B=∠D,∠A=∠C,易得∠C=2∠D,∠C+∠D=180°,解方程组即可求得.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∠B=∠D,∠A=∠C,∴∠C=2∠D,∠C+∠D=180°,∴∠A=∠C=120°,∠D=60°.故答案为:120°,60°.【点评】此题考查了平行四边形的性质:平行四边形的对边平行;平行四边形的对角相等.解题的关键是数形结合思想的应用.13.如图,在▱ABCD中,AB=4cm,BC=7cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF= 3cm .【考点】平行四边形的性质.【分析】利用平行四边形的对边相等且平行以及平行线的基本性质求解即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠CFE,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBF,∴∠CBF=∠CFB,∴CF=CB=7cm,∴DF=CF﹣CD=7﹣4=3cm,故答案为:3cm.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.14.直角三角形的周长为24cm,斜边长为10cm,则其面积为24 cm2.【考点】勾股定理.【专题】计算题.【分析】利用勾股定理求出两直角边,再代入三角形面积公式即可求解.【解答】解:直角三角形的周长为24,斜边长为10,则两直角边的和为24﹣10=14,设一直角边为xcm,则另一边(14﹣x)cm,根据勾股定理可知:x2+(14﹣x)2=100,则(x﹣6)(x﹣8)=0解得x=6cm或8cm,所以面积为:6×8÷2=24.答案是:24.【点评】本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方;本题的关键是先求出两直角边,再计算面积.15.若三角形的边长分别为6、8、10,则它的最长边上的高为 4.8 .【考点】勾股定理的逆定理.【分析】先根据勾股定理的逆定理判断出三角形的形状,再根据三角形的面积公式解答即可.【解答】解:∵三角形三边的长分别为6、8和10,62+82=100=102,∴此三角形是直角三角形,边长为10的边是最大边,设它的最大边上的高是h,∴6×8=10h,解得,h=4.8.【点评】本题考查的是直角三角形的判定定理及三角形的面积公式,比较简单.16.如果x=+3,y=﹣3,那么x2y+xy2= ﹣8.【考点】二次根式的化简求值.【分析】根据x=+3,y=﹣3,得出x+y和xy的值,再对要求的式子进行因式分解,然后代值计算即可得出答案.【解答】解:∵x=+3,y=﹣3,∴x+y=+3+﹣3=2,xy=(+3)(﹣3)=5﹣9=﹣4,∴x2y+xy2=xy(x+y)=﹣4×2=﹣8;故答案为:﹣8.【点评】此题主要考查了二次根式的化简求值,用到的知识点是提取公因式法和完全平方公式的应用,正确将原式变形是解题的关键.17.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是25 .【考点】平面展开﹣最短路径问题.【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.故答案为25.【点评】本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.18.观察下列一组等式:32=4+5,52=12+13,72=24+25,92=40+41…照此规律,若132=b+c,则b的值为84 ,c的值为85 .【考点】规律型:数字的变化类.【分析】认真观察三个数之间的关系可得出规律:第n组数为(2n+1),(),()由此规律即可得出答案.【解答】解:∵32=+=4+5,52=+=12+13,72=+=24+25 …,∴132=+=84+85,∴b=84,c=85;故答案为:84,85.【点评】本题考查了数字的变化类,用到的知识点是勾股定理的知识及数字的规律变化,解答本题的关键是仔细观察所给式子,要求同学们能有一般得出特殊规律.三、解答题19.(1)(﹣4)﹣(3﹣2)(2)(5+﹣)÷.(3)(﹣2)2﹣(+1)2.【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后去括号后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算;(3)利用二次根式的性质和完全平方公式计算.【解答】解:(1)原式=4﹣﹣+=3;(2)原式=(20+2﹣6)=(22﹣6)÷=22﹣2;(3)原式=8﹣(2+2+1)=8﹣3﹣2=5﹣2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.已知a﹣=,求a+的值.【考点】二次根式的化简求值.【分析】把已知条件两边平方求出a2+的值,再根据整理并求出(a+)2的值,然后开方即可求解.【解答】解:∵a﹣=,∴a2+﹣2=15∴a2++2=19∴(a+)2=19∴a+=±.【点评】此题考查了二次根式的化简求值与完全平方公式,利用好乘积二倍项是常数是解题的关键.四、解答题21.如图,在△ABC中,∠A=60°,AB=4,BC=,求△ABC的面积.【考点】勾股定理.【分析】直接利用直角三角形的性质,30°所对边与斜边的关系分别表示出DC,AC的长,再利用勾股定理求出DC的长,即可得出△ABC的面积.【解答】解:如图所示:过点C作CD⊥AB于点D,∵∠A=60°,∠ADC=90°,∴∠ACD=30°,∴设AD=x,则AC=2x,DC=x,∴在Rt△ADC中,BD2+DC2=BC2,即(4﹣x)2+(x)2=()2,解得:x1=﹣(不合题意舍去),x2=,故DC=,则△ABC的面积为:×DC×AB=×4×=5.【点评】此题主要考查了勾股定理以及三角形面积求法,正确应用勾股定理得出AD,DC的长是解题关键.22.如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=AB,点G、E、F分别为边AB、BC、AC 的中点.求证:DF=BE.【考点】线段垂直平分线的性质;三角形中位线定理;平行四边形的性质;平行四边形的判定.【专题】证明题;压轴题.【分析】连接GF,易得AF是GD的中垂线,所以AD=AG.又∠BAC=90°,即AF⊥BD,所以DF=FG.因为EF 为△ABC的中位线,所以BG=EF,BG∥EF,所以四边形BEFG为平行四边形,所以GF=BE.【解答】证法(﹣):连接GF,∵AD=AB,点G为AB边的中点,∴AD=BG=AB.∴AD=AG.又∵∠BAC=90°,即AF⊥BD,∴DF=FG.∵EF为△ABC的中位线,∴EF=AB,EF∥AB.∴BG=EF,BG∥EF.∴四边形BEFG为平行四边形.∴GF=BE.∴BE=DF.证法(二):∵F,E是AC,BC的中点,∴FE=AB(中位线定理);∵AD=AB,∴AD=FE,∵点F是AC中点,∴AF=FC,又∠DAF=∠CFE=90°,∴△DAF≌△FEC,∴DF=EC,∴DF=BE.【点评】本题利用了中垂线的判定和性质,三角形中位线的性质,平行四边形的判定和性质求解.23.如图,在Rt△ABC中,∠C=90°,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合.若CD=6,BD=10,求AC长.【考点】翻折变换(折叠问题).【分析】在直角三角形中,可直接应用勾股定理求得BE的长度,再利用勾股定理列出方程解答即可.【解答】解:∵在Rt△ABC中,∠C=90°,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE 重合,∴CD=DE=6,AC=AE,在Rt△BDE中,BE=,设AC为x,在Rt△ABC中,可得:x2+(10+6)2=(8+x)2,解得:x=12,答:AC的长为12.【点评】本题考查了翻折变换问题;找准相等的量,结合勾股定理求解是解答此类问题的关键.24.已知:在矩形ABCD中对角线AC、BD交于点O,∠AOB=60°,AB=1,求矩形ABCD的周长.【考点】矩形的性质;含30度角的直角三角形;勾股定理.【分析】根据矩形性质得出AD=BC,AB=CD,∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,推出OA=OB=OC=OD,得出等边三角形AOB,求出BD,根据勾股定理求出AD即可.【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,∴OA=OB=OC=OD,∵∠AOB=60°,OB=OA,∴△AOB是等边三角形,∵AB=1,∴OA=OB=AB=1,∴BD=2OB=2,在Rt△BAD中,AB=1,BD=2,由勾股定理得:AD=,∵四边形ABCD是矩形,∴AB=CD=1,AD=BC=,∴矩形ABCD的周长是AB+BC+CD+AD=4+2.【点评】本题考查了矩形性质,等边三角形的性质和判定,勾股定理等知识点,关键是求出AD的长,题目比较典型,是一道比较好的题目.五、解答题(27题8分、28题10分共18分)25.如图,四边形ABCD是平行四边形,E、F分别是AD、BC中点,BE、DF分别交AC于G、H.求证:四边形GBHD是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】由四边形ABCD是平行四边形,得到AD=BC,AD∥BC,得到DE=BF,推出四边形BFDE是平行四边形,根据平行四边形的性质得到BE=DF,证得△ADH≌△CBG,得到DH=BG,于是得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵E、F分别是AD、BC中点,∴DE=BF,∴四边形BFDE是平行四边形,∴BE=DF,∴∠AFB=∠DGC,∵∠DAG=∠BCH,在△ADH与△CBG中,,∴△ADH≌△CBG,∴DH=BG,∵DH∥BG,∴四边形GBHD是平行四边形.【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,证明四边形BFDE是平行四边形是关键.26.已知:△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点M是BE的中点,连接CM、DM.(1)当点D在AB上,点E在AC上时(如图一),求证:DM=CM,DM⊥CM;(2)当点D在CA延长线上时(如图二)(1)中结论仍然成立,请补全图形(不用证明);(3)当ED∥AB时(如图三),上述结论仍然成立,请加以证明.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)如图一中,延长DM使得MN=DM,连接BN、CN,先证明△DME≌△NMB,再证明△ACD≌△BCN 即可解决问题.(2)补充图形如图二所示,延长DM交CB的延长线于N,只要证明△DME≌△NMB,再证明△CDN是等腰直角三角形即可.(3)如图三中,如图一中,延长DM使得MN=DM,连接BN、CN,CD,先证明△DME≌△NMB,再证明△ACD≌△BCN即可.【解答】证明:(1)如图一中,延长DM使得MN=DM,连接BN、CN.在△DME和△NMB中,,∴△DME≌△NMB,∴DE=BN,∠MDE=∠MNB,∴DE∥NB,∴∠ADE=∠ABN=90°,∵△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,∴AD=DE=BN,AC=BC,∠A=∠ABC=45°,∴∠CBN=45°=∠A,在△ACD和△BCN中,,∴△ACD≌△BCN,∴DC=CN,∠ACD=∠BCN,∴∠DCN=∠ACB=90°,∴△DCN是等腰直角三角形,∵DM=MN,∴DM=CM.DM⊥CM.(2)补充图形如图二所示,延长DM交CB的延长线于N,∵△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,∴AD=DE=BN,AC=BC,∠A=∠ABC=45°,∵∠EDC+∠DCN=180°,∴DE∥CN,∴∠EDM=∠N在△DME和△NMB中,,∴△DME≌△NMB,∴DE=BN=AD,DM=MN,∴CD=CN,∴∠CDN=∠N=45°,CM=DM=MN,CM⊥DN,∴DM=CM.DM⊥CM.(3)如图三中,如图一中,延长DM交AB于N连接CN.∵DE∥AB,∴∠MBN=∠MED,在△DME和△NMB中,,∴△DME≌△NMB,∴DE=BN=AD,DM=MN,∵△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,∴AD=DE=BN,AC=BC,∠BAC=∠ABC=45°,∵∠AED+∠BAE=180°,∴∠BAE=135°,∵∠BAC=∠EAD=45°,∴∠DAC=∠CBN=45°在△ACD和△BCN中,,∴△ACD≌△BCN,∴DC=CN,∠ACD=∠BCN,∴∠DCN=∠ACB=90°,∴△DCN是等腰直角三角形,∵DM=MN,∴DM=CM.DM⊥CM.【点评】本题考查全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是添加辅助线构造全等三角形,记住中线延长一倍是常用辅助线,属于中考常考题型.。

人教版八年级数学第二学期 第一次月考测试卷及答案

人教版八年级数学第二学期 第一次月考测试卷及答案
10.下列运算正确的是( )
A. =﹣6B. C. =±2D.2 ×3 =5
11.关于代数式 ,有以下几种说法,
①当 时,则 的值为-4.
②若 值为2,则 .
③若 ,则 存在最小值且最小值为0.
在上述说法中正确的是( )
A.①B.①②C.①③D.①②③
12.下列二次根式中,最简二次根式是()
A. B. C. D.
二、填空题
13.已知 ,求 _____.
14.已知a,b是正整数,且满足 是整数,则这样的有序数对(a,b)共有____对.
15.已知:x= ,则 可用含x的有理系数三次多项式来表示为: =_____.
16.已知m=1+ ,n=1﹣ ,则代数式 的值________.
17.已知1<x<2, ,则 的值是_____.
故答案为: ; ;
(2)

【点睛】
本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.
22.计算
(1) ;
(2)已知a、b是实数,且 + =0.求a、b的值
(3)已知abc=1,求 的值
【答案】(1) ;(2)a=-3,b= ;(3)1.
【分析】
(1)先将式子进行变形得到 ,此时可以将其化简为 ,然后根据异分母的加减法法则进行化简即可;
18.使式子 有意义的 的取值范围是______.
19.若 的整数部分是a,小数部分是b,则 ______.
20.观察分析下列数据:0, , ,-3, , , ,…,根据数据排列的规律得到第10个数据应是__________.
三、解答题
21.先阅读材料,再回答问题:
因为 ,所以 ;因为 ,所以 ;因为 ,所以 .

八年级数学下册第一次月考试卷(新人教版附答案)

八年级数学下册第一次月考试卷(新人教版附答案)

八年级下册数学第一次月考试卷年班姓名一、选择题(每小题2分,共12分)1.下列各式一定是二次根式的是()A . B . C . D .2.下列二次根式中的最简二次根式是()A .B . C . D .3.一直角三角形的两边长分别为3和4.则第三边的长为()A.5 B .C .D.5或4.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm5.等式成立的条件是()A.x≥1 B.x≥﹣1C.﹣1≤x≤1 D.x≥1或x≤﹣16.如果=1﹣2a,则()A.a <B.a ≤C.a >D.a ≥二、填空题(共8小题,每小题3分,共24分)7.当x= 时,二次根式取最小值,其最小值为.8.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0)、(0,8).以点A为圆心,以AB长为半径画弧,交x正半轴于点C,则点C的坐标为.9.已知是正整数,则实数n的最大值为.10.若y=++1,求3x+y的值是.11.若代数式+(x﹣1)0在实数范围内有意义,则x的取值范围为.12.把 a中根号外面的因式移到根号内的结果是.13.计算的值是.14.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为 cm2.三.解答题(共24分)15.计算:(每小题3分,共12分)(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.16.(6分)化简:•﹣(a≥0)17.(6分)已知a,b 在数轴上位置如图,化简+﹣.四.解答题(共24分)18.(8分)已知y=+2,求+﹣2的值.19.(8分)已知x=+3,y=﹣3,求下列各式的值:(1)x2﹣2xy+y2 (2)x2﹣y2.20.(8分)化简求值:(﹣)÷,其中a=2﹣,b=2+.五.解答题(16分)21.(8分)一架方梯AB长25米,如图所示,斜靠在一面上:(1)若梯子底端离墙7米,这个梯子的顶端距地面有多高?(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?22.(8分)如图:已知等腰三角形ABC中,AB=AC,D是BC边上的一点,DE⊥AB,DF⊥AC,E,F分别为垂足.DE+DF=2,三角形ABC面积为3+2,求AB的长.六.解答题(20分)23.(10分)观察下列运算:由(+1)(﹣1)=1,得=﹣1;由(+)(﹣)=1,得=﹣;由(+)(﹣)=1,得=﹣;…(1)通过观察得= ;(2)利用(1)中你发现的规律计算: ++…+.24.(10分)小明在解决问题:已知a=,求2a2﹣8a+1的值,他是这样分析与解答的:∵a===2﹣,∴a﹣2=﹣,∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1.∴2a2﹣8a+1=2(a2﹣4a)+1=2(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:若a=,求4a2﹣8a﹣3的值.。

最新人教版八年级数学下册第一次月考试卷(附答案)

最新人教版八年级数学下册第一次月考试卷(附答案)

八年级数学下册第一次月考试卷满分:150分 考试用时:120分钟范围:第十六章《二次根式》~第十七章 《勾股定理》班级 姓名 得分 一、选择题(本大题共10小题,共40.0分) 1. 下列各组数是勾股数的是( )A. √3,√4,√5B. 1,1,√2C. 32,42,52D. 5,12,132. 已知a =√2−1,b =√2+1,则a 2+b 2的值为( )A. 8B. 1C. 6D. 4√23. 使代数式√2x+1x−1有意义的x 的取值范围是 ( )A. x ≥−12且x ≠1 B. x ≠1C. x ≥−12D. x >−12且x ≠14. 已知直角三角形的两边长分别为3cm 和5cm ,则第三边长为( )A. 4B. √34C. 4或√34D. 75. 下列由三条线段a ,b ,c 构成的三角形:①a =2mn ,b =m 2−n 2,c =m 2+n 2(m >n >0);②a =2n +1,b =2n 2+2n +1,c =2n 2+2n(n >0);③a =3k ,b =4k ,c =5k(k >0);④√a:√b:√c =1:√3:2.其中能构成直角三角形的有( ).A. 1个B. 2个C. 3个D. 4个6. 如图所示,已知∠B =∠C =∠D =∠E =90°,且AB =CD =3,BC =4,DE =EF =2,则A ,F 两点间的距离是( ).A. 14B. 6+√3C. 8+√2D. 107. 下列计算正确的是( )A. 3√10−2√5=√5B. √711⋅(√117÷√111)=√11 C. (√75−√15)÷√3=2√5D. 13√18−3√89=√28.已知a<b,化简二次根式√−a3b的结果是()A. −a√−abB. −a√abC. a√abD. a√−ab9.计算:3+√3+5√3+3√5+7√5+5√7+⋯+99√97+97√99的结果为()A. 1B. √1133C. 1−√1133D. 1+√113310.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M,P是直线MN上一动点,点H为BC中点,若AB=13,△ABC的周长是36.则PB+PH的最小值为()A. √69B. 10C. 12D. 13二、填空题(本大题共10小题,共30.0分)11.如图,以直角三角形的三边为边长向外作三个正方形A,B,C.若S A=26,S B=18,则S C=_12.计算(√7+1)(√7−1)的结果等于______.13.若√2x+3+1x+1在实数范围内有意义,则x的取值范围是.14.实数a,b在数轴上对应点的位置如图所示,化简:√a2−√b2−√(a−b)2=.15.平面直角坐标系中,点A(3,−4)到原点的距离为__________.16.如图,在长方形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB=.17. 如图,在四边形ABCD 中,AB =BC =1,CD =√6,AD =2,且∠B =90∘,则四边形ABCD 的面积为 (结果保留根号).18. 已知x =√7−√5√7+√5,y =√7+√5√7−√5,则x 3y +2x 2y 2+xy 3的值是 .19. 已知a <3,则√(a −3)2=____.20. 如图,正方形OABC 的边OC 落在数轴上,点C 表示的数为1,点P 表示的数为−1,以P 点为圆心,PB 长为半径作圆弧与数轴交于点D ,则点D 表示的数为______.三、解答题(本大题共6小题,共80.0分) 21. (12分)计算:(1)2(√12+√20)−3(√3−√5);(2)(√3−2√5)(√15+5)−(√10−√2)2.22. (12分)下列各式中,哪些是二次根式⋅并指出二次根式中的被开方数.√0,√−22,√104,√x −3(x ≥3),√−y −1(y >−1),√(x +1)2,√−x 2−3,√yx (xy >0).23.(12分)有一块空白地,如图,∠ADC=90°,CD=6m,AD=8m,AB=26m,BC=24m,试求这块空白地的面积.24.(14分)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.过点A作AD⊥BC于点D,如图所示.设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形的面积.25.(14分)观察下列各式:①√1+13=2√13,②√2+14=3√14;③√3+15=4√15,…(1)请观察规律,并写出第④个等式:______;(2)请用含n(n≥1)的式子写出你猜想的规律:______;(3)请证明(2)中的结论.26.(16分)如图,矩形AOBC,A(0,3)、B(6,0),点E在OB上,∠AEO=30°,点P从点Q(−4,0)出发,沿x轴向右以每秒1个单位长的速度运动,运动时间为t秒.(1)求点E的坐标;(2)当△PAE是等腰三角形时,求t的值;(3)以点P为圆心,PA为半径的⊙P随点P的运动而变化,当⊙P与四边形AEBC的边(或边所在的直线)相切时,求t的值.答案1.D2.C3.A4.C5.C6.D7.B8.A9.C10.C11.812.613.x⩾−3且x≠−1214.−2b15.516.6+√217.1218.14419.3−a20.√5−121.解:(1)原式=2(2√3+2√5)−3√3+3√5=4√3+4√5−3√3+3√5=√3+7√5;(2)原式=√45−2√75+5√3−10√5−(10−2√20+2)=3√5−10√3+5√3−10√5−12+4√5=−3√5−5√3−1222.解:√0,√x−3(x≥3),√(x+1)2,√y(xy>0)是二次根式,其中被开方数依次x是0,x−3,(x+1)2,y.x23.解:连接AC,在Rt △ACD 中,∵CD =6米,AD =8米,∴AC 2=AD 2+CD 2=82+62=100, ∴AC =10米,(取正值).在△ABC 中,∵AC 2+BC 2=102+242=676,AB 2=262=676. ∴AC 2+BC 2=AB 2,∴△ACB 为直角三角形,∠ACB =90°.∴S 空白=12AC ×BC −12AD ×CD =12×10×24−12×8×6=96(平方米). 答:这块空白地的面积是96平方米.24.解:如图,过点A 作AD ⊥BC 交BC 于点D ,设BD =x ,则CD =14−x ,在Rt △ABD 中,AD 2=AB 2−BD 2=152−x 2, 在Rt △ACD 中,AD 2=AC 2−CD 2=132−(14−x)2, ∴152−x 2=132−(14−x)2,解得x =9, 此时AD 2=152−92=122,故AD =12, △ABC 的面积:12×BC ×AD =12×14×12=84.25.(1)√4+16=5√16; (2) √n +1n+2=(n +1)√1n+2;(3)√n +1 =√n 2+2n n +2+1n +2 =√n 2+2n +1n +2=√(n +1)2n +2 =(n +1)√1n+2.26.解:(1)∵A(0,3),B(6,0),∴OA =3,OB =6, ∵∠AEO =30°, ∴OE =√3OA =3√3, ∴点E 的坐标为(3√3,0); (2)如图1中,当EA =EP 时,EP 1=EA =EP 2=6,此时t =3√3−2或3√3+10, 当PA =PE 时,设P 3E =P 3E =x ,在Rt △AOP 3中,32+(3√3−x)2=x 2, ∴x =2√3,此时t =4+√3当AE =AP 时,点P 在点Q 左边,不符合题意.综上所述,当△PAE 是等腰三角形时,t 的值为(3√3−2)s 或(3√3+10)s 或(4+√3)s ; (3)由题意知,若⊙P 与四边形AEBC 的边相切,有以下三种情况: ①如图2中,当PA ⊥AE 时,⊙P 与AE 相切,∵∠AEO =30°,AO =3,∴∠APO=60°,∴OP=√3,∴QP=QO−PO=4−√3,∵点P从点Q(−4,0)出发,沿x轴向右以每秒1个单位的速度运动,∴t=4−√3(秒);②如图3中,当PA⊥AC时,⊙P与AC相切,∵QO=4,点P从点Q(−4,0)出发,沿x轴向右以每秒1个单位的速度运动,∴t=4(秒);③如图4中,当⊙P与BC相切时,由题意,PA2=PB2=(10−t)2,PO2=(t−4)2.于是(10−t)2=(t−4)2+32.(秒),解得t=254综上所述,当⊙P与四边形AEBC的边(或边所在的直线)相切时,t的值为(4−√3)秒或4秒或25秒.4。

人教版八年级下第一次月考数学试题及答案

人教版八年级下第一次月考数学试题及答案

八年级下第一次月考数学试卷一、选择题(每小题3分,共30分) 1.代数式xx n m n m a x 232、、、-+中,分式有( ) A.4 个 B. 3 个 C.2 个 D.1个2.对于反比例函数x y 2=,下列说法不正确的是( ) A.点(-2,-1)在它的图象上 B.它的图象在第一、三象限C.当0 x 时,y 随x 的增大而增大D.当0 x 时,y 随x 的增大而减小 3.若分式392--x x 的值为0,则x 的值是( ) A.-3 B.3 C. ±3 D.04.以下是分式方程1211=--xx x去分母后的结果,其中正确的是( )A.112=--xB.112=+-xC.x x 212=--D.x x 212=+-5.如图,点A 是函数xy 4=图象上的任意一点,AB ⊥x 轴于点B,AC ⊥y 轴于点C ,则四边形OBAC 的面积为( )A.2 B .4 C.8 D.无法确定6.下列分式一定有意义的是( ) A. 12+x x B. 22x x + C. 22--x x D.32+x x 7.已知反比例函数()0 k xk y =的图象上有两点A ()11y x ,,B ()22y x ,,且21x x ,则21y y -的值是( )A.正数B.负数C.非正数D.不能确定8.若关于x 的方程xm x x -=--223无解,则m 的值为( ) A.2 B.0 C.-1 D .19.下列运算中,错误的是( ) A.1-=+--b a b a B.ba b a b a b a 321053.02.05.0-+=-+ C.y x y x y xy x y x +-=++-22222 D.223m m mm m +=+ 10.在一段坡路,小明骑自行车上坡的速度为每小时1v 千米,下坡时的速度为每小时2v 千米,则他在这段OC B A x y5题图路上、下坡的平均速度是每小时( )A. 221v v +千米B.2121v v v v +千米 C. 21212v v v v +千米 D.无法确定 二、填空题(每小题3分,共30分)11.写出一个图象位于第一、三象限的反比例函数的表达式: .12.反比例函数k x k y (=≠0)的图象经过点A(-3,1),则k 的值为 . 13.若分式31--x x 的值是负数,那么x 的取值范围是 . 14.用科学计数法表示:-0.00002006= . 15.计算0122004(521)1()π-÷-⎪⎭⎫ ⎝⎛+--的结果是 . 16.轮船顺水航行46千米和逆水航行34千米所用的时间恰好相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/小时.17.化简:=++-44422a a a . 18.如图所示是三个反比例函数x k y x k y x k y 321,,===的图象,由此观察1k 、2k 、3k 的大小关系是 (用“<”连接).19.已知反比例函数xa y =和一次函数b kx y +=的图象的两个交点分别是A(-3,-2)、B(1,m ), 则b k -2= .20.一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要 小时.三、解答题: 21.(6分)先化简,再求值:x x x x +÷⎪⎭⎫⎝⎛--+211111,其中x =5.y=k 3x y=k 2x y=k 1x O xy 18题图22.解方程(每小题6分,共12分)(1)125552=-+-x x x (2)6272332+=++x x23.(6分)在平面直角坐标系XOY 中,反比例函数x k y =的图象与xy 3=的图象关于x 轴对称,又与直线2+=ax y 交于点A (m ,3),试确定a 的值.24.(8分)已知函数21y y y +=,且1y 与x 成反比例函数关系,2y 与(2-x )成正比例函数关系.当x =1时,y =-1;当x =3时,y =5.求x =5时,y 的值.25.(8分)从甲地到乙地有两条公路,一条是全长600km 的普通公路,另一条是全长480km 的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.26.(10分)学校锅炉旁建有一个储煤库,开学初购进一批煤,现在知道:按每天用煤0.6吨计算,一学期(按150天计算)刚好用完.若每天的耗煤量为X 吨,那么这批煤能维持Y 天.(1)则Y 与X 之间有怎样的函数关系?(2)若每天节约0.1吨,则这批煤能维持多少天?27.(10分)如图所示,已知一次函数y=kx+b 的图象与反比例函数x y 8-=的图象交于A 、B 两点,且点A 的横坐标和B 点的纵坐标都是-2.(1)求一次函数的解析式;(2)求∆AOB 的面积.O BA x y 27题图参考答案1.B ;2.C ;3.A ;4.D ;5.B ;6.A ;7.D ;8.D ;9.D ;10.C ;11.x y 2=;12.3;13.1<x <3;14.-2.006×10-5;15.-2;16.8.5;17. 24+-a a ;18. 1k <3k <2k ;19.0;20.y x xy +; 21.原式=12--x x ,当x =5时,原式=25-; 22.(1)x =0,(2)x =-2;23. a =-1; 24. ()243-+=x x y ,当x =5时,y =563; 25.4;26.(1)x y 90=,(2)180;27.(1)x y -=+2,(2)6.。

新版人教版八年级数学下册第一次月考试卷含答案

新版人教版八年级数学下册第一次月考试卷含答案

新版人教版八年级数学下册第一次月考试卷含答案亲爱的考生,请你沉着应考,细心审题,揣摩题意,应用技巧,准确作答。

祝你成功!一、选择题。

(12 3分)1.下列式子一定是二次根式的是()A.-x-2B.xC.x2+2D.x2-22.下列二次根式中属于最简二次根式的是()A.14B.48C.abD.4a+43.下列线段中,能组成直角三角形的是()A.1,2,3B.4,6,8C.5,5,4D.9,12,154.在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,若∠A+∠C=90°,则下列等式中成立的是()A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.以上都不对5.要使3-x+12x-1有意义,则x应满足()A.12≤x≤3B.x≤3且x≠12C.12<x<3 D.12<x≤36.小明的作业本上有以下四题:①16a4=4a2;②5a×10a=52a;③a 1a=a2·1a=a;④3a-2a=a,做错的题是()A.①B.②C.③D.④7.下列命题的逆命题成立的是()A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等8.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是() A.24cm2B.36cm2C.48cm2D.60cm29.化简2÷(2-1)的结果是()A.22-1B.2-2C.1-2D.2+210.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm,B的边长为5cm,C的边长为5cm,则正方形D的边长为()A.14cm B.4cm C.15cm D.3cm11.如图所示,长方形ABCD中,AB=4,BC=3,将其沿直线MN折叠,使点C与点A重合,则CN的长为()A.72B.258C.278D.15412.如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12cm,EF=16cm,则AD的长是()A.12cm B.16cm C.20cm D.28cm二.填空题。

人教版初中数学八年级下册第一次月考试卷(最新整理)

人教版初中数学八年级下册第一次月考试卷(最新整理)

(1)请你用图(Ⅱ)(2002 年国际数学家大会会标)的面积表达式验证勾股定理(其中四个直角三角形的较大的直 角边长都为 a,较小的直角边长都为 b,斜边长都为 c). (2)请你用(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+2y)2=x2+4xy+4y2 .
第 3 页 共 12 页
A、25º B、50º C、100º D、115ºБайду номын сангаас6、满足下列条件的△ABC 中,不是直角三角形的是( )
登陆二一教育在线组卷平台 助您教考全无忧
A、∠A=∠B-∠C B、∠A︰∠B︰∠C=1︰1︰2 C、a︰b︰c=1︰1︰2 D、b2=c2-a2
7、若
,则 a 的取值范围是 ( )
A、a=2 B、a>2 C、a≥2 D、a≤2 8、如图所示有一块直角三角形纸片,两直角边分别为:AC =6cm,BC = 8 cm,现将直角边 AC 沿直线 AD 折叠,使 它落在斜边 AB 上,且与 AE 重合,则 CD 等于( )
三、计算题(共 1 题;共 5 分)
22、如图,一块草地的中间有一条宽度不变的弯路,AC∥BD,CE∥EF,请给出一种方案,把道路改直,且草地的种 植面积保持不变.
23、如图,直线 l1∥l2 , l1 和 AB 的夹角∠DAB=135°,且 AB=50mm,求两平行线 l1 和 l2 之间的距离.
二、填空题(共 6 题;共 6 分)
13、计算:2 ﹣
=________.
14、(2015•泉州)比较大小:4________ (填“>”或“<”)
15、两条平行线间的所有________ 线段都相等.
16、已知 a、b 满足
+
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级第一次月考测试题 姓名
一、选择题
1.下列各式中①a ;②1+b ; ③2a ; ④32+a ; ⑤12-x ; ⑥122++x x 一定是二次根式的有( )个。

A . 1 个 B. 2个 C. 3个 D. 4个 2.若
b b b -3962=+-,则b 的值为( )
A .0
B .0或1
C .b ≤3
D .b ≥3
3.
n 的值是( )
A .0
B .1
C .2
D .3 4
=成立的x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x
D. 2x ≥
5. 小明做了以下四道题:①24416a a =;②a a a 25105=⨯;③a a
a a a
=•=1
12;
④ a a a =-23。

做错的题是( )
A .①
B .②
C .③
D .④ 6. 化简
6
1
51+的结果为( ) A .
3011 B .33030 C .30
330 D .1130 7

A :::3
8、五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )
7
1524
25
20715
2024
25
157
25
20
24
25
7
202415
(A)
(B)
(C)
(D)
9、 如图,第1个正方形(设边长为2)的边为第一个等腰直角三角形的斜边,第一个等腰直角三角形的
直角边是第2个正方形的边,第2个正方形的边是第2个等腰三角形的斜边……依此不断连接下去.通过观察与研究,写出第2012个正方形的边长a 2012为( )
A
.a 2012=42011
12⎛⎫

⎝⎭
B . a 2012=22011
⎝⎭
C .
a 2012=42012
12⎛⎫

⎝⎭
D . a 2012=22012
⎝⎭
1
2
3 4 5 9题图

S 3S 2
S 1
C B
A 二、填空题
10.①=-2)3.0( ;②=-2
)52( 。

11.、已知233x x +=-x 3+x ,则x 的取值范围是 。

12、比较大小:73- 152-。

13.=•y xy 82 ,=•2712 。

14、 计算3
393a
a a a
-
+= 。

15、如图所示,以直角三角形ABC 的三边向外作正方形,其面积分别为
123
,,S S S ,且
1234,8,S S S ===
则 ;
16、已知直角三角形的两条边为6cm 、8cm ,这个直角三角形第三边的长为 ( ) ; 17、把号内得中根号外的因式移到根1
1
)1(--
-a a 。

18、如图6,直线l 过正方形ABCD 的顶点B ,点A 、C 到直线l 的距离分别是1和2,则正方形的边长是 .
三、解答题
19、在实数范围内分解因式:
(1)2594
-a (2)442
4
+-a a
20.计算:(1)2484554+-+ (2) 2
3
3
232
6--
(3) (4)22
(3223)(323)-
A B
C
D l
图6
1
2
(5)28
4)23()2
1(01
--+
-⨯- (6)6)273482(÷-
21、若x ,y 是实数,且3
14114+-+-=x x y , 求)25()493
2(3xy x xy x x +-+的值。

22.如图在Rt △ABC 中,3,4,90==︒=∠BC AC C ,在Rt △ABC 的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形。

如图所示:
要求:在四个备用图中分别画出两种与示例图不同的拼接方法,在图中标明拼接的直角三角形的三边长(请同学们先用铅笔画出草图,确定后再用0.5mn 的黑色签字笔画出正确的图形)
23、 先化简再求1-2a+a 2a -1 - a 2-2a+1 a 2-a 的值,其中a = 12+ 3
C
B A D E
F
E
F
A A
B
C
F
E
24、如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC 为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?•
25、一游泳池长48米,小方和小朱进行游泳比赛,从同一处(A 点)出发,小方平均速度为3米/秒,小朱为3.1米/秒.但小朱一心想快,不看方向沿斜线(AC 方向)游,而小方直游(AB 方向),两人到达终点的位置相距14米.按各人的平均速度计算,谁先到达终点,为什么? (结果精确到0.01)
26、如图,△ABC 是直角三角形,∠BAC =90°,D 是斜边BC 的中点,E ,F 分别是AB ,AC 边上的点,且DE ⊥DF .
(1)如图1,试说明2
2
2
BE CF EF +=;
(2)如图2,若AB =AC ,BE =12,CF =5,求△DEF 的面积.
48。

相关文档
最新文档