微积分8-1

合集下载

大一微积分下册经典题目及解析

大一微积分下册经典题目及解析

微积分练习册[第八章]多元函数微分学习题8-1多元函数的基本概念1.填空题:(1)若yxxy y x y x f tan),(22-+=,则___________),(=ty tx f (2)若xy y x y x f 2),(22+=,则(2,3)________,(1,)________yf f x-==(3)若)0()(22φy y y x xyf +=,则__________)(=x f (4)若22),(y x xy y x f -=+,则____________),(=y x f(5)函数)1ln(4222y x y x z ---=的定义域是_______________(6)函数y x z -=的定义域是_______________(7)函数xyz arcsin=的定义域是________________ (8)函数xy xy z 2222-+=的间断点是_______________2.求下列极限: (1)xy xy y x 42lim0+-→→(2)x xyy x sin lim0→→(3)22222200)()cos(1lim y x y x y x y x ++-→→ 3.证明0lim22)0,0(),(=+→yx xy y x4.证明:极限0lim 242)0,0(),(=+→y x yx y x 不存在5.函数⎪⎩⎪⎨⎧=≠+=(0,0)),( ,0)0,0(),(,1sin ),(22y x y x y x x y x f 在点(0,0)处是否连续?为什么习题8-2偏导数及其在经济分析中的应用1.填空题 (1)设y x z tanln =,则__________________,=∂∂=∂∂yzx z ; (2)设)(y x e z xy+=,则__________________,=∂∂=∂∂yzx z ; (3)设zyxu =,则________,__________________,=∂∂=∂∂=∂∂z u y u x u ; (4)设x y axc z tan =,则_________________,_________,22222=∂∂∂=∂∂=∂∂y x zy z x z(5)设zyx u )(=,则________2=∂∂∂y x u ; (6)设),(y x f 在点),(b a 处的偏导数存在,则_________),(),(lim 0=--+→xb x a f b x a f x2.求下列函数的偏导数y xy z )1()1(+=z y x u )arcsin()2(-=3.设xy z =,求函数在(1,1)点的二阶偏导数4.设)ln(xy x z =,求y x z ∂∂∂23和23yx z∂∂∂ 5.)11(yx ez +-=,试化简yz y x z x∂∂+∂∂226.试证函数⎪⎩⎪⎨⎧=≠+=)0,0(),( ,0)0,0(),(,3),(22y x y x yx xyy x f 在点(0,0)处的偏导数存在,但不连续. 习题8-3全微分及其应用1.X 公司和Y 公司是机床行业的两个竞争者,这两家公司的主要产品的需求曲线分别为:QY PY Qx Px 41600;51000-=-=公司X 、Y 现在的销售量分别是100个单位和250个单位。

大一微积分(经管类)第八章 无穷级数

大一微积分(经管类)第八章 无穷级数


n
S
如果数列{ S n } 没有极限,则称无穷级数
un 发散.
n 1
5

例1 讨论等比级数(几何级数)
aqn1 a aq aq2 aqn1 (a Sn a aq aq aq , 1 q a n 当 | q | 1 时, lim q 0 limS n 收敛 n n 1 q
2
第一节
常数项级数的概念和性质
无穷级数是高等数学的一个重要组成部分, 它是表示函数、研究函数的性质以及进行数值 计算的一种工具.
一、级数的基本概念
计算圆的面积
a1 正十二边形的面积 a1 a2 正 3 2 n 形的面积 a1 a2 an 即 A a1 a2 an

(un vn ) 收敛推出 un 、 vn
n1 n1 n1




收敛;
(2) 若
un 收敛,而 vn
n1 n1
发散,则
(u
n1

n
vn ) 必发散.
证 假设
而已知
所以
(u v ) 收敛,
n1 n n

由 vn (un vn ) un ,
un 收敛,
所以级数发散.
12
级数收敛的必要条件
定理 若级数 证明
u
n1

n
收敛,则必有lim un 0 .
n
un Sn Sn1 ,
n
lim S n S ,
lim un lim( S n S n1 ) lim S n lim S n 1
n n

经济数学基础--微积分第八章

经济数学基础--微积分第八章

(1
1 n
)n
,
因为
lim
n
un
lim
n
1
1
n
1
n
1 e
0, 所以级数发散.
例8.1.7 讨论级数 cos n 的敛散性.
n 1
2
解 因为数列{cos n }就是0, 1, 0,1, 0, 1,, 这个数列发散, 所以级数也发散.
2
第 12 页
经济应用数学基础——微积分
第八章 第二节 第 13 页
8 1
简记为 un , 称上式为数项无穷级数, 简称无穷级数.其中, 第n项un 称为级数的一般项, n 1
级数的前n项和
n
Sn uk u1 u2 un k 1
称为级数的前n项部分和, 简称部分和.
8 2
第4 页
经济应用数学基础——微积分

第八章 第一节




定义8.1.2
若数项级数的部分和数列{Sn
lim
n
Sn
1
S.由于an
Sn
Sn1 ,
所以
lim
n
an
lnim(Sn
Sn1 )
S
S
0.
注意 本性质说明如果级数 an收敛, 则通项的极限等于0.反之不成立, 如调和级数
1, 虽然 lim 1 0, 但此级数发散.另外, 如果通项的极限不等于0, 级数一定是发散的, 这
n1 n
n n
就是下面的推论.
n
1
n 2 3 1 5 1 2
n3/2
n 1
n3/2
n n2
n6
n
1

微积分8-1

微积分8-1
所求定义域为 不要解出x,y只要给出 同 不要解出 只要给出x,y同 只要给出 时满足的一个关系式即可
D = {( x , y ) | 2 ≤ x 2 + y 2 ≤ 4, x > y 2 }.
(5)关于二元函数的一些题型: 关于二元函数的一些题型: y 例3 已知f x − y, = x 2 − y 2,求f ( x, y ) 及f (1, 0 ) x y u uv 解:令x − y =u; = v ⇒ x = ;y = x 1− v 1− v
第一节
多元函数的基本概念
一、多元函数的概念 二、二元函数的几何意义 三、多元函数的极限与连续性
一、多元函数的概念
所谓多元函数 所谓多元函数, 是指依赖于多个变量的一种函 多元函数 数关系。多个变量都是相互独立的互不影响 都是相互独立的互不影响, 数关系。多个变量都是相互独立的互不影响,它们 的取值都影响因变量的取值。 的取值都影响因变量的取值。二元及二元以上的函 数统称为多元函数 数统称为多元函数。 例如:影响需求的因素除了商品自身价格p外 例如:影响需求的因素除了商品自身价格 外,还 有相关商品价格p 消费者的收入水平I、 有相关商品价格 1 p2… pn 、消费者的收入水平 、 消费者对未来收入的预期R等 消费者对未来收入的预期 等。故需求函数可表示 元的函数, 为一个n+3元的函数,即Q= Q(p, p1, p2, …,pn,I,R) 元的函数 一元函数到二元函数发生质的变化, 一元函数到二元函数发生质的变化,而二元 到三元、四元……仅仅是量的变化.下面我们仅讨 ……仅仅是量的变化 到三元、四元……仅仅是量的变化 下面我们仅讨 论二元函数的概念和有关性质. 论二元函数的概念和有关性质
ቤተ መጻሕፍቲ ባይዱ

微积分初步辅导8定积分与无穷积分

微积分初步辅导8定积分与无穷积分

《微积分初步》辅导8----定积分与无穷积分一、学习重难点解析(一)关于定积分1. 定积分的概念 定积分⎰bax x f d )(是一个数值, 这个数值为=ba x F )()()(a Fb F -, 这里F (x )是被积函数f (x )的任意一个原函数. 即⎰bax x f d )(=ba x F a Fb F )()()(=-这个数值与积分区间[a ,b ]有关, 与被积函数和积分变量上、下限有关, 但与积分变量选取什么字母无关. 因此有⎰⎰-=abb ax x f x x f d )(d )(0)d )((d d =⎰b ax x f x定积分不同于不定积分. 不定积分⎰x x f d )(是f (x )的全体原函数, 即无穷多个函数, 而定积分⎰bax x f d )(是一个确定的数值.2. 定积分的计算由牛顿——莱布尼茨公式知, 定积分在计算上是完全依赖于不定积分的. 在定积分计算中也有换元积分法和分部积分法, 它们与不定积分中的换元积分法和分部积分法的区别在于:(1)在使用定积分的换元积分法时, 换元一定要换限, 积分变量必须与自己的积分上、下限相对应. 换元换限后, 对新的积分变量求得的原函数, 可直接代入新变量的上、下限求值, 而不必再还原到原来的变量在求值.(2)定积分的分部积分法所处理的函数类型与u , v d 的选择与不定积分完全相同只是在定积分中每一项都必须带积分上、下限.(二)关于无穷限积分无穷限积分的处理方法是将其转化为有限区间积分的极限, 计算时先求有限区间积分(即定积分)得到一个新变量的函数⎰=Φbax x f b d )()(在令+∞→b , 由)(lim b b Φ+∞→的存在与否, 确定⎰∞+ax x f d )(是否收敛. 若收敛则积分值等于极限值.二、典 型 例 题例1 判断下列等式是否正确. (1)21d ln d de 1=⎰x x x x 分析:根据定积分的定义进行判断.解(1)由定积分定义,)()(d )(a F b F x x f ba-=⎰是一个确定的数值, 因此, 对函数先求定积分再求导数等于对一个数值求导数, 所以结果应该为零. 即等式21d ln d d e 1=⎰x x x x 错误, 正确的结果应为0d ln d d e 1=⎰x xxx . 例2 计算下列积分: (1)x x d sin 20⎰π分析:注意到被积函数带有绝对值符号, 而在积分时, 绝对值符号是一定要打开的, 且在积分区间]2,0[π上有⎩⎨⎧≤<-≤≤=πππ2sin 0sin sin x x x xx 利用定积分的区间可加性和N-L 进行计算.解 (1)⎰⎰⎰-+=ππππ2020d sin d sin d sin x x x x x x)]1(1[]11[cos cos 20--+---=+-=πππx x4=.说明:本例在求积分的方法直接积分法. 这种方法适用与那些只用到基本积分公式和积分运算性质, 或者对被积函数进行适当变形就 可以运用积分公式求积分的题目. 在解题中应该注意:1.熟悉基本积分公式;2.在解题中经常要对被积函数进行适当的的变形(例如(1)中将绝对值打开), 变形的目的是使被积函数为积分基本公式中的函数或它们的线性组合. 这些方法和技巧的掌握是基于平时的练习;3.如果连续试探几次, 进行不同的变形后仍无法达到目的, 则应考虑其它积分方法求解.例3 计算下列积分:(1)x xxd ln e12⎰(2)x x d sin 203⎰π分析 注意到这几个被积函数都是复合函数, 对于复合函数的积分问题一般是利用凑微分法(第一换元积分法), 在计算中要明确被积函数中的中间变量)(x u ϕ=, 设法将对x 求积分转化为对)(x u ϕ=求积分. 对于定积分的凑微分的题目要注意:换元积分法的特点, 即“换元变限”.(1)将被积函数x x 2)(ln 看成x u 2, 其中x u ln =, 且x xu d 1d =, 于是x x u d 2u u d 2=, 这样对于变量x u ln =可以利用积分公式求积分.(2)将被积函数x 3sin 分解成x x x x x x x sin cos sin sin )cos 1(sin sin 222-=-=即分成两个函数积分的和, 第一个积分可以由N-L 公式直接得到, 第二个积分中被积函数视为x u sin 2, 其中x u cos =, x x u d sin d -=解(1)[方法1]换元换限. 令x u ln =, 则x xu d 1d =, 且当1=x 时, 0=u , e =x 时, 1=u , 于是有 31)01(3131d d ln 3313102e12=-===⎰⎰u u u x x x [方法2] 只凑微分不换元, 不换积分限.)d(ln ln d ln e 12e12x x x xx⎰⎰=31])1(ln )e [(ln 31)(ln 3133e13=-==x(2) 因为x x d sin 203⎰π=x x x x x x x x d sin cos d sin d sin ]cos 1[20220202⎰⎰⎰-=-πππ对于积分1cos d sin 2020=-=⎰ππx x x对于积分x x x d sin cos 202⎰π用凑微分法,[方法1] 令x u cos =, 则x x u d sin d -=, 且当0=x 时, 1=u , 2π=x 时, 0=u , 于是有3131d d sin cos 1312202==-=⎰⎰u u u x x x π[方法2] 只凑微分不换元, 不换积分限.31cos 31dcos cos d sin cos 20320222=-=-=⎰⎰πππx x x x x x说明:第一换元积分法是积分运算的重点, 也是难点. 一般地, 第一换元积分法所处理的函数是复合函数, 故此法的实质是复合函数求导数的逆运算. 在运算中始终要记住换元的目的是使换元后的积分⎰u u f d )(容易求原函数.应用第一换元积分法时, 首先要牢记积分基本公式, 明了基本公式中的变量x 换成x 的函数时公式仍然成立. 同时还要熟悉微分学中的微分基本公式, 复合函数微分法则和常见的 “凑微分”形式. 具体解题时, “凑微分”要朝着⎰u u f d )(容易求积分的方向进行.在定积分计算中, 因为积分限是积分变量的变化范围, 当积分变量发生改变, 相应的积分限一定要随之变化, 所以, 在应用换元积分法解题时, 如果积分变量不变(例如(3)(4)中的方法2). 则积分限不变. 而且在换元换限时, 新积分变量的上限对应于旧积分变量的上限, 新积分变量的下限对应于旧积分变量的下限, 当以新的变量求得原函数时可直接代入新变量的积分上、下限求积分值即可无须在还原到原来变量求值(例如(1)(2)中的方法2).由于积分方法是灵活多样的, 技巧性较强, 一些“凑”的方法是要靠一定量的练习来积累的(例如(2))因此, 我们只有通过练习摸索规律, 提高解题能力.例4 计算下列积分:(1)⎰22d e x x x; (2)⎰e e1d ln x x分析 注意到这些积分都不能用换元积分法, 所以要考虑分部积分,对于分部积分法适用的函数及v u ',的选择可以参照表3-1, 具体步骤是:1.凑微分, 从被积函数中选择恰当的部分作为x v d ', 即v x v d d =', 使积分变为⎰v u d ; 2.代公式,⎰⎰-=u v uv v u d d , 计算出x u u d d '= 3.计算积分⎰u v d . 在定积分的分部积分公式是⎰⎰-=baba ba u v uv v u d d , 它与不定积分的区别在于每一项都带有积分上、下限. 注意公式中ba uv 是一个常数, 在计算中应随时确定下来, 在计算(3)小题时应设法先去掉被积函数的绝对值符号, 这时需要根据绝对值的性质适当的利用定积分对区间的可加性质.解(1) 设2e ,x v x u ='=, 则2e 2x v =, 由定积分分部积分公式有44e 4e 4e4e 4d e 2e2d e 20222202202=+-=-=-=⎰⎰x x x x x x x x(2)因为⎪⎩⎪⎨⎧≤≤<≤-=e1ln 1e1ln ln x x x x x , 利用积分区间的可加性得到⎰⎰⎰+-=e11e1e e1d ln d ln d ln x x x x x x其中第一个积分为⎰⎰-=1e 11e 11e 1d ln d ln x x x x x x x 1e2e 11e 1-=+-= 第二个积分为11e e d ln d ln e 1e1e1=+-=-=⎰⎰x x x x x ,最后结果为e221e 21d ln d ln d ln e 11e1e e1-=+-=+-=⎰⎰⎰x x x x x x . 例5 计算下列无穷限积分:(1)x x d )1(113⎰∞++; (2)⎰∞+-02d e x x ; (3)⎰∞+0d ln 1x xx 分析 对于无穷限积分⎰+∞ax x f d )(的求解步骤为:(1)求常义定积分⎰-=baa Fb F x x f )()(d )(;(2)计算极限)]()([lim a F b F b -+∞→极限存在则收敛(或可积)否则发散. 收敛时积分值等于极限值.解 (1)])1(21[lim d )1(1lim d )1(1121313bb b b x x x x x -+∞→+∞→∞++-=+=+⎰⎰=)41()21(])11()1[(lim 2122-⨯-=+-+---+∞→b b 81=(2)]e 31[lim d elimd e30303bx b bxb xx x -+∞→-+∞→∞+--==⎰⎰31]e e[31[lim 03=--=-+∞→bb (3)+∞===+∞→+∞→∞+⎰⎰bb b b x x x x xx e e e)ln(ln lim )d(ln ln 1lim d ln 1说明此无穷积分发散.注意:正如中提到的, 上述无穷限积分的计算过程也可以写成下面的形式(1)81])1(21[d )1(11213-=+-=++∞-∞+⎰x x x (2)31]e 31[d e 0303=-=+∞-∞+-⎰xx x (3)+∞===∞+∞+∞+⎰⎰e x x xx x x )ln(ln )d(ln ln 1d ln 1e e.。

8-1 多元函数的基本概念

8-1 多元函数的基本概念
时,Biblioteka (x,y)有不同的极限值或无极限,则
lim f(x,y) 不存在
微积分八①
18/22-31
x y 例3 证明 lim 6 2 不存在. x 0 x y y 0

3
y kx3 , 令
3
x 3 kx3 3 k x y lim 当(x,y)沿任何曲线 y kx 趋于(0,0)时,有: , lim 6 2 2 x 0 x 6 k 2 x 6 1 k x 0 x y 3
微 积

电 子 教 案
Conception of functions of several variables
一、二元函数及其定义域 二、二元函数的几何意义
三、二元函数的极限与连续
3/22-31
1、平面区域: xy平面上几条曲线围成的平面一部 分或整个平面 围成区域的曲线称为区域边界. y 分为开区域、闭区域、半开区域。 或有界区域、无界区域。 o 2 2 例如 {( x, y ) | 1 x y 4}. y
25/22-31
1.1、二元函数的改变量
设z f ( x, y), ( x, y) D ( x0 , y0 ) D
x y (3) x由 x0改 变 到 0 x , y由 y0改 变 到 0 y, 则z f ( x0 x, y0 y ) f ( x0 , y0 ) 称为f ( x, y )在( x0 , y0 )处 的 全 增 量 .
13/22-31
二元函数 z f ( x, y )的几何意义即二元函数的图形.
二元函数的图形通常是三维空间的一张曲面.
微积分八①
14/22-31
例如, z sin xy 图形如右图.

微积分8_1向量

微积分8_1向量

在空间直角坐标系下, 任意向量 r 可用向径 OM 表示.
OM = ON + NM = OA + OB + OC
r r r r r = x i + y j + z k ↔ (x , y , z )
此式称为向量 r 的坐标分解式 , 坐标分解式
C r r r r M k j B ro y i A N x
机动 目录 上页 下页 返回 结束
分配律
定理1. 设 a 为非零向量 , 则 定理 a∥b (λ 为唯一实数)
例1. 设 M 为 解:
ABCD 对角线的交点,
试 a 与b 表 MA, MB, MC, MD. 用 示
a +b = AC b −a = BD
MC = 1 ( a + b) 2
= −2 MA = −2 MB
a
三角形法则可推广到多个向量相加 .
机动 目录 上页 下页 返回 结束
s = a1 + a2 + a3 + a4 + a5 a4 a3
a5
s
a2
a1
机动
目录
上页
下页
返回
结束
2. 向量的减法
a
三角不等式
机动
目录
上页
下页
返回
结束
3. 向量与数的乘法
r λ 是一个数 , λ 与 a 的乘积是一个新向量, 记作 λ a .
机动
目录
上页
下页
返回
结束
提示: 提示 (1) 设动点为 M(x, y , 0) ,利用 MA = MB , 得 且 (2) 设动点为 M(x, y , z) , 利用 MA = MB , 得 例6. 已知两点

微积分(二)课后题答案,复旦大学出版社 第八章

微积分(二)课后题答案,复旦大学出版社 第八章

第八章习题8-1 1.求下列函数的定义域,并画出其示意图:(1)z=(2)1ln()zx y=-;(3)z=arcsin yx;(4)zarccos(x2+y2).解:(1)要使函数有意义,必须222210x ya b--≥即22221x ya b+≤,则函数的定义域为2222(,)|1x yx ya b⎧⎫+≤⎨⎬⎩⎭,如图8-1阴影所示.图8-1 图8-1(2)要使函数有意义,必须ln()0x yx y-≠⎧⎨->⎩即1x yx y-≠⎧⎨>⎩,则函数的定义域为{(,)|x y x y>且1}x y-≠,如图8-2所示为直线y x=的下方且除去1y x=-的点的阴影部分(不包含直线y x=上的点).(3)要使函数有意义,必须1yxx⎧≤⎪⎨⎪≠⎩,即11yxx⎧-≤≤⎪⎨⎪≠⎩,即x y xx-≤≤⎧⎨>⎩或x y xx≤≤-⎧⎨<⎩,所以函数的定义域为{(,)|0x y x>且}{(,)|0,}x y x x y x x y x-≤≤<≤≤-,如图8-3阴影所示.图8-3 图8-4(4)要使函数有意义,必须2200||1x y x y ⎧⎪≥⎨⎪+≤⎩即222001x y x y x y ≥⎧⎪≥⎪⎨≥⎪⎪+≤⎩, 所以函数的定义域为222{(,)|0,0,,1}x y x y x y x y ≥≥≥+≤,如图8-4阴影所示.2.设函数f (x ,y )=x 3-2xy +3y 2,求 (1) f (-2,3); (2) f 12,x y ⎛⎫⎪⎝⎭; (3)f (x +y ,x -y ). 解:(1)32(2,3)(2)2(2)33331f -=--⨯-⨯+⨯=;(2)23321211221412,23f x y x x y y x xy y ⎛⎫⎛⎫⎛⎫=-⋅⋅+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)32(,)()2()()3()f x y x y x y x y x y x y +-=+-+-+- 3222()2()3()x y x y x y =+--+-. 3.设F (x ,y )f,若当y =1时,F (x ,1)=x ,求f (x )及F (x ,y )的表达式. 解:由(,1)F x x =得1)x f =即1)1f x =-1t =则2(1)x t =+代入上式有2()(1)1(2)f t t t t =+-=+所以 ()(2)f x x x =+于是(,)1)1) 1F x y f x ===-4.指出下列集合A 的内点、边界点和聚点:(1){(,)01,0}A x y x y x =≤≤≤≤;(2){(,)31}A x y x y =+=; (3)A ={(x ,y )|x 2+y 2>0}; (4)(0,2]A =. 解:(1)内点{(,)|01,0}x y x y x <<<<边界点{(,)|01,0}{(,)|01,1}x y x y x y y x ≤≤=≤≤= {(,)|,01}x y y x x =≤≤ 聚点A (2)内点∅ 边界点A 聚点A (3)内点A边界点(0,0) 聚点A(4)内点∅ 边界点[0,2] 聚点[0,2]习题8-21.讨论下列函数在点(0,0)处的极限是否存在:(1) z =224xy x y+; (2) z =x y x y +-. 解:(1)当(,)P x y 沿曲线2x ky =趋于(0,0)时,有24244200lim (,)lim 1y y y kxky kf x y k y y k →→===++这个值随k 的不同而不同,所以函数224Z=xy x y+在(0,0)处的极限不存在. (2)当(,)P x y 沿直线(1)y kx k =≠趋于(0,0)时,有001lim (,)lim(1)1y x y kxx kx kf x y k x kx k→→=++==≠--,这个极限值随k 的不同而不同,所以函数Z=x yx y+-在(0,0)处的极限不存在. 2.求下列极限:(1) 00sin limx y xy x →→; (2)22011lim x y xyx y→→-+;(3)00x y →→ (4)22sin lim x y xy x y →∞→∞+.解:(1)0000sin sin()limlim 0x x y y xy xy y x xy →→→→=⋅=(2)222211101lim101x y xy x y →→--⨯==++(3)0000001)2x x x y y y →→→→→→=== (4)当,x y →∞→∞时,221x y+是无穷小量,而sin xy 是有界函数,所以它们的积为无穷小量,即22sin lim0x y xyx y →∞→∞=+.3.求函数z =2222y xy x+-的间断点.解:由于220y x -=时函数无定义,故在抛物线22y x =处函数间断,函数的间断点是2{(,)|2,R}x y y x x =∈.习题8-31.求下列各函数的偏导数:(1) z =(1+x )y ; (2) z =lntany x; (3) z =arctan yx; (4) u =zx y .解:(1)1(1)y zy x x-∂=+∂(1)ln(1)y zx x y∂=++∂; (2)22221sec cot sec ;tan z y y y y y yx x x x x x x∂-=⋅⋅=-∂ 22111sec cot sec ;tan z y y y yy x x x x xx∂=⋅⋅=∂ (3)22221;1zy yxx x yy x ∂--=⋅=∂+⎛⎫+ ⎪⎝⎭22211;1zx yx x y y x ∂=⋅=∂+⎛⎫+ ⎪⎝⎭(4)22ln ln ;z zx x u z z yy y y x x x∂-=⋅⋅=-⋅∂1;1ln ln .zxzz x xu z y y xu y y y y z x x-∂=∂∂=⋅⋅=⋅∂2.已知f (x ,y )=e -sin x (x +2y ),求x f '(0,1),y f '(0,1).解:sin sin sin (,)e (cos )(2)e e [cos (2)1]x x x x f x y x x y x x y ---'=⋅-++=-⋅++ s i ns i n(,)e22ex x y f x y --'=⋅= 所以sin0(0,1)e (cos0(021)1)1x f -'=-⋅+⨯+=- s i n 0(0,1)2e 2y f -'== 3.设z =x +y +(y -,求112811,x x y y z z x y====∂∂∂∂.解:1122112d (,1)d(1)1d d x x y x z f x x xx x====∂==+=∂又23211(3z x x y y y y-⎛⎫∂-=+-⋅ ⎪∂⎝⎭所以1811π11arcsin 126x y z y==∂=+=+=+∂. 4.验证z =11+ex y ⎛⎫- ⎪⎝⎭满足222z zxy z x y∂∂+=∂∂. 解:1111()()2211e ex yx y z x x x-+-+∂-=⋅-=∂ 1111()()2211e ex yx yz y y y-+-+∂-=⋅-=∂所以1111()()22222211e ex yx y z z x y x y x y x y-+-+∂∂+=⋅+⋅∂∂ 11()2e 2x yz --+==5.设函数z =2222422,00,0xy x y x y x y ⎧+≠⎪+⎨⎪+=⎩,试判断它在点(0,0)处的偏导数是否存在?解:00(0,0)(0,0)00(0,0)lim lim 0y y y f y f z y y ∆→∆→+∆--'===∆∆ 00(0,0)(0,0)00(0,0)limlim 0x x x f x f z x x∆→∆→+∆--'===∆∆ 所以函数在(0,0)处的偏导数存在且(0,0)(0,0)0x y z z ''==.6.求曲线22(),4z x y y ⎧=+⎪⎨⎪=⎩14在点(2,4,5)处的切线与x 轴正向所成的倾角. 解:因为 242z x x x ∂==∂,故曲线221()44z x y y ⎧=+⎪⎨⎪=⎩在点(2,4,5)的切线斜率是(2,4,5)1z x ∂=∂,所以切线与x 轴正向所成的倾角πarctan14α==.7.求函数z =xy 在(2,3)处,当Δx =0.1与Δy =-0.2时的全增量Δz 与全微分d z . 解:,z zy x x y ∂∂==∂∂∴ d d d z zz x y x y∂∂=+∂∂ 而()()z x x y y xy x y y x x y ∆=+∆+∆-=∆+∆+∆∆ 当0.1,0.2,2,3x y x y ∆=∆=-==时,d 30.12(0.2)0.1z =⨯+⨯-=-2(0.2)30.10.1(0.2)0.12z ∆=⨯-+⨯+⨯-=-. 8.求下列函数的全微分:(1) 设u =()zx y,求d u |(1,1,1).(2) 设z,求d z .解:(1)1121(),()z z u x u x x z z x y y y y y --∂∂-=⋅⋅=⋅⋅∂∂;()ln ,z u x xz y y∂=∂ (1,1,1)(1,1,1)1,1,u u x y∂∂∴==-∂∂ (1,1,1)0u z∂=∂,于是(1,1,1)(1,1,1)(1,1,1)(1,1,1)d d d d d d z z z ux y z x y xyz∂∂∂=++=-∂∂∂(2)z x∂==∂2zy∂==∂ ∴22d d d d d z z z x y xyx y ∂∂=+=∂∂习题8-41.求下列各函数的全导数:(1) z =e 2x +3y , x =cos t , y =t 2; (2) z =tan(3t +2x 2+y 3), x =1t,y.解:(1)d d d d d d z z x z yt x t y t∂∂=+⋅∂∂ 22323232cos 3e 2(sin )e 32=2e(3sin )2e (3sin )x y x y x yt t t tt t t t ++++=⋅⋅-+⋅⋅-=-(2)d d d d d d z f f x f y t t x t y t∂∂∂=+⋅+⋅∂∂∂223223222321sec (32)3sec (32)4 sec (32)3t x y t x y xt t x y y -=++⋅+++⋅+++⋅3223242(3(3)t t t t=-++. 2.求下列各函数的偏导数:(1) z =x 2y -xy 2, x =u cos v , y =u sin v ;(2) z =e uv , u =, v =arctany x. 解:(1)z z x z yu x u y u∂∂∂∂∂=⋅+⋅∂∂∂∂∂ 22222222222(2)cos (2)sin 2sin cos sin cos sin cos 2sin cos 3sin cos (cos sin )xy y v x xy vu v v u v v u v v u v v u v v v v =-+-=-+-=-z z x z y v x v y v∂∂∂∂∂=⋅+⋅∂∂∂∂∂ 22323333323333(2)sin (2)cos 2sin cos sin cos 2sin cos 2sin cos (sin cos )(sin cos )xy y u v x xy u vu v v u v u v u v v u v v v v u v v =--+-=-++-=-+++(2)221e e 1()uv uv z z u z v y v u y x u x v x x x∂∂∂∂∂-=⋅+⋅=⋅⋅∂∂∂∂∂+arctan2222e e()(arctanyuvxyxv yu x y x y x y x=-=-++211e e 1()uv uv z z u z vv u y y u y v yxx∂∂∂∂∂=⋅+⋅=+⋅⋅∂∂∂∂∂+2222e e()(arctanln y uvxyyv xu x x x y x y x=+=+++ 3.求下列函数的一阶偏导数,其中f 可微: (1) u =f (,x yy z); (2) z =f (x 2+y 2); (3) u =f (x , xy , xyz ). 解:(1)121110u f f f x y y ∂'''=⋅+⋅=∂12212211u x x f f f f y y z z y ∂-''''=⋅+⋅=-∂122220u y y f f f z z z∂-'''=⋅+⋅=∂ (2)令22,u x y =+则()z f u =22d ()22()d z f u f u x xf x y x u x∂∂''=⋅=⋅=+∂∂22d ()22()d z f u f u y yf x y y u y∂∂''=⋅=⋅=+∂∂ (3)令,,t x v xy w xyz ===,则(,,)u f t v w =.123123d 1d u f t f v f w f f y f yz f yf yzf x t x v x w x∂∂∂∂∂∂''''''=⋅+⋅+⋅=⋅+⋅+⋅=++∂∂∂∂∂∂ 12323d 0d u f t f v f w f f x f xz xf xzf y t y v y w y∂∂∂∂∂∂'''''=⋅+⋅+⋅=⋅+⋅+⋅=+∂∂∂∂∂∂1233d 00d u f t f v f w f f f xy xyf z t z v z w z∂∂∂∂∂∂''''=⋅+⋅+⋅=⋅+⋅+⋅=∂∂∂∂∂∂ 4.设z =xy +x 2F(u ),u =yx,F(u )可导.证明:2z zxy z x y∂∂+=∂∂. 证:222()()2()()z yy xF u x F u y xF u yF u x x∂-''=++⋅=+-∂21()()z x x F u x xF u y x∂''=+⋅=+∂22()()()z zxy xy x F u xyF u xy xyF u x y∂∂''∴==+-++∂∂ 22[()]x y x F u z=+=∂ 5.利用全微分形式不变性求全微分:(1) z =(x 2+y 2)sin(2x +y ); (2) u =222()yf x y z --,f 可微. 解:(1)令22,sin(2)u x y v x y =+=+,则vz u =122d d d d()ln d sin(2)v v z zz u v vu x y u u x y u v-∂∂=+=++⋅+∂∂122sin(2)2222(2d 2d )ln cos(2)d(2)[2(d d )ln cos(2)(2d d )]2sin(2)()(d d )cos(2)ln()(2d d )v v v x y vu x x y y u u x y x y vu x x y y u x y x y ux y x y x x y y x y x y x y x y -+=++⋅++=⋅++⋅++⎡⎤+=++++++⎢⎥+⎣⎦(2)22222222111d d d d ()d()yu y y f y f x y z x y z f f f f-'=+⋅=-----222222222222221()d (2d 2d 2d )12()d (d d d )()()yf x y z y x x y y z z f f yf x y z y x x y y z z f x y z f x y z '--=---'--=-------6.求下列隐函数的导数:(1) 设e x +y +xyz =e x ,求x z ',y z '; (2)设x z =ln z y,求,z zx y ∂∂∂∂. 解:(1)设(,,)e e 0x yx F x y z xyz +=+-=,则ee ,e ,x yx x y x y z F yz F xz F xy ++'''=+-=+=故e e e ,x x y x yy x y z F Fx yz xzz z Fz xy F xy++'--+''=-==-=-(2)设(,,)ln 0x zF x y z z y=-=,则 2221111,,x y z y z x y x F F F z z y y z z y z z--'''==-⋅==-⋅=--故21x z F z z z xF x z z z '∂=-=-='∂+--2211()y z F z z yx yF y x z z z'∂=-=-='∂+-- 7.设x +z =yf (x 2-z 2),其中f 可微,证明:z zzy x x y∂∂+=∂∂. 证:设22(,,)()F x y z x z yf x z =+--则2212()x F xyf x z ''=--2222()12()y z F f x z F yzf x z '=--''=+-故22222()112()x z F zxyf x z x F yzf x z ''∂--=-=''∂+- 2222()12()y zF z f x y y yzf x z F '∂-=-='∂+-' 从而22222222()()12()12()z z xyzf x z z yf x y z y x y yzf x z yzf x z '∂∂∂---+=+''∂∂+-+- 222222222222222()()12()2()12()[2()1]12()xyzf x z z yf x y yzf x z xyzf x z z x zyzf x z x yzf x z x yzf x z '--+-='+-'--++='+-'-+=='+-8.设x =e u cos v , y =e u sin v , z =uv ,求z x ∂∂及z y∂∂. 解法一:由e cos ,e sin u ux v y v ==得221ln(),arctan ,2yu x y v z uv x=+== 故22(cos sin )e uz z u z v xv yu v v u v x u x v x x y-∂∂∂∂∂-=+==-∂∂∂∂∂+22(sin cos )e uz z u z v yv xu v v u v y u y v y x y-∂∂∂∂∂+=+==-∂∂∂∂∂+ 解法二:设方程组e cos e sin uux vy v⎧=⎪⎨=⎪⎩确定了函数(,),(,)u u x y v v x y ==,对方程组的两个方程关于x 求偏导得1e cos e sin 0e sin e cos uu u u u v v v x xu v v v x x ∂∂⎧=-⎪⎪∂∂⎨∂∂⎪=+⎪∂∂⎩解方程组得e cos e sin u u uv xv v x --∂⎧=⎪⎪∂⎨∂⎪=-⎪∂⎩又方程组的两个方程关于y 求偏导得0e cos e sin 1e sin e cos uu u u u v v v y y u v v vy y ∂∂⎧=-⎪∂∂⎪⎨∂∂⎪=+⎪∂∂⎩解方程组得:e sin e cos uu u v y v v y--∂⎧=⎪∂⎪⎨∂⎪=⎪∂⎩ 从而e (cos sin )u z z u z vv v u v x u x v x-∂∂∂∂∂=⋅+=-∂∂∂∂∂e (s i n c o s )uz z u z v v v u v y u y v y-∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂ 9.设u =f (x ,y ,z )有连续偏导数,y =y (x )和z =z (x )分别由方程0xye y -=和e z -xz =0确定,求d d ux. 解:方程e 0xyy -=两边对x 求导得d de ()0d d xyy y y x x x +-=,解得2d e d 1e 1xy xy y y y x x xy==-- 方程e 0zxz -=两边对x 求导得d de 0d d zz z z x x x--= 解得d de z z z z x x xz x==-- 从而2d d d d d d 1y z x y z x y f zf u y zf f f f x x x xy xz x''''''=++=++--习题8-51.求下列函数的二阶偏导数: (1) z =x 4+y 4-4x 2y 2; (2) z =arctany x; (3) z =y x ; (4) z =x ln(xy ).解:(1)23222248, 128;z z x xy x y x x∂∂=-=-∂∂232222248, 128;1622z z y x y y x y y zxy x y∂∂=-=-∂∂∂=-(2)22221,1()z y y y x x x y x∂-=⋅=-∂++ 22222222222222222222222222222211,1()2(2),()()22()()()2()()z x y y x x y xz y xyx x x y x y z x xyy y x y x y z x y y y y x x y x y x y ∂=⋅=∂++∂-=-⋅=∂++∂--=⋅=∂++∂+-⋅-=-=∂∂++(3)1ln , ,x x z zy y xy x y-∂∂==∂∂222222211ln , (1),1ln (1ln )x x x x x z z y y x x y x y z xy y y y x y x y y---∂∂==-∂∂∂=+⋅=+∂∂(4)1ln()1ln(),z xy x y xy x xy∂=+⋅⋅=+∂22222211,1,11.z y x xy x z x x x y xy y z xy y z x x y xy y∂=⋅=∂∂=⋅⋅=∂∂=-∂∂=⋅=∂∂2.求下列函数的二阶偏导数,其中f (u ,v )可微: (1) z =f (x 2+y 2); (2) z =f (xy ,x +2y ).解:(1)2222, 22224z zxf f xf x f x f x x∂∂'''''''==+⋅=+∂∂ 2222, 22224z zyf f yf y f y f y y ∂∂'''''''==+⋅=+∂∂2224zxf y xyf x y∂''''=⋅=∂∂(2)1212, =+2 z zyf f xf f x y∂∂''''=+∂∂ 22111221221112222(1)12zy f y f f y f y f yf f x∂''''''''''''''=⋅+⋅+⋅+⋅=++∂ 22111221*********(2)2(2)44z x f x f f x f x f xf f y∂''''''''''''''=⋅+⋅+⋅+⋅=++∂ 21111221221111222(2)2 (2)2zf y f x f f x f x y f xyf x y f f ∂'''''''''=++⋅+⋅+⋅∂∂'''''''=++++3.求由e z -xyz =0所确定的z =f (x ,y )的所有二阶偏导数. 解:设(,,)e 0zF x y z xyz =-=,则,,e z x y z F yz F xz F xy '''=-=-=-于是,e x z z F z yz zx F xy xz x∂=-==∂--e z z xz zy xy yz y∂==∂-- 从而222()(1)()z z xz x z z x zx x xxz x ∂∂--+-∂∂∂=∂-232223(1)221.(1)(1)z z z z z z z z x z x z --+---==-- 223222223()(1)(1)221.()(1)(1)z zz yz y z z y z z z z z z z y y z y yz y y z y z ∂∂--+---+∂--∂∂-===∂--- 2222233()()(1)(1).()(1)(1)(1)z z z z xz x z x z z z z z y y y y z x y xz x x z xy z xy z ∂∂---∂---∂∂-====∂∂----习题8-61.求z =x 2+y 2在点(1,2)处沿从点(1,2)到点(2,2的方向的方向导数.解:设(1,2),(2,2o p p ,则射线l的方向就是向量(1o p p =的方向,将o p p 单位化得:1(,),22||o o p p p p =于是1cos ,cos 2αβ==, 又2,2,f fx y x y ∂∂==∂∂ 于是(1,2)(1,2)2,4,f f x y∂∂==∂∂所以(1,2)124122f l∂=⨯+=+∂ 2.设u =xyz +x +y +z ,求u 在点(1,1,1)处沿该点到点(2,2,2)的方向的方向导数.解:设0(1,1,1),(2,2,2)p p ,则射线l 的方向就是向量0p p =(1,1,1)的方向,将0p p单位化得00||p p p p =⎝⎭,于是cos αβγ=== 又1,1,1f f f yz xz xy x y z ∂∂∂=+=++∂∂∂,于是(1,1,1)(1,1,1)(1,1,1)2,2,2fff xyz∂∂∂===∂∂∂,所以(1,1,1)222333f l∂=⨯+⨯+⨯=∂. 3.求函数z =x 2-xy +y 2在点M(1,1)处沿与Ox 轴的正方向所成角为α的方向l 上的方向导数.问在什么情况下,此方向导数取得最大值?最小值?等于零? 解:2,2f f x y x y x y ∂∂=-=-+∂∂, (1,1)(1,1)1,1f fx y∂∂==∂∂∴(1,1)π1c o s 1s i n 2s i n ()4f lααα∂=⋅+⋅+∂当πsin()4α+=1,时,即π4α=当πsin()14α+=-时,即5π4α=时,此方向导数有最小值当πsin()04α+=时,即3π4α=或7π4时,此方向导数为0.习题8-71.求下列函数的极值: (1) z=x 3-4x 2+2xy -y 2+3; (2) z =e 2x (x +2y +y 2); (3) z =xy (a -x -y ), a ≠0. 解:(1)由方程组:23820220xy z x x y z x y ⎧'=-+=⎪⎨'=-=⎪⎩ 得驻点(0,0),(2,2) 又68,2,2,xx xy yy z x z z ''''=-==-在点(0,0)处,2120B AC -=-<,又80A =-<,所以函数取得极大值(0,0)3;f = 在点(2,2)处,2120,B AC -=>该点不是极值点.(2)由方程组222e (2241)0e (22)0x xx y z x y y z y ⎧'=+++=⎪⎨'=+=⎪⎩ 得驻点1(,1)2-.又2222e (4484),e (44),2e xxxxx xy yy z x y y z y z ''''''=+++=+=,在点1(,1)2-处22202e 2e 4e 0,B AC -=-⋅=-<且2e 0A =>,所以函数取得极小值11(,1) e.22f -=- (3)由方程组(2)0(2)0xy z y a x y z x a y x ⎧'=--=⎪⎨'=--=⎪⎩ 得四个驻点(0,0),(0,),(,0),,.33a a a a ⎛⎫ ⎪⎝⎭又2,22,2xx xy yy z y z a x y z x ''''''=-=--=-.在点(0,0)处,220,B AC a -=>该点不是极值点. 在点(0,)a 处,220B AC a -=>,该点不是极值点. 在点(,0)a 处,220B AC a -=>,该点不是极值点.在点,33a a ⎛⎫ ⎪⎝⎭处,2203a B AC -=-<,所以函数在该点有极值,且极值为3,3327aa a f ⎛⎫= ⎪⎝⎭,由于23xx A z a ''==-故 当0a >时,(0)A <,函数有极大值327a ,当0a <时,(0)A >,函数有极小值327a .2.求函数z =x 3-4x 2+2xy -y 2在闭区域D :-1≤x ≤4,-1≤y ≤1上的最大值和最小值. [分析]由(,)f x y 在D 上连续,所以必有最大最小值,又由于(,)f x y 在D 内可导,所以(,)f x y 的最值在D 的内部驻点或在D 的边界上,由(,)f x y 在D 内部驻点上值与边界上函数比较可求出(,)f x y 的最大和最小值.解:由方程23820220xy z x x y z x y ⎧'=-+=⎪⎨'=-=⎪⎩得驻点(0,0),(2,2)(2,2)D ∈应该舍去,(0,0)0f =(可由充分条件判别知是极大值).D 的边界可分为四部分:12:1,11; :1,14;L x y L y x =--≤≤=--≤≤ 34:4,11; :1,1 4.L x y L y x =-≤≤=-≤≤在1L 上,2(1,)52(),1 1.f y y y y y ϕ-=---=-≤≤因为()2(1)0,y y ϕ'=-+≤所以()y ϕ单调递减,因而(1)4ϕ-=-最大,(1)8ϕ=-最小. 在2L 上,32(,1)421(),14f x x x x g x x -=---=-≤≤令()0g x '=得124433x x ==.而122227min{(1),(),(),(4)}()27g g x g x g g x --==,1214227m a x {(1),(),(),(4)}()27g g x g x g g x -==分别是(,)f x y 在2L 上的最小值与最大值.类似讨论可得:在3L 上(4,1)7,(4,1)9f f =-=-,分别是(,)f x y 的最大值与最小值;在4L 上(4,1)7,(1,1)f f =-=-8分别是(,)f x y 的最大值与最小值.比较(,)f x y 在内部驻点(0,0)与整个边界上函数值的情况得到(4,1)7f =是函数(,)f x y 在D 上的最大值,116.1f ⎫-=≈-⎪⎪⎝⎭. 3.求函数z =x +y 在条件111x y+= (x >0,y >0)下的条件极值. 解:构造拉格朗日函数11(,)1F x y x y x y λ⎛⎫=+++- ⎪⎝⎭解方程组221010111x y F x F y x yλλ⎧'=-=⎪⎪⎪'=-=⎨⎪⎪+=⎪⎩ 得2,2,4x y λ===,故得驻点(2,2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)
若加括号后级数收敛,则原级数收敛; B 若加括号后级数收敛,则原级数收敛; 若加括号后级数发散,则原级数发散; C 若加括号后级数发散,则原级数发散; D 若 E 若
∑u
n =1 ∞ n =1


n
收敛,⇒ ∑ (u2 n−1 + u2 n ) 收敛 收敛,
n =1 ∞

∑u
n =1
n
发散,⇒ ∑ (u2 n−1 + u2 n ) 发散 发散,
2 性质 性质2
且若
的敛散性相同, ∑ u 与 ∑ ku 的敛散性相同,
n =1 n
n =1 n


∑u
n =1

n
= s,
∑ ku
n =1

n
= ks (k ∈ R, k ≠ 0)
3 性质 一个级数去掉或添加有限项, 性质3 一个级数去掉或添加有限项, 敛散性不变. 敛散性不变 性质4 若级数收敛, 4 性质4 若级数收敛,则添加括号后新级数 收敛,但反之不一定. 收敛,但反之不一定.


n →∞
lim un = lim( Sn − Sn −1 ) = s − s = 0
n →∞
注意: n→∞ ③注意: i ) lim un = 0 →
1 如 ∑ n, n =1
∑u
n =1


n
收敛
1 lim = 0 n →∞ n
1 ∑n n =1


1 ∑n n =1

发散
(称级数 称级数
为调和级数) 为调和级数
第八章 无穷级数
§1 常数项级数的概念和性质 本节重点: 本节重点 掌握级数收敛的充分与必要条件; 1 掌握级数收敛的充分与必要条件; 2 掌握收敛级数的性质
一、常数项级数的概念
级数的定义: 1. 级数的定义: 数列 {un } 的各项依次相加所得的表达式

∑u
n=1
n
= u1 + u2 + u3 +⋯+ un +⋯
性质应用—例题分析 三 性质应用 例题分析
例1
1 1 设 ∑ un = 2, 求 ∑ ( un − n ) 2 n =1 2 n =1
1 收敛, lim ∑ (1 − u ) 收敛,求 n→∞ un n =1 n ∞ 5 1 的和. ∑ ( n(n + 1) + 2n ) 的和. n =1



例2 设 例3 求
ii ) 若 lim un ≠ 0 ⇒ ∑ un 发散 n →∞


n ∑ n +1 n =1

n =1
发散
必要条件的用途: iii ) 必要条件的用途: 用来判别级数发散; a) 用来判别级数发散; b) 用来求某类型数列极限 (求极限的另一方法) 求极限的另一方法)
∞ n! n! lim 如: n→∞ n = 0, ∵ ∑ n 收敛的(后续课讲) n n 收敛的(后续课讲) n =1
收敛, 为其和, 收敛, s 为其和,即
∑u
n =1


n
= s,
不存在, 若 lim Sn 不存在,则称级数∑ un 发散 n →∞ n =1
(判别级数敛散性的方法) 判别级数敛散性的方法)
若收敛,如何求和?(收敛,求和的方法) ?(收敛 ② 若收敛,如何求和?(收敛,求和的方法)
n →∞
lim Sn = s = ∑ un
n =1

(求数列的极限) 求数列的极限)
4 例题分析 例1 设
∑ un 前 n
n =1

项部分和为
n Sn = n +1
是否收敛? 问: ① ∑ un 是否收敛?
n =1

② 若收敛,求其和; 若收敛,求其和; ③ 写出该级数 判别等比级数(几何级数) 例2 判别等比级数(几何级数)
aq n−1 = a + aq + aq 2 + ⋯ + aq n−1 + ⋯ ∑
Sn = u + u2 +⋯+ un ,⋯ 1
③ un = Sn − Sn −1 ④

∑u
n =1
n
= lim Sn
n →∞
级数的收敛与发散: 3. 级数的收敛与发散:
lim ① 设级数 ∑ un,若 n→∞ S n = s (有限数),则称级数 有限数), ),则称级数

∑u
n =1

n =1
n
(常数项)无穷级数 常数项) 其中
un 称为该级数的一般项或通项
2. 部分和与部分和数列
部分和: ① 部分和: 数列 un 的前 n 项和 S n
Sn = u1 + u2 + ⋯ + un
② 部分和数列 {S n } (n = 1, 2, ⋯)
S1 = u1, S2 = u1 + u2 , S3 = u1 + u2 + u3,⋯,
n =1
F 若 ∑ (u2n + u2 n+1 )发散, 发散,
⇒ ∑ un
n =1

发散
四、小结
常数项级数的基本概念和性质 基本审敛法
1.由定义,若 s n → s , 则级数收敛; 1.由定义, 则级数收敛; 由定义
2.当 则级数发散; 2.当 lim un ≠ 0,则级数发散;
n→ ∞
3. 收敛级数的性质

1 ∑ (2n − 1)(2n + 1) n =1

是否收敛?若收敛求其和 是否收敛 若收敛求其和. 若收敛求其和
二、收敛级数的基本性质
1. 性质 (级数收敛的必要条件 性质1 级数收敛的必要条件 级数收敛的必要条件)
lim ①级数∑ un 收敛 ⇒ n→∞ un = 0
n =1 ∞

lim 简证: ② 简证:∵ ∑ un 收敛 ⇒ n→∞ Sn = s n =1
级数加括号后得新级数发散, 注: 级数加括号后得新级数发散,则原级 数发散. 数发散. 5 性质 若 ∑ un 与 ∑ vn均收敛 性质5 n =1 n =1
⇒ ∑ (k1un + k2vn ) 收敛 ( k1 , k 2
n =1 ∞
∞ ∞
≠ 0).
注: i ) 两个发散级数的和或差不一定发散
ii ) 一敛一散的和或差一定发散

收敛, n=1 发散,分别就①② 例4 设① ∑ un 收敛,② ∑ un 发散,分别就①② n =1 两种情况讨论下列级数的敛散性

i ) ∑ (un + 0.0001) ii )
n =1

∑u
n =1

n +1000
1 iii ) ∑ u n =1 n

下列结论正确的是( 例5 下列结论正确的是( 发散级数加括号后仍发散; A 发散级数加括号后仍发散;
讨论
1 ∑n n =1

假设调和级数收敛 , 其和为 s .
1 1 1 n 1 > = , ∵ s2 n − sn = + +⋯+ n+1 n+ 2 2n 2n 2
于是 lim( s2 n − sn ) = s − s = 0,
n→ ∞
1 (n → ∞) 便有 0 ≥ 2
这是不可能的 .
∴ 级数发散 .
n =1 ∞
其中 a ≠ 0, q ≠ 0 的敛散性
例3
2 判别级数 ∑ 5n n =1


的敛散性 的敛散性
例4 判别级数 ∑ 2 3
n =1

2 n 1− n
1 是否收敛, 例5 判别级数∑ 是否收敛, n =1 n( n + 1)
若收敛求其和
1 思考:问 思考 问 ∑ n(n + 1)(n + 2) , n =1
1 ∑ n(n + 1) 收敛, 收敛, n =1

1 1 1 则 1⋅ 2 + ( 2 ⋅ 3 + 3 ⋅ 4 ) + (4,5, 6, 7) + ⋯
仍收敛. 仍收敛.
(−1) n = −1 + 1 + (−1) + 1 + ⋯ (−1) n + ⋯ 发散 发散, ∑
n =1

收敛. 但 (−1 + 1) + (−1 + 1) + ⋯ + ⋯ 收敛.
相关文档
最新文档