深圳市新安中学数学全等三角形单元综合测试(Word版 含答案)
深圳市新安中学八年级数学上册第二单元《全等三角形》检测(答案解析)

一、选择题1.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或3 2.如图,OM 、ON 、OP 分别是AOB ∠,BOC ∠,AOC ∠的角平分线,则下列选项成立的( )A .AOP MON ∠>∠B .AOP MON ∠=∠C .AOP MON ∠<∠D .以上情况都有可能3.如图,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是( )A .40°B .50°C .60°D .30° 4.如图,AP 平分∠BAF ,PD ⊥AB 于点D ,PE ⊥AF 于点E ,则△APD 与△APE 全等的理由是( )A .SSSB .SASC .SSAD .AAS5.如图,在Rt ABC △中,90C ∠=︒,CAB ∠的平分线交BC 于点D ,且DE 所在直线是AB 的垂直平分线,垂足为E .若3DE =,则BC 的长为( ).A .6B .7C .8D .9 6.如图,AD 是ABC 的角平分线,:4:3AB AC = ,则ABD △与ACD △的面积比为( ).A .4:3B .16:9C .3:4D .9:167.下列命题中,假命题是( )A .在同一平面内,垂直于同一条直线的两直线平行B .到线段两端点距离相等的点在这条线段的垂直平分线上C .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D .一边长相等的两个等腰直角三角形全等8.如图,已知△ABC 的周长是20,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于,且OD=2,△ABC 的面积是( )A .20B .24C .32D .409.如图,AB BC ⊥,CD BC ⊥,AC BD =,则能证明ABC DCB ≅的判定法是( )A .SASB .AASC .SSSD .HL10.下列命题,真命题是( )A .全等三角形的面积相等B .面积相等的两个三角形全等C .两个角对应相等的两个三角形全等D .两边和其中一边的对角对应相等的两个三角形全等11.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两个等腰直角三角形全等 12.如图,已知,CAB DAE ∠=∠,AC AD =.下列五个选项:①AB AE =,②BC ED =,③C D ∠=∠,④B E ∠=∠,⑤12∠=∠,从中任选一个作为已知条件,其中能使ABC AED ≌△△的条件有( )A .2个B .3个C .4个D .5个二、填空题13.如图,AOP BOP ∠=∠,PD OA ⊥,C 是OB 上的动点,连接PC ,若4PD =,则PC 的最小值为_________.14.如图所示,在ABC 中,D 是BC 的中点,点A 、F 、D 、E 在同一直线上.请添加一个条件,使BDE CDF ≌(不再添其他线段,不再标注或使用其他字母),并给出证明.你添加的条件是______15.如图,△ABC ≌△DEF ,由图中提供的信息,可得∠D =__________°.16.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D .若3CD =,10AB =,则ABD △的面积是______.17.已知点(2,1)P m m -,当m =____时,点P 在二、四象限的角平分线上. 18.如图,在ABC 中,点D 是BC 上的一点,已知30DAC ∠=︒,75DAB ∠=︒,CE 平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠=________度.19.如图,AB =8cm ,AC =5cm ,∠A =∠B ,点P 在线段AB 上以2cm/s 的速度由点A 向B 运动,同时,点Q 以x cm/s 的速度从点B 出发在射线BD 上运动,则△ACP 与△BPQ 全等时,x 的值为_____________20.ABC 中,4AB =,6AC =, 则第三边BC 边上的中线m 的取值范围是______.三、解答题21.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在边BC 上(不与点B ,C 重合),过点C 作CE ⊥AD ,垂足为点E ,交AB 于点F ,连接DF .(1)请直接写出∠CAD 与∠BCF 的数量关系;(2)若点D 是BC 中点,在图2中画出图形,猜想线段AD ,CF ,FD 之间的数量关系,并证明你的猜想.22.如图,已知A ABC ∠=∠,D CBD ∠=∠,ABD CBD ∠=∠,点E 在BC 的延长线上.求证:CD 平分ACE ∠.23.在正方形网格中,网格线的交点叫做格点,三个顶点均在格点上的三角形叫做格点三角形.(1)在图1中计算格点三角形ABC 的面积是__________;(每个小正方形的边长为1) (2)ABC 是格点三角形.①在图2中画出一个与ABC 全等且有一条公共边BC 的格点三角形;②在图3中画出一个与ABC 全等且有一个公共点A 的格点三角形.24.直线CD 经过BCA ∠的顶点C ,CA=CB .E ,F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)(数学思考)若直线CD 经过BCA ∠的内部,且E ,F 在射线CD 上,请解决下面两个问题:①如图1,若90BCA ∠=︒,90α∠=︒,求证:EF BE AF =-;②如图2,若090BCA ︒<∠<︒,当α∠与BCA ∠之间满足________关系时,①中结论仍然成立,并给予证明.(2)(问题拓展)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.25.已知ACE △和DBF 中,AE FD =,//AE FD ,AB DC =,请判断CE 与BF 的位置关系,并说明理由.26.如图,在△ABC 中,90ACB ∠=︒,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D . (1)求证:AD =CE(2)AD =6cm ,DE =4cm ,求BE 的长度【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】设运动时间为t 秒,由题目条件求出BD=12AB=6,由题意得BP=2t ,则CP=8-2t ,CQ=vt ,然后结合全等三角形的判定方法,分两种情况列方程求解.【详解】解:设运动时间为t 秒,∵12AB AC cm ==,点D 为AB 的中点.∴BD=12AB=6, 由题意得BP=2t ,则CP=8-2t ,CQ=vt ,又∵∠B=∠C∴①当BP=CQ ,BD=CP 时,BPD ∆≌CQP ∆∴2t=vt ,解得:v=2②当BP=CP ,BD=CQ 时,BPD ∆≌CPQ ∆∴8-2t=2t ,解得:t=2将t=2代入vt=6,解得:v=3综上,当v=2或3时,BPD ∆与CQP ∆全等故选:D【点睛】本题主要考查了全等三角形全等的判定、熟练掌握全等三角形的判定方法是解题的关键,学会用分类讨论的思想思考问题,属于中考常考题型.2.B解析:B【分析】根据角平分线的定义可得∠AOP=12∠AOC ,∠AOM=∠MOB=12∠AOB ,∠CON=∠BON=12∠BOC ,进而可得∠MON=12∠AOB+12∠BOC=12∠AOC ,从而可得∠AOP=∠MON .【详解】解:∵OP 平分∠AOC ,∴∠AOP=12∠AOC , ∵OM 、ON 分别是∠AOB 、∠BOC 的平分线, ∴∠AOM=∠MOB=12∠AOB ,∠CON=∠BON=12∠BOC , ∴∠MON=12∠AOB+12∠BOC=12∠AOC , ∴∠AOP=∠MON .故选B .【点睛】此题主要考查了角平分线的定义,关键是掌握角平分线把角分成相等的两部分. 3.B解析:B【分析】由SAS 证明△BDE ≌△CFD ,得出∠BDE=∠CFD ,∠EDF 可由180°与∠BDE 、∠CDF 的差表示,进而求解即可.【详解】解:在△BDE 与△CFD 中,BD CF B C BE CD ⎧⎪∠∠⎨⎪⎩===,∴△BDE ≌△CFD (SAS );∴∠BDE=∠CFD ,∴∠EDF=180°-(∠BDE+∠CDF )=180°-(∠CFD+∠CDF )=180°-(180°-∠C )=50°; 故选:B .【点睛】本题主要考查了全等三角形的判定及性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件. 4.D解析:D【分析】求出∠PDA=∠PEA=90°,∠DAP=∠EAP ,根据AAS 推出两三角形全等即可.【详解】解:∵PD ⊥AB ,PE ⊥AF ,∴∠PDA=∠PEA=90°,∵AP 平分∠BAF ,∴∠DAP=∠EAP ,在△APD 和△APE 中DAP EAP PDA PEA AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APD ≌△APE (AAS ),故选:D .【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.D解析:D【分析】由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,【详解】解:∵DE 垂直平分AB ,∴DA=DB ,∴∠B=∠DAB ,∵AD 平分∠CAB ,∴∠CAD=∠DAB ,∵∠C=90°,∴3∠EAD=90°,∴∠EAD=30°,∵∠AED=90°,∴DA=BD=2DE ,∵AD 平分∠CAB ,DE ⊥AB ,CD ⊥AC ,∴CD=DE=3,∴DA=BD=6,∴BC=BD+CD=6+3=9,故选:D .【点睛】本题考查了线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.6.A解析:A【分析】过点D作DE垂直于AB,DF垂直于AC,由AD为角BAC的平分线,根据角平分线定理得到DE=DF,再根据三角形的面积公式表示出△ABD与△ACD的面积之比,把DE=DF以及AB:AC的比值代入即可求出面积之比.【详解】解:过点D作DE⊥AB于E,DF⊥AC于F.∵AD为∠BAC的平分线,∴DE=DF,又AB:AC=4:3,∴S△ABD:S△ACD=(12AB•DE):(12AC•DF)=AB:AC=4:3.故选:A.【点睛】本题考查了角平分线的性质定理:角平分线上的点到角两边的距离相等.此类题经常过角平分线上作角两边的垂线,这样可以得到线段的相等,再结合其他的条件探寻结论解决问题.7.D解析:D【分析】根据垂线的性质,线段垂直平分线的判定,全等三角形的判定对各选项分析判断后利用排除法求解.【详解】A、同一平面内,垂直于同一条直线的两直线互相平行,真命题,本选项不符合题意;B、到线段两端点距离相等的点在这条线段的垂直平分线上,真命题,本选项不符合题意;C、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另一条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等,真命题,本选项不符合题意;D、有一边相等的两个等腰直角三角形不一定全等,如:一个等腰直角三角形的直角边与另一个等腰直角三角形的斜边相等,这两个等腰直角三角形并不全等,假命题,本选项符合题意.故选:D.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.A解析:A【分析】连接OA ,过O 作OE ⊥AB 于E ,OF ⊥AC 于F ;然后利用角平分线定理可得OF=OE=DO=2,然后用S △ABC =S △AOC +S △OBC +S △ABO 求解即可.【详解】解:如图:连接OA ,过O 作OE ⊥AB 于E ,OF ⊥AC 于F,∵OB ,OC 分别平分∠ABC 和∠ACB ,∴OD=OE,OF=OD,即OF=OE=DO=2,∴S △ABC =12×2AC+12×2BC +12×2AB =12×2(AC+BC+AB ) = AC+BC+AB=20.故答案为A .【点睛】本题主要考查了角平分线定理,正确作出辅助线、利用角平分线定理得到OF=OE=DO=2是解答本题的关键.9.D解析:D【分析】直接证明全等三角形,即可确定判断方法.【详解】解:∵AB BC ⊥,CD BC ⊥,∴ABC 与△DCB 均为直角三角形,又AC DB =,BC CB =, ∴()ABC DCB HL ≅,故选:D.【点睛】本题考查全等三角形的判定定理,属于基础题.10.A解析:A【分析】根据全等三角形的性质、全等三角形的判定定理判断即可.【详解】解:A 、全等三角形的面积相等,本选项说法是真命题;B 、面积相等的两个三角形不一定全等,本选项说法是假命题;C 、两个角对应相等的两个三角形相似,但不一定全等,本选项说法是假命题;D 、两边和其中一边的对角对应相等的两个三角形不一定全等,本选项说法是假命题; 故选:A .【点睛】本题考查全等三角形的应用,熟练掌握三角形全等的定义、性质及判定是解题关键. 11.C解析:C【分析】根据全等三角形的判定定理:SSS 、SAS 、ASA 、AAS 、HL 定理针对四个选项分别进行判断即可.【详解】A. 一直角边对应相等的两个直角三角形不一定全等,还要知道它的边或角才能证明,故此选项错误;B. 斜边相等的两个直角三角形不一定全等,还要知道它的边或角才能证明,故此选项错误;C. 斜边相等的两个等腰直角三角形全等,对应角相等,根据AAS 即可证明全等,故此选项正确;D. 一边长相等的两个等腰直角三角形不一定全等,必须说明是对应边相等,故此选项错误.故选:C .【点睛】本题考查了全等三角形的判定,掌握证明三角形全等的条件尤其是必须含有边这个条件是解题的关键.12.B解析:B【分析】添加条件①可以用“SAS”证明,添加条件③可以用“ASA”证明,添加条件④可以用“AAS”证明.【详解】解:①在ABC 和AED 中,AC AD CAB DAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED SAS ≅△△;②不可以;③在ABC 和AED 中,C D AC ADCAB DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ABC AED ASA ≅;④在ABC 和AED 中,B E CAB DAE AC AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABC AED AAS ≅;⑤不可以;故选:B .【点睛】本题考查全等三角形的判定,解题的关键是掌握全等三角形的所有判定定理.二、填空题13.4【分析】当PC 垂直于OB 时PC 最小根据角平分线的性质可求最小值【详解】解:当PC ⊥OB 时PC 最小∵PC ⊥OB ∴PC=PD=4故答案为:4【点睛】本题考查了垂线段最短和角平分线的性质能够根据垂线段最解析:4【分析】当PC 垂直于OB 时,PC 最小,根据角平分线的性质可求最小值.【详解】解:当PC ⊥OB 时,PC 最小,∵AOP BOP ∠=∠,PD OA ⊥,PC ⊥OB ,∴PC=PD=4,故答案为:4.【点睛】本题考查了垂线段最短和角平分线的性质,能够根据垂线段最短的性质判断出点C 的位置,并根据角平分线的性质得出PC=PD 是根关键.14.ED=FD (答案不唯一∠E=∠CFD 或∠DBE=∠DCF )【分析】根据三角形全等的判定方法SAS 或AAS 或ASA 定理添加条件然后证明即可【详解】解:∵D 是的中点∴BD=DC①若添加ED=FD 在△BD解析:ED=FD (答案不唯一,∠E=∠CFD 或∠DBE=∠DCF )【分析】根据三角形全等的判定方法SAS或AAS或ASA定理添加条件,然后证明即可.【详解】解:∵D是BC的中点,∴BD=DC①若添加ED=FD在△BDE和△CDF中,BD CDBDE CDF ED FD=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△CDF(SAS);②若添加∠E=∠CFD在△BDE和△CDF中,BDE CDFE CFDBD CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△CDF(AAS);③若添加∠DBE=∠DCF在△BDE和△CDF中,BDE CDF BD CDDBE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE≌△CDF(ASA);故答案为:ED=FD(答案不唯一,∠E=∠CFD或∠DBE=∠DCF).【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.15.【分析】先根据三角形的内角和定理求出∠A的度数再利用全等三角形的性质求出答案即可【详解】∵∠A+∠B+∠C=∴∠A=-∠B-∠C=∵△ABC≌△DEF∴∠D=∠A=故答案为:【点睛】此题考查全等三角解析:70︒【分析】先根据三角形的内角和定理求出∠A的度数,再利用全等三角形的性质求出答案即可【详解】∵∠A+∠B+∠C=180︒,∴∠A=180︒-∠B-∠C=180506070︒-︒-︒=︒,∵△ABC≌△DEF,∴∠D=∠A=70︒,故答案为:70︒【点睛】此题考查全等三角形的性质:全等三角形的对应角相等,对应边相等,以及三角形的内角和定理.16.15【分析】如图过点D作DE⊥AB于E首先证明DE=CD=3再利用三角形的面积公式计算即可【详解】解:如图过点D作DE⊥AB于E由作图可知AD平分∠CAB∵CD⊥ACDE⊥AB∴DE=CD=3∴S△解析:15【分析】如图,过点D作DE⊥AB于E.首先证明DE=CD=3,再利用三角形的面积公式计算即可.【详解】解:如图,过点D作DE⊥AB于E.由作图可知,AD平分∠CAB,∵CD⊥AC,DE⊥AB,∴DE=CD=3,∴S△ABD=12•AB•DE=12×10×3=15,故答案为15.【点睛】本题考查了作图-基本作图,角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.17.【分析】根据第二四象限角平分线上点的横坐标与纵坐标互为相反数列方程求解即可【详解】解:∵点P(2mm-1)在二四象限的角平分线上∴2m=-(m-1)解得m=故答案为:【点睛】本题考查了点的坐标熟记第解析:1 3【分析】根据第二四象限角平分线上点的横坐标与纵坐标互为相反数列方程求解即可.【详解】解:∵点P(2m,m-1)在二、四象限的角平分线上,∴2m=-(m-1),解得m=13.故答案为:13.【点睛】本题考查了点的坐标,熟记第二四象限角平分线上点的横坐标与纵坐标互为相反数是解题的关键.18.15【分析】过点E 作EM ⊥AC 于MEN ⊥AD 于NEF ⊥BC 于H 如图先计算出∠EAM=75°则AE 平分∠EAD 根据角平分线的性质得EM=EN 再由CE 平分∠ACB 得到EM=EH 则EN=EH 于是根据角平分解析:15【分析】过点E 作EM ⊥AC 于M ,EN ⊥AD 于N ,EF ⊥BC 于H ,如图,先计算出∠EAM=75°,则AE 平分∠EAD ,根据角平分线的性质得EM=EN ,再由CE 平分∠ACB 得到EM=EH ,则EN=EH ,于是根据角平分线定理的逆定理可判断DE 平分∠ADB ,则∠1=12∠ADB ,根据三角形外角性质得∠1=∠DEC+∠2,即∠1=∠DEC+12∠ACB ,∠ADB=∠DAC+∠ACB ,所以∠DEC==12∠DAC=15°. 【详解】解:过点E 作EM AC ⊥于M ,EN AD ⊥于N ,EH BC ⊥于H ,如图.∵ 30DAC ∠=,75DAB ∠=,∴ 75EAM ∠=,∴ AE 平分MAD ∠,∴ EM EN =.∵ CE 平分ACB ∠,∴ EM EH =,∴ EN EH =,∴ DE 平分ADB ∠,∴112ADB ∠=∠. ∵ 12DEC ∠=∠+∠,而122ACB ∠=∠,∴ 112DEC ACB ∠=∠+∠,而ADB DAC ACB ∠=∠+∠,∴ 11301522DEC DAC ∠=∠=⨯= .故答案为:15.【点睛】本题考查了平分线的性质和三角形外角的性质,掌握性质是解题的关键.19.2或【分析】由∠A =∠B 可知△ACP 与△BPQ 全等时CP 和PQ 是对应边则分AP =BQ 和AP =PB 两种情况进行讨论即可【详解】设动点的运动时间为t 秒则AP =2tBP =AB -AP =8-2tBQ =xt ∵∠解析:2或52 【分析】 由∠A =∠B ,可知△ACP 与△BPQ 全等时,CP 和PQ 是对应边,则分AP =BQ 和AP =PB 两种情况进行讨论即可.【详解】设动点的运动时间为t 秒,则AP =2t ,BP =AB -AP =8-2t ,BQ =xt ,∵∠A =∠B ,∴CP 和PQ 是对应边,当△ACP 与△BPQ 全等时,①AP =BQ ,即:2t = xt ,解得:x =2,②AP =PB ,即:2t =8-2t ,解得:t =2,此时,BQ =AC ,xt =5,即:2x =5,解得:x =52故填:2或52. 【点睛】本题考查全等三角形的性质,“分类讨论”的数学思想是关键.20.【分析】如图延长AD 至点E 使得DE=AD 可证△ABD ≌△CDE 可得AB=CEAD=DE 在△ACE 中根据三角形三边关系即可求得AE 的取值范围即可解题【详解】解:延长AD 至点E 使得DE=AD ∵点D 是BC解析:15a <<【分析】如图延长AD 至点E ,使得DE=AD ,可证△ABD ≌△CDE ,可得AB=CE ,AD=DE ,在△ACE 中,根据三角形三边关系即可求得AE 的取值范围,即可解题.【详解】解:延长AD 至点E ,使得DE=AD ,∵点D 是BC 的中点,∴BD=CD在△ABD 和△CDE 中,AD DE ADB CDE BD CD ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CDE (SAS ),∴AB=CE ,∵△ACE 中,AC-CE <AE <AC+CE ,即:AC-AB <AE <AC+AB ,∴2<AE <10,∴1<AD <5.故答案为:1<AD <5.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABD ≌△CDE 是解题的关键.三、解答题21.(1)∠BCF =∠CAD ;(2)AD =CF +DF ,证明见解析【分析】(1)由余角的性质可求解;(2)过点B 作BG ∥AC 交CF 的延长线于G ,由“ASA ”可证△ACD ≌△CBG ,可得CD =BG ,AD =CG ,由“SAS ”可证△BDF ≌△BGF ,可得DF =GF ,可得结论.【详解】解:(1)∠BCF =∠CAD ,理由如下:∵CE ⊥AD ,∴∠CED =∠ACD =90°,∴∠CAD +∠ADC =90°=∠ADC +∠BCF ,∴∠CAD =∠BCF ;(2)如图所示:猜想:AD =CF +DF ,理由如下:过点B 作BG ∥AC 交CF 的延长线于G ,则∠ACB +∠CBG =180°,∴∠CBG =∠ACD =90°,在△ACD 和△CBG 中,∵CAD BCF AC BC ACD CBG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACD ≌△CBG (ASA ),∴CD =BG ,AD =CG ,∵D 是BC 的中点,∴CD =BG =BD ,∵AC =BC ,∠ACB =90°,∴∠CBA =∠CAB ,∴∠CBA =45°,∴∠FBG =∠CBG ﹣∠CBA =90°﹣45°=45°,∴∠FBG =∠FBD ,在△BDF 和△BGF 中,BF BF FBD FBG BD BG =⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△BGF (SAS ),∴DF =GF ,∵AD =CG =CF +FG ,∴AD =CF +DF .【点睛】本题主要考查余角的性质,全等三角形的判定和性质,添加合适的辅助线,构造全等三角形,是解题的关键.22.见解析【分析】根据题意,先证明//AB CD ,然后由平行线的性质以及等量代换,得到ACD DCE ∠=∠,即可得到结论成立.【详解】证明:D CBD ∠=∠,ABD CBD ∠=∠,D ABD ∴∠=∠,//AB CD ∴ABC DCE ∴∠=∠,A ACD ∠=∠又A ABC ∠=∠,ACD DCE ∴∠=∠,CD ∴平分ACE ∠.【点睛】本题考查了平行线的判定和性质,角平分线的判定,解题的关键是掌握所学的知识,正确得到//AB CD .23.(1)6;(2)①见解析;②见解析【分析】(1)用割补法求解即可;(2)根据“SSS”画图即可;(3)根据“SSS”画图即可;【详解】解:(1)5×3-12×3×3-12×2×2-12×5×1=6, 故答案为:6;(2)①如图,'A BC 即为所求,②如图,''AB C 即为所求,【点睛】本题考查了“格点三角形的定义”以及全等三角形的判定方法,熟练掌握“SSS”是解答本题的关键.24.(1)证明见解析;(2)180ACB α∠+∠=︒,证明见解析;(3)EF BE AF =+,证明见解析.【分析】(1)①求出∠BEC =∠AFC =90°,∠CBE =∠ACF ,根据AAS 证△BCE ≌△CAF ,推出BE =CF ,CE =AF 即可;②当∠α+∠ACB =180°,证明∠BEC =∠AFC ,∠CBE =∠ACF ,根据AAS 证△BCE ≌△CAF ,推出BE =CF ,CE =AF 即可;(2)求出∠BEC =∠AFC ,∠CBE =∠ACF ,根据AAS 证△BCE ≌△CAF ,推出BE =CF ,CE =AF 即可.【详解】(1)①在图1中,90BEC AFC ∠=∠=︒,90ACB ∠=︒,90BCE ACF ∠+∠=︒,90EBC BCE ∠+∠=︒,EBC ACF ∴∠=∠,在BCE 和CAF 中,EBC ACF BEC AFC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BCE CAF AAS ∴≅,BE CF ∴=,CE AF =,EF CF CE BE AF ∴=-=-;②当180ACB α∠+∠=︒时,①中结论仍然成立;证明:在图2中,BEC CFA a ∠=∠=∠,180ACB α∠+∠=︒,BCE ACF EBC BCE ∴∠+∠=∠+∠,EBC ACF ∴∠=∠,在BCE 和CAF 中,EBC ACF BEC AFC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BCE CAF AAS ∴≅,BE CF ∴=,CE AF =,EF CF CE BE AF ∴=-=-.故答案为180ACB α∠+∠=︒;(2)不成立,结论:EF BE AF =+.理由:在图3中,BEC CFA a ∠=∠=∠,a BCA ∠=∠,又180EBC BCE BEC +∠+∠=︒,180BCE ACF ACB ∠+∠+∠=︒,EBC BCE BCE ACF ∴∠+∠=∠+∠,EBC ACF ∴∠=∠,在BEC △和CFA △中,EBC FCA BEC CFA BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BEC CFA AAS ∴≅,AF CE ∴=,BE CF =,EF CE CF =+,EF BE AF ∴=+.【点睛】本题综合考查三角形综合题、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,注意这类题目图形发生变化,结论基本不变,证明方法完全类似,属于中考常考题型.25.见详解【分析】先证明ACE △≅DBF ,从而得∠DBF=∠ACE ,进而即可得到结论.【详解】∵AB DC =,∴+AB BC DC BC =+,即:AC=DB ,∵//AE FD ,∴∠A=∠D ,又∵AE FD =,∴ACE △≅DBF (SAS ),∴∠DBF=∠ACE ,∴CE ∥BF .【点睛】本题主要考查全等三角形的判定和性质定理以及平行线的判定和性质定理,熟练掌握SAS 证明三角形全等,是解题的关键.26.(1)证明见解析;(2)2cm .【分析】(1)先根据垂直的定义可得90ADC E ∠=∠=︒,再根据直角三角形的两锐角互余、等量代换可得CAD BCE ∠=∠,然后根据三角形全等的判定定理与性质即可得证;(2)先结合(1)的结论可得6CE cm =,再根据线段的和差可得2CD cm =,然后根据全等三角形的性质即可得.【详解】(1),AD CE BE CE ⊥⊥,90ADC E ∠=∠=∴︒,90CAD ACD ∴∠+∠=︒,90ACB ∠=︒,90BCE ACD ∴∠+∠=︒,CAD BCE ∴∠=∠,在ACD △和CBE △中,ADC E CAD BCE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD CBE AAS ∴≅,AD CE ∴=;(2)由(1)已证:AD CE =,6AD cm =,6CE cm ∴=,4DE cm =,2CD CE DE cm ∴=-=,又由(1)已证:ACD CBE ≅,2BE CD cm ∴==.【点睛】本题考查了直角三角形的两锐角互余、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.。
第11章 全等三角形单元测验(含答案)

第十一章全等三角形单元测试题(总分100分,时间:60分钟)度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
班级_________ 姓名__________ 学号_________一、精心选一选,慧眼识金!(每小题3分,共24分)1.两个直角三角形全等的条件是()A.两条边对应相等 B.两锐角对应相等C.一条边对应相等 D.一锐角对应相等2.下列条件中,不能判定两个三角形全等的是()A.三边对应相等B.两条边和夹角对应相等C.3.的是A.∠4.则Δ5.6.如图在△ABD和△ACE都是等边三角形,则ΔADC≌ΔABE的根据是()A. SSSB. SASC. ASAD. AAS7.如图,AB ∥CD ,AD ∥BC ,OE=OF ,则图中全等三角形的组数是( )A. 3B. 4C. 5D. 6 8.如图,已知∠1=∠2,AC=AD ,增加下列条件:①AB=AE ;②BC=ED ;③∠C=∠D ;④∠B=∠E .其中能使△ABC ≌△AED 的条件有( ) A.4个 B.3个 C.2个 D.1个 二、耐心填一填,一锤定音!(每小题3分,共24分)9.( 2008.广东梅州)如图, 点 P 到∠AOB 两边的距离相等,若∠POB=30°,则 ∠AOB=___度.第9题图形 第10题图形 第11题图形10.(2008.广东肇庆)如图,P 是∠AOB 的角平分线上的一点,PC ⊥OA 于点C ,PD ⊥OB 于点D , 写出图中一对相等的线段(只需写出一对即可) . 11.(2008.黑龙江黑河)如图,∠BAC=∠ABD ,请你添加一个条件: ,使OC=OD(只添一个即可).12.有两边和 对应相等的两个三角形全等.13.如图,若△OAD≌△OBC,且∠0=65°,∠C=20°,则∠OAD= .14.如图,点B 在AE 上,∠CAB=∠DAB ,要使△ABC ≌△ABD ,可补充的一个条件是: (写一个即可).15.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点F ,过点F 作DE ∥BC ,交AB 于点D ,交AC 于点E ,如果BD+CE=9cm ,那么DE 的长度是 .16.如图,将正方形纸片沿AM 折叠,使点D 恰好落在边BC 上的N 处,若AD=7cm ,CM=3cm , ∠DAM=30°,那么AN= cm ,MN= cm ,∠NAM= ,∠DMN= .A DE F 第13题图形AD M 第14题图形DO CBA三、用心做一做,马到成功!(本大题共52分)17.(10分)如图,三条公路两两相交于A、B、C三点,现计划建一座综合供应中心,要求到三条公路的距离相等,则你能找出符合条件的地点吗?画出来。
(完整版)《全等三角形》单元测试题(含答案)

《全等三角形》单元测试题姓名 班级 得分一、填空题(4×10=40分)1、在△ABC 中,AC>BC>AB ,且△ABC ≌△DEF ,则在△DEF 中,______>______>_______(填边)。
2、已知:△ABC ≌△A ′B ′C ′,∠A=∠A ′,∠B=∠B ′,∠C=70°,AB=15cm ,则∠C ′=_________,A ′B ′=__________。
3、如图1,△ABD ≌△BAC ,若AD=BC ,则∠BAD 的对应角是________。
4、如图2,在△ABC 和△FED ,AD=FC ,AB=FE ,当添加条件__________时,就可得到△ABC ≌△FED 。
(只需填写一个你认为正确的条件)5、如图3,在△ABC 中,AB=AC ,AD ⊥BC 于D 点,E 、F 分别为DB 、DC 的中点,则图中共有全等三角形________对。
6、如图4,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是 .7、如图5,△ABC 中,∠C=90°,CD ⊥AB 于点D ,AE 是∠BAC 的平分线,点E 到AB 的距离等于3cm ,则CF= cm.8、如图6,在△ABC 中,AD =DE ,AB =BE ,∠A =80°,则∠CED =_____.9、P 是∠AOB 平分线上一点,CD ⊥OP 于F ,并分别交OA 、OB 于CD ,则CD_____P 点到∠AOB 两边距离之和。
(填“>”,“<”或“=”)10、AD 是△ABC 的边BC 上的中线,AB =12,AC =8,则中线AD 的取值范围是二、选择题:(每小题5分,共30分)11、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等, 其中真命题的个数有( )A 、3个B 、2个C 、1个D 、0个12、如图7,已知点E 在△ABC 的外部,点D 在BC 边上,AD ECB图4ABDE 图1 图2 图3图5图6DE 交AC 于F ,若∠1=∠2=∠3,AC=AE ,则有( ) A 、△ABD ≌△AFD B 、△AFE ≌△ADCC 、△AEF ≌△DFCD 、△ABC ≌△ADE13、下列条件中,不能判定△ABC ≌△A ′B ′C ′的是( ) A 、AB=A ′B ′,∠A=∠A ′,AC=A ′C ′B 、AB=A ′B ′,∠A=∠A ′,∠B=∠B ′C 、AB=A ′B ′,∠A=∠A ′,∠C=∠C ′D 、∠A=∠A ′,∠B=∠B ′,∠C=∠C ′14、如图8所示,90E F ∠=∠=,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④ACN ABM △≌△.其中正确的有( )A .1个B .2个C .3个D .4个15、全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A 1B 1C 1是全等(合同)三角形,点A 与点A 1对应,点B 与点B 1对应,点C 与点C 1对应,当沿周界A →B →C →A ,及A 1→B 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形(如图9),若运动方向相反,则称它们是镜面合同三角形(如图10),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°(如图11),下列各组合同三角形中,是镜面合同三角形的是( )16、如图12,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D , 若BC=64,且BD :CD=9:7,则点D 到AB 边的距离为( ) A 、18 B 、32 C 、28 D 、24三、解答下列各题:(17-18题各8分,19-2280分)17、如图13,点A 、B 、C 、D AB=DC ,AE//DF ,AE=DF ,求证:EC=FB18、如图14,AE 是∠BAC 的平分线,AB=AC 。
全等三角形单元测试题(含答案)

P ODC BA 《全等三角形》单元检测题一、选择题 (每小题4分,共40分)1. 下列可使两个直角三角形全等的条件是( )A.一条边对应相等B.两条直角边对应相等C.一个锐角对应相等D.两个锐角对应相等 2. 如图,点P 是△ABC 内的一点,若PB =PC ,则( ) A .点P 在∠ABC 的平分线上 B.点P 在∠ACB 的平分线上 C .点P 在边AB 的垂直平分线上 D .点P 在边BC 的垂直平分线上 3. 如图, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF ,连结BF ,CE . 下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE . 正确的有( )A. 1个 B. 2个 C. 3个 D. 4个4. 在直角梯形ABCD 中,AD ∥BC ,∠B =90°,E 为AB 上一点,且ED 平分∠ADC ,EC 平分∠BCD ,则下列结论中正确的有( ) A.∠ADE =∠CDE B.DE ⊥EC C.AD ·BC =BE ·DE D.CD =AD +BC5. 使两个直角三角形全等的条件是( )A. 斜边相等B. 两直角边对应相等C. 一锐角对应相等D. 两锐角对应相等6. 如图,OP 平分∠AOB ,PC ⊥OA 于C ,PD ⊥OB 于D ,则PC 与PD 的大小关系( ) A.PC >PD B.PC =PD C.PC <PD D.不能确定7. 用两个全等的直角三角形,拼下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形,其中不一定能拼成的图形是( ) A. ①②③ B. ②③ C. ③④⑤ D. ③④⑥8. 如图,平行四边形ABCD 中,AC 、BD 相交于点O ,过点O 作直线分别交于AD 、BC 于点E 、F ,那么图中全等的三角形共有( ) A.2对 B.4对 C.6对 D.8对AD CBEF A E DOB F C9. 给出下列条件: ①两边一角对应相等 ②两角一边对应相等 ③三角形中三角对应相等 ④三边对应相等,其中,不能使两个三角形全等的条件是( ) A. ①③B. ①②C. ②③D. ②④10. 如图,P 是∠BAC 的平分线AD 上一点,PE ⊥AB 于E ,PF ⊥AC 于F ,下列结论中不正确的是( ) A. PE PF = B. AE AF =C. △APE ≌△APFD. AP PE PF =+二、简答题 (每小题3分,共24分) 11. 如图,ABC ∆中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使ABD ∆与ABC ∆ 全等,那么点D 的坐标是_________. 12. 填空,完成下列证明过程.如图,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC ,AC 上,且BD CE =,=DEF B ∠∠求证:=ED EF .证明:∵∠DEC =∠B +∠BDE ( ), 又∵∠DEF =∠B (已知),∴∠______=∠______(等式性质). 在△EBD 与△FCE 中, ∠______=∠______(已证), ______=______(已知), ∠B =∠C (已知), ∴EBD FCE △≌△( ). ∴ED =EF ( ).13. 如图,点B 在AE 上,∠CAB =∠DAB ,要使△ABC ≌△ABD , 可补充的一个条件是:-____________(写一个即可).AD CBE FADECBF(第13题) ) (第15题)14. 如图,在△ABC 中,AB =AC ,∠A =50°,BD 为∠ABC 的平分线,则∠BDC = °. 15. 如图,在△ABC 中,∠C =90°,AB 的垂直平分线交AC 于D ,垂足为E ,若∠A =30°,DE =2,∠DBC 的度数为__________,CD 的长为__________.16. 如图,已知AD=BC .EC ⊥AB.DF ⊥AB ,C.D 为垂足,要使ΔAFD ≌ΔBEC ,还需添加一个条件.若以“ASA ”为依据,则添加的条件是 .17. 如图,AB =CD ,AD 、BC 相交于点O ,要使△ABO ≌△DCO ,应添加的条件为 . 18. 如图3,P 是∠AOB 的平分线上一点,C .D 分别是OB .OA 上的点,若要使PD =PC ,只需添加一个条件即可。
深圳市深圳中学初中部八年级数学上册第一单元《三角形》测试(含答案解析)

一、选择题1.随着人们物质生活的提高,玩手机成为一种生活中不可缺少的东西,手机很方便携带,但唯一的缺点就是没有固定的支点,为了解决这一问题,某工厂研制生产了一种如图所示的手机支架.把手机放在上面就可以方便地使用手机,这是利用了三角形的哪一个性质()A.三角形两边之和大于第三边B.三角形具有稳定性C.三角形的内角和是180D.直角三角形两个锐角互余2.一个多边形的外角和是360°,这个多边形是()A.四边形B.五边形C.六边形D.不确定3.若一个三角形的三边长分别为3,7,x,则x的值可能是()A.6 B.3 C.2 D.114.若一个正多边形的内角和等于其外角和的3倍,则这个正多边形是()A.5边形B.6边形C.7边形D.8边形5.下列长度的三条线段能构成三角形的是()A.1,2,3B.5,12,13C.4,5,10D.3,3,66.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是()A.12 B.10 C.9 D.67.已知长度分别为3cm,4cm,xcm的三根小棒可以摆成一个三角形,则x的值不可能是()A.2.4 B.3 C.5 D.8.58.已知三角形的两边长分别为1和4,则第三边长可能是()A.3 B.4 C.5 D.69.下列长度(单位:cm)的三条线段能组成三角形的是()A.13,11,12 B.3,2,1 C.5,12,7 D.5,13,5 10.下列四个图形中,线段CE是ABC的高的是()A.B.C.D.11.下列长度的三条线段,能组成三角形的是( ) A .3,5,6B .3,2,1C .2,2,4D .3,6,1012.如图所示,ABC ∆的边AC 上的高是( )A .线段AEB .线段BAC .线段BD D .线段DA二、填空题13.在一个三角形中,若其中一个内角的度数是另一个内角的2倍,则我们称这个三角形为“倍角三角形”.已知某“倍角三角形”的一个内角的度数为60°,则其它两个内角的度数分别是_______.14.如图,BD 是ABC 的中线,点E 、F 分别为BD 、CE 的中点,若AEF 的面积为23cm ,则ABC 的面积是______2cm .15.如图,五边形ABCDE 中,//AE BC ,则C D E ∠+∠+∠的度数为__________.16.如果三角形的三边长分别为5,8,a ,那么a 的取值范围为__.17.将一副直角三角尺所示放置,已知//AE BC ,则AFD ∠的度数是__________.18.七边形的外角和为________.19.如图,飞机P 在目标A 的正上方,飞行员测得目标B 的俯角为30°,那么APB ∠的度数为______°.20.如图:70B ∠=︒,60A ∠=︒,将ABC 沿一条直线MN 折叠,使点C 落到1C 位置,则12∠-∠=______.三、解答题21.△ABC 中,三个内角的平分线交于点O ,过点O 作OD ⊥OB ,交边BC 于点D . (1)如图1,猜想∠AOC 与∠ODC 的关系,并说明你的理由; (2)如图2,作∠ABC 外角∠ABE 的平分线交CO 的延长线于点F . ①求证:BF ∥OD ;②若∠F =35°,求∠BAC 的度数.22.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.(1)过点A 画线段BC 的垂线,垂足为E ;(2)过点A 画线段AB 的垂线,交线段CB 的延长线于点F ;(3)线段BE 的长度是点 到直线 的距离;(4)线段AE 、BF 、AF 的大小关系是 .(用“<”连接)23.如图,直线AB 与直线MN 相交,交点为O ,OC ⊥AB ,OA 平分∠MOD ,若∠BON =20°,求∠COD 的度数.24.(1)一个多边形的内角和等于1800度,求这个多边形的边数. (2)一个多边形的每一个内角都是108°,求这个多边形的边数.25.如图,有一块直角三角板XYZ 置在ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .ABC 中,30A ∠=︒.(1)ABC ACB ∠+∠=________.(2)ABX ACX ∠+∠=________.(说明理由)26.(1)已知△ABC 中,∠B=5∠A ,∠C-∠B=15°,求∠A ,∠B ,∠C 的度数. (2)在△ABC 中,∠A=50°,BD ,CE 为高,直线BD ,CE 交于点H ,求∠BHC 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据三角形的稳定性可以解决. 【详解】因为三角形具有稳定性,手机支架与桌面形成了一个三角形,所以是利用了三角形的稳定性. 故选:B . 【点睛】本题考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.2.D解析:D【分析】根据多边形的外角和等于360°判定即可.【详解】∵多边形的外角和等于360°,∴这个多边形的边数不能确定.故选:D.【点睛】本题考查了多边形的外角和定理,注意利用多边形的外角和与边数无关,任何多边形的外角和都是360°是解题的关键.3.A解析:A【分析】根据三角形的三边关系列出不等式,即可求出x的取值范围,得到答案.【详解】解:∵三角形的三边长分别为3,7,x,∴7-3<x<7+3,即4<x<10,四个选项中,A中,4<6<10,符合题意.故选:A.【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.4.D解析:D【分析】设多边形的边数是n,根据多边形的外角和是360°,以及多边形的内角和公式列出方程即可求解.【详解】解:设多边形的边数是n,则180(n﹣2)=3×360,解得:n=8.故选:D.【点睛】本题考查了多边形的内角和公式以及外角和定理,根据多边形的内角和公式以及外角和定理列出方程是解题关键.5.B解析:B【分析】根据三角形的三边关系进行分析判断即可.【详解】解:根据三角形任意两边的和大于第三边,得A中,1+2=3,不能组成三角形;B中,5+12=17>13,能组成三角形;C中,4+5=9<10,不能够组成三角形;D中,3+3=6,不能组成三角形.故选:B.【点睛】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.6.D解析:D【分析】要先根据题意,画出图形,通过对图形观察,思考,得出需要小木棍的根数,然后图形对比,选出最少需要小木棍的根数.【详解】图1没有共用部分,要6根小木棍,图2有共用部分,可以减少小木棍根数,仿照图2得到图3,要7根小木棍,同法搭建的图4,要9根小木棍,如按图5摆放,外围大的等边三角形,可以得到5个等边三角形,要9根小木棍,如按图6摆成三棱锥(西面体)就可以得到4个等边三角形,∴搭建4个等边三角形最少需要小木棍6根.故选:D【点睛】此题考查的是组成图形的边的条数,解答此题需要灵活利用立体空间思维解答.7.D解析:D【分析】先根据三角形的三边之间的关系求解1<x<7,从而可得答案.【详解】解:长度分别为3cm,4cm,xcm的三根小棒可以摆成一个三角形,+,∴-<x<4343∴<x<7,1x的值不可能是8.5.故选:.D【点睛】本题考查的是三角形的三边之间的关系,掌握三角形的三边之间的关系是解题的关键.8.B解析:B【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围.【详解】解:根据三角形的三边关系,设第三边的长为x,∵三角形两边的长分别是1和4,∴4-1<x<4+1,即3<x<5.故选:B.【点睛】此题考查了三角形的三边关系,关键是正确确定第三边的取值范围.9.A解析:A【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【详解】解:根据三角形的三边关系,A、11+12>13,能组成三角形,符合题意;B、1+2=3,不能组成三角形,不符合题意;C、5+7=12,不能组成三角形,不符合题意;D、5+5<13,不能组成三角形,不符合题意;故选A.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.10.B解析:B【分析】利用三角形高的定义逐一判断选项,可得答案.【详解】A.CE不垂直AB,故CE不是ABC的高,不符合题意,B.CE是ABC中AB边上的高,符合题意,C.CE不是ABC的高,不符合题意,D.CE不是ABC的高,不符合题意.故选B.【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.11.A解析:A【分析】根据三角形三边长关系,逐一判断选项,即可得到答案.【详解】A. ∵3+5>6,∴长度为3,5,6的三条线段能组成三角形,故该选项符合题意,B. ∵1+2=3,∴长度为3,2,1的三条线段不能组成三角形,故该选项不符合题意,C. ∵2+2=4,∴长度为2,2,4的三条线段不能组成三角形,故该选项不符合题意,D. ∵3+6<10,∴长度为3,6,10的三条线段不能组成三角形,故该选项不符合题意,故选A【点睛】本题主要考查三角形三边长的关系,掌握三角形任意两边之和大于第三边,是解题的关键.12.C解析:C【分析】根据三角形的高解答即可,三角形的一个顶点到它的对边所在直线的垂线段叫做这个三角形的高.【详解】A.线段AE是△ABC的边BC上的高,故不符合题意;B.线段BA不是任何边上的高,故不符合题意;C.线段BD是△ABC的边AC边上的高,故符合题意;D.线段DA是△ABD的边BD上的高,故不符合题意;故选C.【点睛】本题考查了三角形的高线,熟练掌握三角形高线的定义是解答本题的关键.二、填空题13.30°90°或40°80°【分析】根据倍角三角形的定义结合三角形的内角和定理分三种情况即可得出结论【详解】在△ABC 中不妨设∠A=60①若∠A=2∠C 则∠C=30∴∠B=;②若∠C=2∠A 则∠C=1解析:30°,90°或40°,80° 【分析】根据“倍角三角形”的定义结合三角形的内角和定理分三种情况即可得出结论. 【详解】在△ABC 中,不妨设∠A=60︒, ①若∠A=2∠C ,则∠C=30︒, ∴∠B=180603090︒-︒-︒=︒; ②若∠C=2∠A ,则∠C=120︒,∴∠B=180601200︒-︒-︒=︒(不合题意,舍去); ③若∠B=2∠C ,则3∠C 18060=︒-︒=120︒, ∴∠C 4=0︒,∠B=180604080︒-︒-︒=︒;综上所述,其它两个内角的度数分别是:30︒,90︒或40︒,80︒. 【点睛】本题考查了“倍角三角形”的定义以及三角形的内角和等知识,解题的关键是学会用分类讨论的思想解决问题.14.12【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可【详解】∵F 是CE 的中点∴∵E 是BD 的中点∴∴∴△ABC 的面积=故答案为:12【点睛】本题考查了三角形的面积主要利用了三角形的中线解析:12 【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可. 【详解】∵ F 是CE 的中点,23AEF S cm ∆= ∴ 226ACE AEF S S cm ∆∆== ,∵ E 是BD 的中点,∴ ADE ABE S S ∆∆= ,CDE BCE S S ∆∆= , ∴12ACE ABC S S ∆∆=, ∴△ABC 的面积=212cm . 故答案为:12. 【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.15.【分析】根据求出根据多边形内角和公式求出五边形的内角和即可得到答案【详解】∵∴∵五边形内角和=∴==故答案为:【点睛】此题考查两直线平行同旁内角互补多边形内角和公式熟记多边形内角和计算公式是解题的关键 解析:360︒【分析】根据//AE BC 求出180A B ∠+∠=︒,根据多边形内角和公式求出五边形ABCDE 的内角和,即可得到答案. 【详解】 ∵//AE BC , ∴180A B ∠+∠=︒,∵五边形内角和=5218540(0)-⨯︒=︒, ∴C D E ∠+∠+∠=540180︒-︒=360︒, 故答案为:360︒. 【点睛】此题考查两直线平行同旁内角互补,多边形内角和公式,熟记多边形内角和计算公式是解题的关键.16.3<a<13【分析】根据三角形的三边关系解答【详解】由题意得:8-5<a<8+5∴3<a<13故答案为:3<a<13【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边解析:3<a<13 【分析】根据三角形的三边关系解答. 【详解】由题意得:8-5<a<8+5, ∴3<a<13, 故答案为:3<a<13. 【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边.17.【详解】根据平行线的性质及三角形内角和定理解答【点睛】解:由三角板的性质可知∠EAD=45°∠C=30°∠BAC=∠ADE=90°∵AE ∥BC ∴∠EAC=∠C=30°∴∠DAF=∠EAD-∠EAC= 解析:75︒【详解】根据平行线的性质及三角形内角和定理解答. 【点睛】解:由三角板的性质可知∠EAD=45°,∠C=30°,∠BAC=∠ADE=90°.∵AE∥BC,∴∠EAC=∠C=30°,∴∠DAF=∠EAD-∠EAC=45°-30°=15°.∴∠AFD=180°-∠ADE-∠DAF=180°-90°-15°=75°.故答案为:75°.本题考查的是平行线的性质及三角形内角和定理,平行线的性质:两直线平行同位角相等,同旁内角互补.三角形内角和定理:三角形的内角和等于180°.18.360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°∴七边形的外角和为360°故答案为:360°【点睛】本题考查了多边形的外角的性质掌握多边形的外角和等于36解析:360°【分析】根据多边形的外角和等于360°即可求解;【详解】∵多边形的外角和都是360°,∴七边形的外角和为360°,故答案为:360°.【点睛】本题考查了多边形的外角的性质,掌握多边形的外角和等于360°是解题的关键;19.60【分析】先由题意得到∠A=∠B=根据直角三角形两锐角互余求得结果【详解】∵飞机P在目标A的正上方飞行员测得目标B的俯角为30°∴∠A=∠CPB=∵CP∥AB∴∠B=∠CPB=∴=-∠B=故答案为解析:60【分析】先由题意得到∠A=90︒,∠B=30,根据直角三角形两锐角互余求得结果.【详解】∵飞机P在目标A的正上方,飞行员测得目标B的俯角为30°,∴∠A=90︒,∠CPB=30,∵CP∥AB,∴∠B=∠CPB=30,∴APB∠=90︒-∠B=60︒,故答案为:60.【点睛】此题考查直角三角形两锐角互余的性质,理解飞行员测得目标B的俯角为30°得到∠B=30是解题的关键.20.100°【分析】由三角形内角和定理可求得∠C的度数又由折叠的性质求得∠C1的度数然后由三角形外角的性质求得答案【详解】解:如图∵∠B=70°∠A=60°∴∠C=180°﹣∠B﹣∠C=50°由折叠可知解析:100°【分析】由三角形内角和定理,可求得∠C的度数,又由折叠的性质,求得∠C1的度数,然后由三角形外角的性质,求得答案.【详解】解:如图,∵∠B=70°,∠A=60°,∴∠C=180°﹣∠B﹣∠C=50°,由折叠可知:∠C1=∠C=50°,∵∠3=∠2+∠C1∠1=∠3+∠C,∴∠1=∠2+∠C1+∠C,∴∠1﹣∠2=2∠C =100°.故答案为:100°.【点睛】此题考查了折叠的性质、三角形内角和定理以及三角形外角等于和它不相邻的两个内角和的性质.此题难度适中,注意折叠中的对应关系,注意掌握转化思想的应用.三、解答题21.(1)∠AOC=∠ODC,理由见解析;(2)①见解析;②70°【分析】(1)根据角平分线的定义得到∠OAC+∠OCA=12(180°−∠ABC),∠OBC=12∠ABC,由三角形的内角和得到∠AOC=90°+∠OBC,∠ODC=90°+∠OBD,于是得到结论;(2)①由角平分线的性质得到∠EBF=90°−∠DBO,由三角形的内角和得到∠ODB=90°−∠OBD,于是得到结论;②由角平分线的性质得到∠FBE=12(∠BAC+∠ACB),∠FCB=12ACB,根据三角形的外角的性质即可得到结论.【详解】(1)∠AOC=∠ODC,理由:∵三个内角的平分线交于点O,∴∠OAC+∠OCA=12(∠BAC+∠BCA)=12(180°﹣∠ABC),∵∠OBC=12∠ABC,∴∠AOC=180°﹣(∠OAC+∠OCA)=90°+12∠ABC=90°+∠OBC,∵OD⊥OB,∴∠BOD=90°,∴∠ODC=90°+∠OBD,∴∠AOC=∠ODC;(2)①∵BF平分∠ABE,∴∠EBF=12∠ABE=12(180°﹣∠ABC)=90°﹣∠DBO,∵∠ODB=90°﹣∠OBD,∴∠FBE=∠ODB,∴BF∥OD;②∵BF平分∠ABE,∴∠FBE=12∠ABE=12(∠BAC+∠ACB),∵三个内角的平分线交于点O,∴∠FCB=12∠ACB,∵∠F=∠FBE﹣∠BCF=12(∠BAC+∠ACB)﹣12∠ACB=12∠BAC,∵∠F=35°,∴∠BAC=2∠F=70°.【点睛】本题考查了平行线的性质和判定,角平分线的定义,三角形的内角和,三角形的外角的性质,熟练掌握三角形的外角的性质是解题的关键.22.(1)见解析;(2)见解析;(3)B,AE;(4)AE<AF<BF【分析】(1)根据垂线的做法画出图象;(2)根据垂线的做法画出图象;(3)根据点到直线距离的定义填空;(4)利用直角三角形的斜边和直角边的大小关系,得出结果.【详解】(1)如图所示;(2)如图所示;(3) ∵BE AE⊥,∴线段BE的长度是点B到直线AE的距离,故答案是:B,AE;(4)∵AE是直角三角形AEF的直角边,AF是直角三角形AEF的斜边,<,∴AE AF∵BF是直角三角形ABF的斜边,AF是直角三角形ABF的直角边,∴AF BF<,∴AE AF BF<<,<<.故答案是:AE AF BF【点睛】本题考查作垂线和直角三角形的性质,解题的关键是掌握作垂线的方法和直角三角形的直角边和斜边的大小关系.23.∠COD=70°【分析】利用对顶角相等可得∠AOM的度数,再利用角平分线的定义和垂线定义进行计算即可.【详解】解:∵∠BON=20°,∴∠AOM=20°,∵OA平分∠MOD,∴∠AOD=∠MOA=20°,∵OC⊥AB,∴∠AOC=90°,∴∠COD=90°﹣20°=70°.【点睛】本题考查了垂线,关键是掌握对顶角相等,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.24.(1)十二边形;(2)五边形【分析】(1)n边形的内角和可以表示成(n−2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数;(2)根据多边形外角的性质进行计算即可.【详解】解:(1)设这个多边形是n 边形,根据题意得:2180(10)80n ⨯︒=︒﹣,解得:12n =.故这个多边形是十二边形;(2)18010872︒-︒=︒,多边形的边数是:360725÷=.则这个多边形是五边形.故这个多边形的边数为5.【点睛】此题考查了多边形的内角和定理和多边形外角和,注意多边形的内角和为:(n−2)×180°.25.(1)150︒ (2)60︒;理由见解析【分析】(1)根据三角形的内角和定理即可求得答案;(2)先求得XBC XCB ∠+∠=90°,再根据ABX ACX ∠+∠()()ABC ACB XBC XCB =∠+∠-∠+∠即可求得答案.【详解】解:(1)∵180ABC ACB A ∠+∠+∠=︒,30A ∠=︒,∴180ABC ACB A ∠+∠=︒-∠18030=︒-︒150=︒,故答案为:150°;(2)60ABX ACX ∠+∠=︒,理由如下:∵180XBC XCB X ∠+∠+∠=︒,90X ∠=︒,∴180XBC XCB X ∠+∠=︒-∠18090=︒-︒90=︒,∴ABX ACX ∠+∠ABC XBC ACB XCB =∠-∠+∠-∠()()ABC ACB XBC XCB =∠+∠-∠+∠15090=︒-︒60=︒,故答案为:60°.【点睛】本题考查了三角形的内角和定理,熟练掌握三角形的内角和定理是解决本题的关键.26.(1)∠A=15°,∠B=75°,∠C =90°;(2)130°【分析】(1)将∠C 用∠A 表示,然后利用三角形内角和即可求解∠A ,然后在依次求出∠B ,∠C 即可;(2)根据题意作出示意图,然后根据四边形内角和即可求出∠DHE ,根据对顶角相等即可求解∠BHC .【详解】(1)∵∠C-∠B=15°,即∠C =15°+∠B又∵∠B=5∠A∴∠C =15°+5∠A∵∠A+∠B+∠C=180°∴∠A+5∠A +15°+5∠A =180°解得∠A=15°∴∠B=75°,∠C =90°∴∠A=15°,∠B=75°,∠C =90°(2)根据题意作出下图,∵BD AC ⊥,CE AB ⊥∴∠BDA =90°,∠CEA=90°∵在四边形AEHD 中,∠A+∠HDA+∠HEA+∠DHE =360°∴∠DHE=360°-∠A-∠HAD-∠HEA=360°-50°-90°-90°=130°∴∠BHC=∠DHE=130°∴∠BHC =130°.【点睛】本题考查了三角形的内角和和四边形内角和,重点是熟记多边形内角和公式.。
深圳新安永联学校数学三角形填空选择综合测试卷(word含答案)

深圳新安永联学校数学三角形填空选择综合测试卷(word 含答案) 一、八年级数学三角形填空题(难)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.【答案】2b-2a【解析】【分析】【详解】根据三角形的三边关系得:a ﹣b ﹣c <0,c +a ﹣b >0,∴原式=﹣(a ﹣b ﹣c )﹣(a +c ﹣b )=﹣a +b +c ﹣a ﹣c +b =2b ﹣2a .故答案为2b ﹣2a【点睛】本题考查了绝对值得化简和三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边;一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数,据此解答即可.2.如图,BE 平分∠ABC,CE 平分外角∠ACD,若∠A=42°,则∠E=_____°.【答案】21°【解析】根据三角形的外角性质以及角平分线的定义可得.解:由题意得:∠E =∠ECD −∠EBC =12∠ACD −12∠ABC =12∠A =21°. 故答案为21°.3.如图,1BA 和1CA 分别是ABC ∆的内角平分线和外角平分线,2BA 是1A BD ∠的角平分线, 2CA 是1A CD ∠的角平分线,3BA 是2A BD ∠的角平分线,3CA 是2A CD ∠的角平分线,若1A α∠=,则2018A ∠=_____________【答案】20172α【解析】【分析】根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1BC+∠A 1,整理即可得解,同理求出∠A 2,可以发现后一个角等于前一个角的12,根据此规律即可得解. 【详解】∵A 1B 是∠ABC 的平分线,A 1C 是∠ACD 的平分线,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , 又∵∠ACD=∠A+∠ABC,∠A 1CD=∠A 1BC+∠A 1, ∴12(∠A+∠ABC )=12∠ABC+∠A 1, ∴∠A 1=12∠A , ∵∠A 1=α.同理理可得∠A 2=12∠A 1=12α,∠A 3=12∠A 2=212α, ……, ∴∠A 2018=20172α, 故答案为20172α.【点睛】本题主要考查的是三角形内角和定理,熟知三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义是解题的关键.4.某多边形内角和与外角和共1080°,则这个多边形的边数是__________.【答案】6【解析】∵多边形内角和与外角和共1080°,∴多边形内角和=1080°−360°=720°,设多边形的边数是n ,∴(n−2)×180°=720°,解得n=6.故答案为6.点睛:先根据多边形的外角和为360°求出其内角和,再根据多边形内角和定理即可求出多边形的边数.5.如图,在△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A =50°,则∠BOC =_____.【答案】115°.【解析】【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12×(∠ABC+∠ACB)=12×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,故答案为:115°.【点睛】本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC+∠OCB 的度数.6.若(a﹣4)2+|b﹣9|=0,则以a、b为边长的等腰三角形的周长为_______.【答案】22【解析】【分析】先根据非负数的性质列式求出a、b再根据等腰三角形和三角形三边关系分情况讨论求解即可.【详解】解:根据题意得,a-4=0,b-9=0,解得a=4,b=9,①若a=4是腰长,则底边为9,三角形的三边分别为4、4、9,不能组成三角形,②若b=9是腰长,则底边为4,三角形的三边分别为9、9、4,能组成三角形,周长=9+9+4=22.【点睛】本题主要考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,解决本题的关键是要熟练掌握非负数的非负性质和三角形三边关系.7.如图,在ABC ∆中,B 与C ∠的平分线交于点P .若130BPC ∠=︒,则A ∠=______.【答案】80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB 的度数,再根据角平分线的定义,求出∠ABC+∠ACB ,最后利用三角形内角和定理解答即可.【详解】解:在△PBC 中,∠BPC=130°,∴∠PBC+∠PCB=180°-130°=50°.∵PB 、PC 分别是∠ABC 和∠ACB 的角平分线,∴∠ABC+∠ACB=2(∠PBC+∠PCB )=2×50°=100°,在△ABC 中,∠A=180°-(∠ABC+∠ACB )=180°-100°=80°.故答案为80°.【点睛】本题主要考查了三角形的内角和定理和角平分线的定义,掌握三角形的内角和定理和角平分线的定义是解题的关键.8.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.【答案】2【解析】由D 是AC 的中点且S △ABC =12,可得1112622ABD ABC S S ∆∆==⨯=;同理EC=2BE 即EC=13BC ,可得11243ABE S ∆=⨯=,又,ABE ABF BEF ABD ABF ADF S S S S S S ∆∆∆∆∆∆-=-=等量代换可知S △ADF -S △BEF =29.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=______.【答案】80°.【解析】【分析】根据平行线的性质求出∠4,再根据三角形内角和定理计算即可.【详解】∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为80°.【点睛】本题考查了平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.10.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.【答案】40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.二、八年级数学三角形选择题(难)11.已知,如图,AB∥CD,则图中α、β、γ三个角之间的数量关系为()A.α-β+γ=180°B.α+β-γ=180° C.α+β+γ=360° D.α-β-γ=90°【答案】B【解析】【分析】延长CD交AE于点F,利用平行证得β=∠AFD;再利用三角形外角定理及平角定义即可得到答案.【详解】如图,延长CD交AE于点F∵AB∥CD∴β=∠AFD∵∠FDE+α=180°∴∠FDE=180°-α∵γ+∠FDE=∠ADF∴γ+180°-α=β∴α+β-γ=180°故选B【点睛】本题考查平行线的性质以及三角形外角定理的应用,熟练掌握相关性质定理是解题关键.12.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④【答案】C【解析】【分析】根据三角形内角和定理以及三角形角平分线的定义可得∠BOC=90°+12∠1,再结合三角形外角性质可得∠ECD=∠OBC+∠2,从而可得∠BOC=90°+∠2,据此即可进行判断.【详解】∵BO,CO分别平分∠ABC,∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠ABC+∠ACB+∠1=180°,∴∠ABC+∠ACB=180°-∠1,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-∠1)=90°-12∠1,∴∠BOC=180°-∠OBC-∠OCB=180°-(90°-12∠1)=90°+12∠1,∵∠ACD=∠ABC+∠1,CE平分∠ACD,∴∠ECD=12∠ACD=12(∠ABC+∠1),∵∠ECD=∠OBC+∠2,∴∠2=12∠1,即∠1=2∠2,∴∠BOC=90°+12∠1=90°+∠2,∴①④正确,②③错误,故选C.【点睛】本题考查了三角形内角和定理、三角形外角的性质、三角形的角平分线等知识,熟练掌握相关的性质及定理、运用数形结合思想是解题的关键.13.马小虎在计算一个多边形的内角和时,由于粗心少算了2个内角,其和等于830,则该多边形的边数是( )A.7B.8C.7或8D.无法确定【答案】C【解析】【分析】n边形的内角和是(n-2)•180°,即为180°的(n-2)倍,多边形的内角一定大于0度,小于180度,因而多边形中,除去2个内角外,其余内角和与180度的商加上2,以后所得的数值,比这个数值大1或2的整数就是多边形的边数.【详解】设少加的2个内角和为x度,边数为n.则(n-2)×180=830+x,即(n-2)×180=4×180+110+x,因此x=70,n=7或x=250,n=8.故该多边形的边数是7或8.故选C.【点睛】本题考查了多边形的内角和定理,正确理解多边形内角的大小的特点,以及多边形的内角和定理是解决本题的关键.14.已知:如图,ABC∆三条内角平分线交于点D,CE⊥BD交BD的延长线于E,则∠DCE=( )A.12BAC∠B.12CBA∠C.12ACB∠D.CDE∠【解析】【分析】根据角平分线的性质以及三角形的外角性质可推导出DCE ∠与BAC ∠的关系.【详解】由题意知,ECD BDC 90∠∠=-︒由三角形内角和定理得,BAC 180ABC ACB ∠∠∠=︒-+DBC DCB 180BDC ∠∠∠+=︒-∵点D 是ΔABC 三条内角平分线的交点∴ABC 2DBC ∠∠= ACB 2DCB ∠∠=()BAC 180ABC ACB ∠∠∠=︒-+()1802DBC DCB ∠∠=︒-+()1802180BDC ∠=︒-︒-2BDC 180∠=-︒1BAC BDC 902∠∠=-︒ ∴1ECD BAC 2∠∠=故答案选A.【点睛】本题考查角平分线的性质以及三角形的外角性质.15.如图,△ABC 中,角平分线AD 、BE 、CF 相交于点H ,过H 点作HG ⊥AC ,垂足为G ,那么∠AHE 和∠CHG 的大小关系为( )A .∠AHE >∠CHGB .∠AHE <∠CHGC .∠AHE=∠CHGD .不一定【答案】C【解析】【分析】 先根据AD 、BE 、CF 为△ABC 的角平分线可设∠BAD=∠CAD=x ,∠ABE=∠CBE=y ,∠BCF=∠ACF=z ,由三角形内角和定理可知,2x+2y+2z=180° 即x+y+z=90°在△AHB 中由三角形外角的性质可知∠AHE=x+y=90°﹣z ,在△CHG 中,∠CHG=90°﹣z ,故可得出结论.∵AD 、BE 、CF 为△ABC 的角平分线∴可设∠BAD=∠CAD=x ,∠ABE=∠CBE=y ,∠BCF=∠ACF=z ,∴2x+2y+2z=180° 即x+y+z=90°,∵在△AHB 中,∠AHE=x+y=90°﹣z ,在△CHG 中,∠CHG=90°﹣z ,∴∠AHE=∠CHG ,故选C .【点睛】本题考查了三角形的内角和定理及三角形外角的性质,熟知三角形的内角和180°,三角形的外角等于和它不相邻的两个内角的和是解答此题的关键.16.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒【答案】C【解析】【分析】 先根据三角形外角的性质求出∠BEF 的度数,再根据平行线的性质得到∠2的度数.【详解】如图,∵∠BEF 是△AEF 的外角,∠1=20︒,∠F=30︒,∴∠BEF=∠1+∠F=50︒,∵AB ∥CD ,∴∠2=∠BEF=50︒,故选:C .【点睛】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质.17.已知正多边形的一个外角等于40,那么这个正多边形的边数为()A.6 B.7 C.8 D.9【答案】D【解析】【分析】根据正多边形的外角和以及一个外角的度数,即可求得边数.【详解】正多边形的一个外角等于40,且外角和为360,÷=,则这个正多边形的边数是:360409故选D.【点睛】本题主要考查了多边形的外角和定理,熟练掌握多边形的外角和等于360度是解题的关键.18.下列多边形中,不能够单独铺满地面的是()A.正三角形B.正方形C.正五边形D.正六边形【答案】C【解析】【分析】由镶嵌的条件知,在一个顶点处各个内角和为360°.【详解】∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.故选C.【点睛】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.19.一正多边形的内角和与外角和的和是1440°,则该正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形【答案】C【解析】【分析】依题意,多边形的内角与外角和为1440°,多边形的外角和为360°,根据内角和公式求出多边形的边数.【详解】解:设多边形的边数为n ,根据题意列方程得,(n ﹣2)•180°+360°=1440°,n ﹣2=6,n =8.故这个多边形的边数为8.故选:C .【点睛】考查了多边形的外角和定理和内角和定理,熟练记忆多边形的内角和公式是解答本题的关键.20.在ΔABC 中,AB 3=,AC 5=,第三边BC 的取值范围是( )A .10BC 13<<B .4BC 12<< C .3BC 8<<D .2BC 8<<【答案】D【解析】【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边的边长的取值范围.【详解】∵AB=3,AC=5,∴5-3<BC<5+3,即2<BC<8,故选D.【点睛】考查了三角形三边关系,一个三角形任意两边之和大于第三边,任意两边之差小于第三边.熟练掌握三角形的三边关系是解题关键.。
深圳市新安中学八年级数学上册第十二章《全等三角形》知识点总结(培优练)

一、选择题1.如图,△ABC ≌△ADE ,AB =AD ,AC =AE ,∠B =28︒,∠E =95︒,∠EAB =20︒,则∠BAD 等于( )A .75︒B .57︒C .55︒D .77︒2.如图,AB ∥CD ,BE 和CE 分别平分∠ABC 和∠BCD ,AD 过点E ,且AD ⊥AB ,点P 为线段BC 上一动点,连接PE .若AD =14,则PE 的最小值为( )A .7B .10C .6D .53.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或34.如图,已知16AB AC +=,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC 于D .若4OD =,则四边形ABOC 的面积是( )A .36B .32C .30D .645.MAB ∠为锐角,AB a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC x =,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是( )A .x d =或x a ≥B .x a ≥C .x d =D .x d =或x a > 6.如图,点O 是△ABC 中∠BCA ,∠ABC 的平分线的交点,已知△ABC 的面积是12,周长是8,则点O 到边BC 的距离是( )A .1B .2C .3D .47.如图,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是( )A .40°B .50°C .60°D .30°8.下列说法正确的( )个.①0.09的算术平方根是0.03;②1的立方根是±1;③3.110<3.2;④两边及一角分别相等的两个三角形全等.A .0B .1C .2D .3 9.如图,ABC 和DEF 中,∠A=∠D ,∠C=∠F ,要使ABC DEF ≅,还需增加的条件是( )A.AB=EF B.AC=DF C.∠B=∠E D.CB=DE10.如图,AP平分∠BAF,PD⊥AB于点D,PE⊥AF于点E,则△APD与△APE全等的理由是()A.SSS B.SAS C.SSA D.AAS11.在以下图形中,根据尺规作图痕迹,能判定射线AD平分∠BAC的是()A.图2 B.图1与图2 C.图1与图3 D.图2与图3 12.下列各命题中,假命题是()A.有两边及其中一边上的中线对应相等的两个三角形全等B.有两边及第三边上高对应相等的两个三角形全等C.有两角及其中一角的平分线对应相等的两三角形全等D.有两边及第三边上的中线对应相等的两三角形全等13.根据下列已知条件,能画出唯一的△ABC的是()A.AB=3,BC=4,∠C=40°B.∠A=60°,∠B=45°,AB=4C.∠C=90°,AB=6 D.AB=4,BC=3,∠A=30°14.如图,AB=AC,点D、E分别是AB、AC上一点,AD=AE,BE、CD相交于点M.若∠BAC=70°,∠C=30°,则∠BMD的大小为( )A.50°B.65°C .70°D .80°15.如图,AD 是ABC 的高,AD BD 8==,E 是AD 上的一点,BE AC 10==,AE 2=,BE 的延长线交AC 于点F ,则EF 的长为( )A .1.2B .1.5C .2.5D .3二、填空题16.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.17.如图,四边形ABCD 中,180B D ∠+∠=︒,AC 平分DAB ∠,CM AB ⊥于点M ,若4cm AM =, 2.5cm BC =,则四边形ABCD 的周长为______cm .18.如图,D ,E 分别是AB ,AC 上的点,AD=AE ,请添加一个条件,使得ABE ≌ACD .这个条件可以为_____(只填一个条件即可).19.如图,已知//AD BC ,点E 为CD 上一点,AE ,BE 分别平分DAB ∠,CBA ∠.若3cm AE =,4cm BE =,则四边形ABCD 的面积是________.20.如图,点D 在BC 上,DE ⊥AB 于点E ,DF ⊥BC 交AC 于点F ,BD =CF ,BE =CD .若∠AFD =145°,则∠EDF =_____.21.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.22.如图,ABC ADE ≅,延长BC ,分别交AD ,ED 于点F ,G ,若120EAB ∠=︒,30B ∠=︒,10CAD ∠=︒,则CFD ∠=________︒.23.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F .若28ABC S =,4DE =,8AB =,则AC =_________.24.如图,已知ABC DCB ∠=∠,则需添加的一个条件是______可使ACB DBC ≌.(只写一个即可,不添加辅助线).25.如图,ABC ∆中,90,6,8ACB AC cm BC cm ∠=︒==,点P 从点A 出发沿A C -路径向终点C 运动.点Q 从B 点出发沿B C A --路径向终点A 运动.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P 和Q 作PE l ⊥于,E QF l ⊥于F .则点P 运动时间为_______________时,PEC ∆与QFC ∆全等.26.如图,在△ABC 和△DBC 中,∠ACB=∠DBC=90°,E 是BC 的中点,DE ⊥AB ,垂足为F ,AB=DE .若BD=8cm ,则AC 的长为_________.三、解答题27.已知:如图,BAD CAE ∠=∠,AB AD =,AC AE =.(1)求证:ABC ADE △≌△.(2)若42,86B C ∠=︒∠=︒,求DAE ∠的度数.28.如图,在四边形ABCD 中,//AD BC ,E 为AC 的中点,连接DE 并延长,交BC 于点F .(1)求证:DE EF =.(2)若12AD =,:2:3BF CF =,求BC 的长.29.沛沛沿一段笔直的人行道行走,边走边欣赏风景,在由C 走到D 的过程中,通过隔离带的空隙P ,刚好浏览完对面人行道宣传墙上的一条标语,具体信息如下:如图,AB//PM //CD ,相邻两平行线间的距离相等AC ,BD 相交于P ,PD CD ⊥垂足为D .已知16CD =米.请根据上述信息求标语AB 的长度.30.在数学课本中,有这样一道题:如图1,AB ∥CD ,试用不同的方法证明∠B +∠C =∠BEC(1)某同学写出了该命题的逆命题,请你帮他把逆命题的证明过程补充完整.已知:如图1,∠B+∠C=∠BEC求证:AB∥CD证明:如图2,过点E,作EF∥AB,∴∠B=∠∵∠B+∠C=∠BEC,∠BEF+∠FEC=∠BEC(已知)∴∠B+∠C=∠BEF+∠FEC(等量代换)∴∠=∠(等式性质)∴EF∥∵EF∥AB∴AB∥CD(平行于同一条直线的两条直线互相平行)(2)如图3,已知AB∥CD,在∠BCD的平分线上取两个点M、N,使得∠BMN=∠BNM,求证:∠CBM=∠ABN.(3)如图4,已知AB∥CD,点E在BC的左侧,∠ABE,∠DCE的平分线相交于点F.请直接写出∠E与∠F之间的等量关系.。
全等三角形单元水平测试含答案

A DCB图1E 第11章《全等三角形》测试题一、选择题1.如图1, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( ) A .1个 B .2个 C .3个 D .4个2.如图2,AD AE =,= = =100 =70BD CE ADB AEC BAE ︒︒,,∠∠∠,下列结论错误的是( )A .△ABE ≌△ACDB .△ABD ≌△ACEC .∠DAE =40°D .∠C =30°3.如图3,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,则图中共有全等三角形( )A .5对B .4对C .3对D .2对4.将一张长方形纸片按如图4所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( )A .60°B .75°C .90°D .95° 5.根据下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =6 6.下列命题中正确的是( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等7.如图5,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC ,则∠BCM :∠BCN 等于( )A .1:2B .1:3C .2:3D .1:48. 如图6,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条角平分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于( ) A .1︰1︰1 B .1︰2︰3 C .2︰3︰4 D .3︰4︰59.如图7,从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CB =∠B ′CB ,④AB =A ′B ′中,任取三个为条件,余下的一个为结论,则最多可以构成A D OCB图2AD ECB图 3F GAEC 图4B A′E′D正确的结论的个数是( ) A .1个B .2个C .3个D .4个10.如图8所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为( ) A .80° B .100° C .60° D .45°. 二、填空题11.如图9,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳市新安中学数学全等三角形单元综合测试(Word版含答案)一、八年级数学轴对称三角形填空题(难)1.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.2.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.【答案】2.【解析】【分析】【详解】过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是等边三角形,∵△B′DE≌△BDE,∴B′F=1B′E=BE=2,DF=23,2∴GD=B′F=2,∴B′G=DF=23,∵AB=10,∴AG=10﹣6=4,∴AB′=27.考点:1轴对称;2等边三角形.3.如图,△ABC是等边三角形,高AD、BE相交于点H,3,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为_____.【答案】53 【解析】试题分析:如图所示,由△ABC 是等边三角形,BC=43,得到AD=BE=3BC=6,∠ABG=∠HBD=30°,由直角三角的性质,得∠BHD=90°﹣∠HBD=60°,由对顶角相等,得∠MHE=∠BHD=60°,由BG=2,得EG=BE ﹣BG=6﹣2=4.由GE 为边作等边三角形GEF ,得FG=EG=4,∠EGF=∠GEF=60°,△MHE 是等边三角形;S △ABC =12AC•BE=12AC×EH×3EH=13BE=13×6=2.由三角形外角的性质,得∠BIF=∠FGE ﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG ﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,IN=3.S 五边形NIGHM =S △EFG ﹣S △EMH ﹣S △FIN =223314231442⨯-⨯-⨯⨯=53,故答案为53.考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.4.如图,线段AB ,DE 的垂直平分线交于点C ,且72ABC EDC ∠=∠=︒,92AEB ∠=︒,则EBD ∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE ,由线段AB ,DE 的垂直平分线交于点C ,得CA=CB ,CE=CD ,ACB=∠ECD=36°,进而得∠ACE=∠BCD ,易证∆ACE ≅∆BCD ,设∠AEC=∠BDC=x ,得则∠BDE=72°-x ,∠CEB=92°-x ,BDE 中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE ,∵线段AB ,DE 的垂直平分线交于点C ,∴CA=CB ,CE=CD ,∵72ABC EDC ∠=∠=︒=∠DEC ,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD ,在∆ACE 与∆BCD 中,∵CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴∆ACE ≅∆BCD (SAS ), ∴∠AEC=∠BDC ,设∠AEC=∠BDC=x ,则∠BDE=72°-x ,∠CEB=92°-x ,∴∠BED=∠DEC-∠CEB=72°-(92°-x )=x-20°,∴在∆BDE 中,∠EBD=180°-(72°-x )-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.5.如图,A,B,C三点在同一直线上,分别以AB,BC(AB>BC)为边,在直线AC的同侧作等边ΔABD和等边ΔBCE,连接AE交BD于点M,连接CD交BE于点N,连接MN. 以下结论:①AE=DC,②MN//AB,③BD⊥AE,④∠DPM=60°,⑤ΔBMN是等边三角形.其中正确的是__________(把所有正确的序号都填上).【答案】①②④⑤【解析】【分析】①由三角形ABD与三角形BCE都为等边三角形,利用等边三角形的性质得到两条边对应相等,两个角相等都为60°,利用SAS即可得到三角形ABE与三角形DBC全等即可得结论;②由①中三角形ABE与三角形DBC全等,利用全等三角形的对应角相等得到一对角相等,再由∠ABD=∠EBC=60°,利用平角的定义得到∠MBE=∠NBC=60°,再由EB=CB,利用ASA 可得出三角形EMB与三角形CNB全等,利用全等三角形的对应边相等得到MB=NB,再由∠MBE=60°,利用有一个角为60°的等腰三角形为等边三角形可得出三角形BMN为等边三角形;可得∠BMN=60°,进行可得∠BMN=∠ABD,故MN//AB,从而可判断②,⑤正确;③无法证明PM=PN,因此不能得到BD⊥AE;④由①得∠EAB=∠CDB,根据三角形内角和和外角的性质可证得结论.【详解】①∵等边△ABD和等边△BCE,∴AB=DB,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=120°,在△ABE和△DBC中,∵AB DB ABE DBC BE BC ⎪∠⎪⎩∠⎧⎨===,∴△ABE ≌△DBC (SAS ),∴AE=DC ,故①正确;∵△ABE ≌△DBC ,∴∠AEB=∠DCB ,又∠ABD=∠EBC=60°,∴∠MBE=180°-60°-60°=60°,即∠MBE=∠NBC=60°,在△MBE 和△NBC 中,∵AEB DCB EB CB MBE NBC ∠∠∠⎧⎪⎪⎩∠⎨===,∴△MBE ≌△NBC (ASA ),∴BM=BN ,∠MBE=60°,则△BMN 为等边三角形,故⑤正确;∵△BMN 为等边三角形,∴∠BMN=60°,∵∠ABD=60°,∴∠BMN=∠ABD ,∴MN//AB ,故②正确;③无法证明PM=PN ,因此不能得到BD ⊥AE ;④由①得∠EAB=∠CDB ,∠APC+∠PAC+∠PCA=180°,∴∠PAC+∠PCA=∠PDB+∠PCB=∠DBA=60°,∵∠DPM =∠PAC+∠PCA∴∠DPM =60°,故④正确,故答案为:①②④⑤.【点睛】此题考查了等边三角形的判定与性质,以及全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.6.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG,利用△BDF≌△GDE,转换BF=GE,然后即可求得其最小值.【详解】以BD为边作等边三角形BDG,连接GE,如图所示:∵等边三角形BDG,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD,即∠BDF=∠GDE∴△BDF≌△GDE(SAS)∴BF=GE当GE⊥AC时,GE有最小值,如图所示GE′,作DH⊥GE′∴BF=GE=CD+12DG=2+1=3故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.7.如图,在第一个△A1BC中,∠B=30°,A1B=CB,在边A1B上任取一D,延长CA2到A2,使A1A2=A1D,得到第2个△A1A2D,在边A2B上任取一点E,延长A1A2到A3,使A2A3=A 2E ,得到第三个△A 2A 3E ,…按此做法继续下去,第n 个等腰三角形的底角的度数是_____度.【答案】1752n - 【解析】【分析】先根据∠B =30°,AB =A 1B 求出∠BA 1C 的度数,在由A 1A 2=A 1D 根据内角和外角的关系求出∠DA 2A 1的度数,同理求出∠EA 3A 2=754,∠FA 4A 3=758,即可得到第n 个等腰三角形的底角的度数=1752n . 【详解】 ∵在△ABA 1中,∠B =30°,AB =A 1B ,∴∠BA 1C =1802B ︒-∠=75°, ∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角, ∴∠DA 2A 1=12∠BA 1C =12×75°=37.5°; 同理可得,∠EA 3A 2=754,∠FA 4A 3=758, ∴第n 个等腰三角形的底角的度数=1752n . 故答案为1752n -. 【点睛】 此题考查等腰三角形的性质,利用等边对等角求出等腰三角形底角的度数.8.如图,已知AB=A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,…若∠A=70°,则锐角∠A n 的度数为______.【答案】1702n -︒ 【解析】【分析】根据等腰三角形的性质以及三角形的内角和定理和外角的性质即可得出答案.【详解】在△1ABA 中,AB=A 1B ,∠A=70°可得:∠1BAA =∠1BA A =70°在△112B A A 中,A 1B 1=A 1A 2可得:∠112A B A =∠121A A B根据外角和定理可得:∠1BA A =∠112A B A +∠121A A B∴∠112A B A =∠121A A B =702︒ 同理可得:∠232A A B =2702︒ ∠343A A B =3702︒ …….以此类推:∠A n =1702n -︒ 故答案为:1702n -︒. 【点睛】本题主要考查等腰三角形、三角形的基本概念以及规律的探索,准确识图,熟练掌握和灵活运用相关知识是解题的关键..9.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD,再根据角的和差关系得到∠ECB =∠ACB-2∠ACD,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB-∠ACD=50°,即∠DCB=50°,从而求出∠BDC即可.【详解】∵CD平分∠ACE,∴∠ACE=2∠ACD=2∠ECD,∴∠ECB=∠ACB-∠ACE=∠ACB-2∠ACD,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB-2∠ACD=100°,∵AB=AC,∴∠ABC=∠ACB,∴2∠ACB-2∠ACD=100°,∴∠ACB-∠ACD=50°,即∠DCB=50°,∵DB=DC,∴∠DBC=∠DCB,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.10.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为_________【答案】85【解析】【分析】 首先根据折叠可得CD=AC=6,B′C=BC=8,∠ACE=∠DCE ,∠BCF=∠B′CF ,CE ⊥AB ,然后求得△ECF 是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=4.8,由勾股定理求出AE ,得出BF 的长,即 B′F 的长.【详解】解:根据折叠的性质可知:DE=AE ,∠ACE=∠DCE ,∠BCF=∠B′CF ,CE ⊥AB ,B′F=BF ,∴B′D=8-6=2,∠DCE+∠B′CF=∠ACE+∠BCF ,∵∠ACB=90°,∴∠ECF=45°,∴△ECF 是等腰直角三角形,∴EF=CE ,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FE=90°,∵S △ABC =12AC•BC=12AB•CE , ∴AC•BC=AB•CE , ∵根据勾股定理得:22226810ABAC BC ∴ 4.8AC BC CE AB⋅== ∴EF=4.8,22 3.6AE AC EC -=∴B′F=BF=AB -AE-EF=10-3.6-4.8=1.6=85,故答案是:85.【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理等知识;熟练掌握翻折变换的性质,由直角三角形的性质和勾股定理求出CE 、AE 是解决问题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,平面直角坐标系中存在点A (3,2),点B (1,0),以线段AB 为边作等腰三角形ABP ,使得点P 在坐标轴上.则这样的P 点有( )A .4个B .5个C .6个D .7个【答案】D【解析】【分析】 本题是开放性试题,由题意知A 、B 是定点,P 是动点,所以要分情况讨论:以AP 、AB 为腰、以AP 、BP 为腰或以BP 、AB 为腰.则满足条件的点P 可求.【详解】由题意可知:以AP 、AB 为腰的三角形有3个;以AP 、BP 为腰的三角形有2个;以BP 、AB 为腰的三角形有2个.所以,这样的点P 共有7个.故选D .【点睛】本题考查了等腰三角形的判定及坐标与图形的性质;分类别寻找是正确解答本题的关键.12.已知40MON ∠=︒,P 为MON ∠内一定点,OM 上有一点A ,ON 上有一点B ,当PAB ∆的周长取最小值时,APB ∠的度数是( )A .40︒B .50︒C .100︒D .140︒【答案】C【解析】【分析】设点P 关于OM 、ON 对称点分别为P '、P '',当点A 、B 在P P '''上时,PAB ∆周长为PA AB BP P P ++=''',此时周长最小.根据轴对称的性质,可求出APB ∠的度数.【详解】分别作点P 关于OM 、ON 的对称点P '、P '',连接OP '、OP ''、P P ''',P P '''交OM 、ON 于点A 、B ,连接PA 、PB ,此时PAB ∆周长的最小值等于P P '''.由轴对称性质可得,OP OP OP '=''=,P OA POA ∠'=∠,P OB POB ∠''=∠,224080P OP MON ∴∠'''=∠=⨯︒=︒,(18080)250OP P OP P ∴∠'''=∠'''=︒-︒÷=︒,又50BPO OP B ∠=∠''=︒,50APO AP O ∠=∠'=︒,100APB APO BPO ∴∠=∠+∠=︒.故选:C .【点睛】此题考查轴对称作图,最短路径问题,将三角形周长最小转化为最短路径问题,根据轴对称作图是解题的关键.13.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1B B 上分别截取1212B A B B =,连接22A B ,按此规律作下去,若11A B O α∠=,则1010A B O ∠=( )A .102aB .92aC .20aD .18a 【答案】B【解析】【分析】根据等腰三角形两底角相等用α表示出22A B O ∠,依此类推即可得到结论.解:1212B A B B =,11A B O α∠=,2212A B O α∴∠=, 同理332111222A B O αα∠=⨯=, 44312A B O α∠=, 112n n n A B O α-∴∠=, 101092A B O α∴∠=,故选:B .【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键.14.如图,已知△ABC 中,AB=AC ,AD=AE ,∠BAE=30°,则∠DEC 等于( )A .7.5°B .10°C .15°D .18°【答案】C【解析】 根据等腰三角形性质求出∠C=∠B,根据三角形的外角性质求出∠B=∠C=∠AED+α﹣30°,根据AE=AD ,可得∠AED=∠ADE=∠C+α,得出等式∠AED=∠AED+α﹣30°+α,求出α=15°,即得到∠DEC=α=15°,故选C.点睛:本题考查了等腰三角形的性质,三角形的内角和定理,三角形的外角性质等知识点的应用,主要考查学生运用定理进行推理的能力,本题有一点难度,但题型不错.15.如图,Rt ACB ∆中,90ACB ∠=︒,ABC ∠的平分线BE 和BAC ∠的外角平分线AD 相交于点P ,分别交AC 和BC 的延长线于E ,D .过P 作PF AD ⊥交AC 的延长线于点H ,交BC 的延长线于点F ,连接AF 交DH 于点G .下列结论:①45APB ∠=︒;②PB 垂直平分AF ;③BD AH AB -=;④2DG PA GH =+;其中正确的结论有A.4个B.3个C.2个D.1个【答案】A【解析】【分析】①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP,再根据角平分线的定义∠ABP=12∠ABC,然后利用三角形的内角和定理整理即可得解;②先求出∠APB=∠FPB,再利用“角边角”证明△ABP和△FBP全等,根据全等三角形对应边相等得到AB=BF,AP=PF;③根据直角的关系求出∠AHP=∠FDP,然后利用“角角边”证明△AHP与△FDP全等,根据全等三角形对应边相等可得DF=AH;④求出∠ADG=∠DAG=45°,再根据等角对等边可得DG=AG,再根据等腰直角三角形两腰相等可得GH=GF,然后根据2PA即可得到2DG PA GH=+.【详解】解:①∵∠ABC的角平分线BE和∠BAC的外角平分线,∴∠ABP=12∠ABC,∠CAP=12(90°+∠ABC)=45°+12∠ABC,在△ABP中,∠APB=180°−∠BAP−∠ABP,=180°−(45°+12∠ABC+90°−∠ABC)−12∠ABC,=180°−45°−12∠ABC−90°+∠ABC−12∠ABC,=45°,故本小题正确;②∵PF⊥AD,∠APB=45°(已证),∴∠APB=∠FPB=45°,∵∵PB 为∠ABC 的角平分线,∴∠ABP =∠FBP ,在△ABP 和△FBP 中,APB FPB PB PBABP FBP ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABP ≌△FBP (ASA ),∴AB =BF ,AP =PF ;∴PB 垂直平分AF ,故②正确;③∵∠ACB =90°,PF ⊥AD ,∴∠FDP +∠HAP =90°,∠AHP +∠HAP =90°,∴∠AHP =∠FDP ,∵PF ⊥AD ,∴∠APH =∠FPD =90°,在△AHP 与△FDP 中,90AHP FDP APH FPD AP PF ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△AHP ≌△FDP (AAS ),∴DF =AH ,∵BD =DF +BF ,∴BD =AH +AB ,∴BD−AH =AB ,故③小题正确;④∵AP =PF ,PF ⊥AD ,∴∠PAF =45°,∴∠ADG =∠DAG =45°,∴DG =AG ,∵∠PAF =45°,AG ⊥DH ,∴△ADG 与△FGH 都是等腰直角三角形,∴DG =AG ,GH =GF ,∴DG =GH +AF ,∴故DG GH =+.综上所述①②③④正确.故选:A .【点睛】本题考查了直角三角形的性质,全等三角形的判定,以及等腰直角三角形的判定与性质,等角对等边,等边对等角的性质,综合性较强,难度较大,做题时要分清角的关系与边的关系.16.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(1,0)、(2,3),若顶点C 落在坐标轴上,则符合条件的点C有( )个.A.9 B.7 C.8 D.6【答案】C【解析】【分析】要使△ABC是等腰三角形,可分三种情况(①若CA=CB,②若BC=BA,③若AC=AB)讨论,通过画图就可解决问题.【详解】①若CA=CB,则点C在AB的垂直平分线上.∵A(1,0),B(2,3),∴AB的垂直平分线与坐标轴有2个交点C1,C2.②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有3个交点(A点除外)C3,C4,C5;③若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点C6,C7,C8,C9.而C8(0,-3)与A、B在同一直线上,不能构成三角形,故此时满足条件的点有3个.综上所述:符合条件的点C的个数有8个.故选C.【点睛】本题考查了等腰三角形的判定、垂直平分线的性质的逆定理等知识,还考查了动手操作的能力,运用分类讨论的思想是解答本题的关键.17.如图,已知等边△ABC的边长为4,面积为3D为AC的中点,点E为BC的中点,点P为BD上一动点,则PE+PC的最小值为()A.3 B.42C.23D.43【答案】C【解析】【分析】由题意可知点A、点C关于BD对称,连接AE交BD于点P,由对称的性质可得,PA=PC,故PE+PC=AE,由两点之间线段最短可知,AE即为PE+PC的最小值.【详解】解:∵△ABC是等边三角形,点D为AC的中点,点E为BC的中点,∴BD⊥AC,EC=2,连接AE,线段AE的长即为PE+PC最小值,∵点E是边BC的中点,∴AE⊥BC,∴PE+PC的最小值是22-=.4223AC E C-=22故选C.【点睛】本题考查的是轴对称-最短路线问题,熟知等边三角形的性质是解答此题的关键.18.如图,已知△ABC与△CDE均是等边三角形,点B、C、E在同一条直线上,AE与BD 交于点O,AE与CD交于点G,AC与BD交于点F,连接OC、FG,则下列结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.其中正确结论的个数为( )A.1 B.2 C.3 D.4【答案】D【解析】【分析】根据题意,结合图形,对选项一一求证,即可得出正确选项.【详解】(1)△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,∴AC=BC,EC=DC,∠ACB=∠DCE=60°,∴∠ACE=∠BCD=120°.在△BCD和△ACE中,∵AC BCBCD ACECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△BCD≌△ACE,∴AE=BD,故结论①正确;(2)∵△BCD≌△ECA,∴∠GAC=∠FBC.又∵∠ACG=∠BCF=60°,AC=BC,∴△ACG≌△BCF,∴AG=BF,故结论②正确;(3)∵△ACG≌△BCF,∴CG=CF.∵∠ACB=∠DCE=60°,∴∠ACD=60°,∴△FCG为等边三角形,∴∠FGC=60°,∴∠FGC=∠DCE,∴FG∥BE,故结论③正确;(4)过C作CN⊥AE于N,CZ⊥BD于Z,则∠CNE=∠CZD=90°.∵△ACE≌△BCD,∴∠CDZ=∠CEN.在△CDZ和△CEN中,CZD CNECDZ CENCD CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDZ≌△CEN,∴CZ=CN.∵CN⊥AE,CZ⊥BD,∴∠BOC=∠EOC,故结论④正确.综上所述:四个结论均正确.故选D.【点睛】本题综合考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的判定定理等重要几何知识点,有一定难度,需要学生将相关知识点融会贯通,综合运用.19.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周长等于AB+AC.其中正确的是( )A.①②③B.②③④C.①③④D.①②④【答案】C【解析】【分析】根据角平分线的性质、平行线的性质、等腰三角形的判定与性质分别对各选项分析判断后利用排除法求解.【详解】 ①∵IB 平分∠ABC ,∴∠DBI =∠CBI . ∵DE ∥BC ,∴∠DIB =∠CBI ,∴∠DBI =∠DIB ,∴BD =DI ,∴△DBI 是等腰三角形. 故本选项正确;②∵∠BAC 不一定等于∠ACB ,∴∠IAC 不一定等于∠ICA ,∴△ACI 不一定是等腰三角形. 故本选项错误;③∵三角形角平分线相交于一点,BI ,CI 分别是∠ABC 和∠ACB 的平分线,∴AI 平分∠BAC .故本选项正确;④∵BD =DI ,同理可得EI =EC ,∴△ADE 的周长=AD +DI +EI +AE =AD +BD +EC +AE =AB +AC . 故本选项正确;其中正确的是①③④.故选C .【点睛】本题考查了等腰三角形的判定与性质,熟记三角形的角平分线相交于一点是解题的关键.20.如图,已知,点A (0,0)、B (43,0)、C (0,4),在△ABC 内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个△AA 1B 1,第2个△B 1A 2B 2,第3个△B 2A 3B 3,…则第2017个等边三角形的边长等于( )A .201532 B .201632 C .2017327 D .201932【答案】A【解析】【分析】【详解】根据锐角三函数的性质,由OB=3OC=1,可得∠OCB=90°,然后根据等边三角形的性质,可知∠A 1AB=60°,进而可得∠CAA 1=30°,∠CA 1O=90°,因此可推导出∠A 2A 1B=30°,同理得到∠CA 2B 1=∠CA 3B 2=∠CA 4B 3=90°,∠A 2A 1B=∠A 3A 2B 2=∠A 4A 3B 3=30°,故可得后一个等边三角形的边长等于前一个等边三角形的边长的一半,即OA 1=OCcos ∠CAA 1=3B1A2=12⨯2017个等边三角形的边长为:201720151()22⨯=.故选A.【点睛】此题主要考查了等边三角形的性质,属于规律型题目,解题关键是仔细审图,得出:后一个等边三角形的边长等于前一个等边三角形的边长的一半.。