中档题型训练

合集下载

2019高考数学中档题训练含详细讲解答案

2019高考数学中档题训练含详细讲解答案

目录第一套:高考数学中档题精选(1)第二套:高考数学中档题精选(2)第三套:高考数学中档题精选(3)第四套:高考数学中档题训练第五套:不等式专练第六套:高考最新模拟试题一套高考数学中档题精选(1)1. 已知函数f(x)=cos x 2+cos 3x 2+cos 5x 2csc x 2 +cos 23x2 .(1) 求函数f(x)的最小正周期和值域; (2)求函数f(x)的单调递增区间.解:(1) y=sin x 2(cos x 2+cos 3x 2+cos 5x 2)+1+cos3x2=12sinx+12(sin2x-sinx)+12(sin3x-sin2x)+12cos3x+12=12sin3x+12cos3x+12 =22sin(3x+π4)+12∴T=2π3 ,值域y ∈[1-22,1+22]. (2)由2k π-π2 ≤3x+π4 ≤2k π+π2 ,k ∈Z.得:2k π3-π4 ≤x ≤2k π3+π12(k ∈Z). 2. 设数列{a n }的前n 项和为S n ,已知a 1=1,S n =na n -2n(n-1)(n ∈N)(1)求证数列{a n }为等差数列,并写出其通项公式;(2)是否存在非零常数p 、q 使数列{S npn+q}是等差数列?若存在,试求出p 、q 应满足的关系式,若不存在,请说明理由. 解:(1)当n ≥2时,a n =S n -S n-1=na n -(n-1)a n-1-4(n-1),即a n -a n-1=4(n ≥2) ∴{a n }为等差数列.∵a 1=1,公差d=4,∴a n =4n-3. (2)若{S n pn+q }是等差数列,则对一切n ∈N ,都有S npn+q=An+B, 即S n =(An+B)(pn+q),又S n =12(a 1+a n )n =2n 2-n,∴2n 2-n=Apn 2+(Aq+Bp)n+Bq要使上式恒成立,当且仅当⎪⎩⎪⎨⎧=-=+=012Bq Bp Aq Ap ,∵q ≠0,∴B =0,∴p q=-2,即:p+2q=0.3. 已知正三棱锥A-BCD 的边长为a ,E 、F 分别为AB 、BC 的中点,且AC ⊥DE.(Ⅰ)求此正三棱锥的体积;(Ⅱ)求二面角E-FD-B的正弦值.解:(Ⅰ)作AO⊥平面BCD于O,由正三棱锥的性质可知O为底面中心,连CO,则CO⊥BD,由三垂线定理知AC⊥BD,又AC⊥ED,∴AC⊥平面ABD,∴AC⊥AD, AB⊥AC,AB⊥AD.在Rt△ACD中,由AC2+AD2=2AC2=a2可得:AC=AD=AB=22a .∴V=VB-ACD =13·12·AC·AD·AB=224a3 .(Ⅱ)过E作EG⊥平面BCD于G,过G作GH⊥FD于H,连EH,由三垂线定理知EH⊥FD,即∠EHG为二面角E-FD-B的平面角.∵EG=12AO 而AO=VB-ACD13·S△BCD=66a ,∴EG=612a .又∵ED=AE2+AD2=(24a)2+(22a)2=104a ∵EF∥AC,∴EF⊥DE.∴在Rt△FED中,EH=EF·EDDF=1512a ∴在Rt△EGH中,sin∠EHG=EGEH=105*选做题:定义在区间(-1,1)上的函数f(x)满足:①对任意x、y∈(-1,1)都有f(x)+f(y)=f(x+y1+xy);②当x∈(-1,0)时,f(x)>0.(Ⅰ)求证:f(x)为奇函数;(Ⅱ)试解不等式f(x)+f(x-1)>f(12 ).解:(Ⅰ)令x=y=0,则f(0)+f(0)=f(0),∴f(0)=0.又令x∈(-1,1),则-x∈(-1,1),而f(x)+f(-x)=f(x-x1-x2)=f(0)=0∴f(-x)=-f(x),即f(x)在(-1,1)上是奇函数.(Ⅱ)令-1<x1<x2<1,则x1-x2<0,1-x1x2>0,于是f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x21-x1x2)>0,即f(x1)>f(x2),所以f(x)在定义域ABCDEF OGH上为减函数.从而f(x)+f(x-1)>f(12)等价与不等式⎪⎪⎩⎪⎪⎨⎧>-+-<-<-<<-)21()112(111112f x x x f x x.213503*********111210222-<<⇔⎩⎨⎧+-<<⇔⎩⎨⎧+-<-<<⇔⎪⎩⎪⎨⎧<-+-<<⇔x x x x x x x x x x x x 高考数学中档题精选(2)1. 已知z 是复数,且arg(z-i)=π4,|z|= 5 .求复数z. 解法1.设复数z-i 的模为r(r>0),则z-i=r(cosπ4 +isin π4), ∴i r z )122(22++=,042,5)122()22(,5||222=-+=++∴=r r r r z 即解得r= 2 ,z=1+2i. 解法2.设z=x+yi,则5)1()0(15)01(145222222=++⇒⎩⎨⎧>+==+⇒⎪⎩⎪⎨⎧>--==+x x x x y y x y x y tg y x π 解得x=1或-2(舍去),所以z=1+2i. 解法3.设)sin (cos 5θθi z +=则1sin 5cos 51cos 51sin 54-=⇒=-=θθθθπtg解得:,10103)4cos(,0cos ,1010)4sin(=-∴>=-πθθπθ .21)55255(5554sin )4sin(4cos )4cos(]4)4cos[(cos ,5524sin )4cos(4cos )4sin(]4)4sin[(sin i i z +=+=∴=---=+-==-+-=+-=∴ππθππθππθθππθππθππθθ2. 已知f(x)=sin 2x-2(a-1)sinxcosx+5cos 2x+2-a,若对于任意的实数x 恒有|f(x)|≤6成立,求a 的取值范围.解:f(x)=(1-a)sin2x+2cos2x+5-a=5-2a+a 2 sin(2x+ψ)+5-a.(ψ为一定角,大小与a 有关).∵x ∈R,∴[f(x)]max =5-a+5-2a+a 2 ,[f(x)]min =5-a-5-2a+a 2 .由|f(x)|≤6,得⎪⎩⎪⎨⎧-≤+-+≤+-⇔⎪⎩⎪⎨⎧-≥+---≤+-+-aa a aa a a a a a a a 1125125625562552222 .52915291111)11(25)1(251112222≤≤∴⎪⎪⎩⎪⎪⎨⎧≤≥≤≤-⇔⎪⎩⎪⎨⎧-≤+-+≤+-≤≤-a a a a a a a a a a a 3.斜三棱柱ABC-A 1B 1C 1的底面是边长为2的正三角形,顶点A 1在底面的射影O 是△ABC 的中心,异面直线AB 与CC 1所成的角为45°. (1)求证:AA 1⊥平面A 1BC ;(2)求二面角A 1-BC-A 的平面角的正弦值; (3)求这个斜三棱柱的体积.(1)由已知可得A 1-ABC 为正三棱锥,∠A 1AB=45° ∴∠AA 1B=∠AA 1C=90°即AA 1⊥A 1B,AA 1⊥A 1C∴AA 1⊥平面A 1BC(2)连AO 并延长交BC 于D,则AD ⊥BC ,连A 1D,则∠ADA 1为所求的角。

高考数学中档大题规范练(4)——立体几何

高考数学中档大题规范练(4)——立体几何

专题分层训练(三十一) 中档大题规范练(4)——立体几何1.如图,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值.解(1)证明:由题意可知DA⊥DC,DA⊥DP,DC⊥DP,故可以D为原点,DP所在直线为x轴,DC所在直线为y轴,DA所在直线为z轴建立空间直角坐标系.设正方形ABCD 的边长为a , 则C (0,a,0),A (0,0,a ),由平面几何知识可求得F ⎝⎛⎭⎪⎪⎫34a ,34a ,0, 所以CF →=⎝⎛⎭⎪⎪⎫34a ,-14a ,0, DF →=⎝⎛⎭⎪⎪⎫34a ,34a ,0, DA →=(0,0,a ),CF →·DF →=34a ×34a +⎝ ⎛⎭⎪⎫-14a ×34a +0=0,CF →·DA →=⎝⎛⎭⎪⎪⎫34a ,-14a ,0·(0,0,a )=0, 故CF ⊥DF ,CF ⊥DA .又DF ∩DA =D ,所以CF ⊥平面ADF .(2)可求得E ⎝ ⎛⎭⎪⎪⎫34a ,0,0,则AE →=⎝⎛⎭⎪⎪⎫34a ,0,-a , 又AF →=⎝⎛⎭⎪⎪⎫34a ,34a ,-a , 设平面AEF 的法向量为n =(x ,y ,z ),则n ·AE →=(x ,y ,z )·⎝ ⎛⎭⎪⎪⎫34a ,0,-a =34ax -az =0,n ·AF →=(x ,y ,z )·⎝ ⎛⎭⎪⎪⎫34a ,34a ,-a =34ax +34ay -az =0,取x =1,得平面AEF 的一个法向量n =⎝⎛⎭⎪⎪⎫1,0,34.又由(1)知平面ADF 的一个法向量为CF →=⎝⎛⎭⎪⎪⎫34a ,-14a ,0, 故cos 〈n ,CF →〉=⎝ ⎛⎭⎪⎪⎫1,0,34·⎝ ⎛⎭⎪⎪⎫34a ,-14a ,0194×12a =25719,由图可知二面角D -AF -E 为锐二面角,所以其余弦值为25719.2.如图,四棱锥P -ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB =2,∠BAD =π3,M 为BC 上一点,且BM =12,MP ⊥AP .(1)求PO 的长;(2)求二面角A -PM -C 的正弦值. 解 (1)如图,连接AC ,BD ,OM ,因ABCD 为菱形,则AC ∩BD =O ,且AC ⊥BD .以O 为坐标原点,OA →,OB →,OP →的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系O -xyz .因∠BAD =π3,故OA =AB ·cos π6=3,OB =AB ·sin π6=1,所以O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0), OB →=(0,1,0),BC →=(-3,-1,0). 由BM =12,BC =2知,BM →=14BC →=⎝⎛⎭⎪⎪⎫-34,-14,0, 从而OM →=OB →+BM →=⎝⎛⎭⎪⎪⎫-34,34,0, 即M ⎝⎛⎭⎪⎪⎫-34,34,0. 设P (0,0,a ),a >0,则AP →=(-3,0,a ),MP →=⎝⎛⎭⎪⎪⎫34,-34,a . 因为MP ⊥AP ,故MP →·AP →=0,即-34+a 2=0,所以a =32,a =-32(舍去),即PO =32.(2)由(1)知,AP →=⎝⎛⎭⎪⎪⎫-3,0,32, MP →=⎝ ⎛⎭⎪⎪⎫34,-34,32,CP →=⎝⎛⎭⎪⎪⎫3,0,32. 设平面APM 的法向量为n 1=(x 1,y 1,z 1),平面PMC 的法向量为n 2=(x 2,y 2,z 2).由n 1·AP →=0,n 1·MP →=0,得⎩⎪⎨⎪⎧ -3x 1+32z 1=0,34x 1-34y 1+32z 1=0,故可取n 1=⎝ ⎛⎭⎪⎪⎫1,533,2. 由n 2·MP →=0,n 2·CP →=0,得⎩⎪⎨⎪⎧34x 2-34y 2+32z 2=0,3x 2+32z 2=0,故可取n 2=(1,-3,-2). 从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-155,故所求二面角A -PM -C 的正弦值为105. 3.如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ;(2)求二面角A 1-BC 1-B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BDBC 1的值.解(1)证明:在正方形AA 1C 1C 中,A 1A ⊥AC .又平面ABC ⊥平面AA 1C 1C ,且平面ABC ∩平面AA 1C 1C =AC ,∴AA 1⊥平面ABC .(2)在△ABC 中,AC =4,AB =3,BC =5, ∴BC 2=AC 2+AB 2,AB ⊥AC ,∴以A 为坐标原点,建立如图所示空间直角坐标系A -xyz .A 1(0,0,4),B (0,3,0),C 1(4,0,4),B 1(0,3,4),A 1C 1→=(4,0,0),A 1B →=(0,3,-4),B 1C 1→=(4,-3,0),BB 1→=(0,0,4).设平面A 1BC 1的法向量n 1=(x 1,y 1,z 1), 平面B 1BC 1的法向量n 2=(x 2,y 2,z 2).∴⎩⎨⎧A 1C 1→·n 1=0,A 1B →·n 1=0⇒⎩⎪⎨⎪⎧4x 1=0,3y 1-4z 1=0.∴取向量n 1=(0,4,3).由⎩⎨⎧B 1C 1→·n 2=0,BB 1→·n 2=0⇒⎩⎪⎨⎪⎧4x 2-3y 2=0,4z 2=0.取向量n 2=(3,4,0).∴cos 〈n 1·n 2〉=n 1·n 2|n 1|·|n 2|=165×5=1625.∴所求二面角A 1-BC -B 1的余弦值为1625.(3)证明:设D (x ,y ,z )是直线BC 1上一点,且BD →=λBC 1→.∴(x ,y -3,z )=λ(4,-3,4),解得x =4λ,y =3-3λ,z =4λ, ∴AD →=(4λ,3-3λ,4λ).又AD ⊥A 1B ,∴0+3(3-3λ)-16λ=0, 则λ=925,因此BD BC 1=925.4.如图,在四棱锥P -ABCD 中,平面PAC ⊥平面ABCD ,且PA ⊥AC ,PA =AD =2.四边形ABCD 满足BC ∥AD ,AB ⊥AD ,AB =BC =1.点E ,F 分别为侧棱PB ,PC 上的点,且PE PB =PFPC=λ.(1)求证:EF ∥平面PAD ;(2)当λ=12时,求异面直线BF 与CD 所成角的余弦值;(3)是否存在实数λ,使得平面AFD ⊥平面PCD ?若存在,试求出λ的值;若不存在,请说明理由.解 (1)证明:由已知PE PB =PFPC=λ,∴EF ∥BC , 又BC ∥AD ,∴EF ∥AD , 而EF ⊄平面PAD ,AD ⊂平面PAD , ∴EF ∥平面PAD .(2)∵平面ABCD ⊥平面PAC ,平面ABCD ∩平面PAC =AC ,且PA ⊥AC , ∴PA ⊥平面ABCD . ∴PA ⊥AB ,PA ⊥AD . 又∵AB ⊥AD ,∴PA ,AB ,AD 两两垂直.如图所示,建立空间直角坐标系. ∵AB =BC =1,PA =AD =2,∴A (0,0,0),B (1,0,0,),C (1,1,0),D (0,2,0),P (0,0,2), 当λ=12时,F 为PC 中点,∴F ⎝ ⎛⎭⎪⎫12,12,1, ∴BF →=⎝ ⎛⎭⎪⎫-12,12,1,CD →=(-1,1,0),设异面直线BF 与CD 所成的角为θ, ∴cos θ=|cos 〈BF →,CD →〉|=12+1262×2=33. 故异面直线BF 与CD 所成角的余弦值为33.(3)设F (x 0,y 0,z 0),则PF →=(x 0,y 0,z 0-2),PC →=(1,1,-2),又PF →=λPC →,∴⎩⎪⎨⎪⎧x 0=λ,y 0=λ,z 0=2-2λ,∴AF →=(λ,λ,2-2λ),设平面AFD 的一个法向量为m =(x 1,y 1,z 1),则⎩⎨⎧m ·AF →=0,m ·AD →=0,即⎩⎪⎨⎪⎧λx 1+λy 1+(2-2λ)z 1=0,2y 1=0,令z 1=λ,得m =(2λ-2,0,λ).设平面PCD 的一个法向量为n =(x 2,y 2,z 2).则⎩⎨⎧n ·PD →=0,n ·CD →=0,即⎩⎪⎨⎪⎧2y 2-2z 2=0,-x 2+y 2=0,取y 2=1,则x 2=1,z 2=1, ∴n =(1,1,1),由m ⊥n ,得m ·n =(2λ-2,0,λ)·(1,1,1)=2λ-2+λ=0, 解得λ=23.∴当λ=23时,使得平面AFD ⊥平面PCD .5.如图,在四棱锥S -ABCD 中,底面ABCD 是直角梯形,侧棱SA ⊥底面ABCD ,AB 垂直于AD 和BC ,SA =AB =BC =2,AD =1.M 是棱SB 的中点.(1)求证:AM ∥平面SCD ;(2)求平面SCD 与平面SAB 所成二面角的余弦值;(3)设点N 是直线CD 上的动点,MN 与平面SAB 所成的角为θ,求sinθ的最大值.解(1)证明:以点A 为原点建立如图所示的空间直角坐标系,则A (0,0,0),B (0,2,0),C (2,2,0),D (1,0,0),S (0,0,2),M (0,1,1).则AM →=(0,1,1),SD →=(1,0,-2),CD →=(-1,-2,0).设平面SCD 的法向量为n =(x ,y ,z ),则⎩⎨⎧ SD →·n =0,CD →·n =0,即⎩⎪⎨⎪⎧ x -2z =0,-x -2y =0. 令z =1,得n =(2,-1,1).∵AM →·n =0,∴AM →⊥n . ∴AM ∥平面SCD .(2)易知平面SAB 的一个法向量为n 1=(1,0,0).设平面SCD 与平面SAB 所成的二面角为φ,易知0<φ<π2, 则|cos φ|=⎪⎪⎪⎪⎪⎪n 1·n |n 1|·|n |=21·6=63,即cos φ=63.∴平面SCD 与平面SAB 所成二面角的余弦值为63. (3)设N (x,2x -2,0),则MN →=(x,2x -3,-1).∵平面SAB 的一个法向量为n 1=(1,0,0),∴sin θ=⎪⎪⎪⎪⎪⎪⎪⎪x 5x 2-12x +10 =110×⎝ ⎛⎭⎪⎫1x 2-12×1x +5=110×⎝ ⎛⎭⎪⎫1x -352+75,当1x =35,即x =53时,(sin θ)max =357.。

陕西省安康市三年(2020-2022)小升初语文真题分题型分层汇编-05填空题(中档题)

陕西省安康市三年(2020-2022)小升初语文真题分题型分层汇编-05填空题(中档题)

陕西省安康市三年(2020-2022)小升初语文真题分题型分层汇编-05填空题(中档题)一.汉字书写(共2小题)1.(2022•汉阴县)请在答题卡相应位置抄写下面的话,要求正确、匀称、整齐、布局合理。

人世间的一切成就、一切幸福都源于劳动和创造。

你们从小就要树立劳动光荣的观念。

——习近平2.(2022•紫阳县)今年3月,全国50家博物馆、高校的60位馆长和学者,联名发布《关于博物馆积极参与建构元宇宙的倡议》,呼吁博物馆顺应时代发展,发挥自身优势,积极参与建构元宇宙。

请将文中画横线的文字正确美观地书写在田字格中。

二.词语的理解与辨析(共1小题)3.(2022•紫阳县)按要求写句子。

(1)读下面的句子,注意加点的部分,说说你发现了什么。

例:有名的老铺都要挂出几百盏灯来:有的一律...是牛角的,有的..是玻璃的,有的清一色都.是纱灯。

我的发现:仿写:(2)读下面的句子,说说加点的部分有什么共同的特点。

再从后面的词语中选择一个,发挥想象,仿写句子。

例:镇上的人排着队来到撒切尔法官家,搂着两个获救的孩子又亲又吻,……泪水如雨,.....洒了一地....。

饿安静这个句子的特点:仿写:三.改写句子(共3小题)4.(2021•横峰县)按要求写句子。

(1)西蒙的心跳得很厉害,但是她觉得一定要这样做。

(改为双重否定句)(2)当演员唱到“敬爱的周总理,我们怀念您”时,台下的观众眼睛里热泪盈眶。

(修改病句)(3)过了二十三,大家就更忙了,春节眨眼就到了.....啊。

(注意加点的部分,用这样的修辞手法写一个句子)5.(2021•西安)按要求写句子。

(1)屋后的青山就是护林老人生命的归宿。

(改为反问句)(2)培养学生的思维能力,是衡量一节课是否成功的重要标准。

(修改病句)(3)临近毕业,请你为老师和同学们写一写临别赠言,送上真情祝福。

①给老师的赠言:②写给同学的赠言:6.(2021•白河县)按要求写句子。

(1)真理诞生于一百个问号之后。

专题02 实数的运算(三大题型,50题)(解析版)

专题02 实数的运算(三大题型,50题)(解析版)

专题02实数的运算(三大题型,50题)(解析版)学校:___________姓名:___________班级:___________考号:___________一、用数轴上的点表示实数,中档题20题,难度三星1.如图,若5x =,则表示2211(1)x x x x -+÷-的值的点落在()A .段①B .段②C .段③D .段④【答案】C 【分析】首先对原式进行化简,然后代入x 的值,最后根据5 2.236≈即可判断.【详解】原式=2211()x x x x x-+-÷=()211x xx x -- =1x -当5x =时,原式=51-∵5 2.236≈∴51 1.236-≈故选C .【点睛】本题考查了分式的乘除法化简,无理数的估算,无理数的估算是难点,关键是要熟记一些常用的完全平方数,和一些常用无理数的近似值.2.若实数p ,q ,m ,n 在数轴上的对应点的位置如图所示,且满足0p q m n +++=,则绝对值最小的数是()A .pB .qC .mD .n【答案】C 【分析】根据0p q m n +++=,并结合数轴可知原点在q 和m 之间,且离m 点最近,即可求解.A.a b>B.π+A.πB.1【答案】B【分析】根据数轴与实数的一一对应关系解答即可.A .a b-+B .a b +C .a 【答案】21π--【分析】求出圆的周长,再根据实数与数轴上的点的对应关系解答即可.【答案】﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【答案】32-或32+【分析】分顺时针旋转和逆时针旋转,两种情况讨论求解即可.【详解】解:∵点A 表示的数为3,点B 表示的数为4,∴1AB =,此时C '表示的数为:32-;当正方形ABCD 绕点A 逆时针旋转,使得点C 落在数轴上的点C '处时,如图:此时C '表示的数为:32+;【答案】2π2+【分析】先求出圆的周长为2π,再利用数轴的性质求解即可得.【详解】解:由题意可知,将圆沿数轴向右转动一周,转动的距离为∴点A 向右移动了2π个单位长度,【答案】280905--+/809052【分析】本题考查的是数轴的一个知识,解题的关键是找到规律:第移动25个单位,从第2次落在数轴上开始,比上一次又向右多移动了(1)图1中的阴影部分为正方形,它的面积是_________;(2)请利用(1)的解答,在图1的数轴上画出表示10的点;并简洁地说明理由.(3)如图2,请你利用正方形网格,设计一个面积方案,在数轴上画出表示理由.【答案】(1)10(3)解:如图,阴影部分为正方形,面积为所以,其边长为5,在数轴上截取5==,CDOC OK则点K表示的数为5,点D表示的数【点睛】本题主要考查正方形的性质以及网格,熟练掌握正方形的性质是解题的关键.20.阅读下面的文字,解答问题.大家知道,2是无理数,而无理数是无限不循环小数,因此【点睛】此题考查的是估算无理数及求代数式的值,能够得到一个无理数的整数部分与小数部分是解决此题的关键.二、实数的大小比较,中档题15题,难度三星π-<-<根据数轴上点的特点可得: 1.5333.在数轴上表示数0,π-303π-<-<<.2【点睛】本题考查了实数与数轴,实数的大小比较,能利用数轴比较实数的大小是解此题的关键,注意:。

导数18 大题(零点分析)中档-2022年全国一卷新高考数学题型细分汇编

 导数18 大题(零点分析)中档-2022年全国一卷新高考数学题型细分汇编

导数——大题——零点分析(中档,中上、未):1.(2022年山东东营J58)已知函数221()2()2x ax f x x x a e =+-∈R ( 2.71828e =…是自然对数的底数).(1)若()f x 在(0.2)x ∈内有两个极值点,求实数a 的取值范围;(①)(2)1a =时,讨论关于x 的方程211()2|ln |()2x f x x x b x b xe⎡⎤-++=∈⎢⎥⎣⎦R 的根的个数.(零点分析,中档;第二问,未;)2.(2022年江苏南京J09)已知函数()f x =e 2x ,()(21)g x m x =+,m >0,设()()()h x f x g x =-(1)若函数()h x 有两个零点,求实数m 的取值范围;(②)(2)若直线()y g x =是直线()f x =e 2x 的一条切线,求证:∀a >b ,都有22()()2a h a h b e a b--- .(零点分析,中档;第二问,未;)1.(2022年湖南长沙长郡中学J19)已知()()()2ln ln f x ax x x x x =+--有三个不同零点1x ,2x ,3x ,且123.x x x << (1)求实数a 的范围;(③)(2)求证:3121232.ln ln ln x x x x x x ++>(零点分析,中档;第二问,未;)1.(2022年湖北四校联考J16)已知函数()()()1sin cos f x a x x x a R =+-∈.(④)(1)若()f x 在5,26ππ⎛⎫⎪⎝⎭上有零点,求实数a 的取值范围;(2)若04a π-<≤,记()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最小值为()g a ,求()g a 的取值范围.(零点分析,中档,未;第二问,未;)2.(2022年湖南邵阳J41)已知函数()()2ln ,f x x a x a R =-∈.(1)讨论函数()f x 的零点个数;(⑤)(2)若函数()f x 存在两个不同的零点12,x x ,证明:12x x e >.(零点分析,中档;第二问,未;)1.(2022年广东仿真J04)(12分)已知函数()f x axlnx =,(0)a ≠.(⑥)(1)若函数1()()1g x f x x ='++(其中:()f x '为()f x 的导数)有两个极值点,求实数a 的取值范围;(2)当1a =时,求证:()sin 1x f x e x <+-.(零点分析,中档;第二问,未;)1.(2022年河北J47)已知函数()()()e ln 0x af x x a a -=-+>.(1)证明:函数()f x '在()0,∞+上存在唯一的零点;(⑦)(2)若函数()f x 在区间()0,∞+上的最小值为1,求a 的值.(零点分析,中档;第二问,未;)1.(2022年广东佛山一中J29)(本小题12分)已知函数()ln 2sin f x x x x =-+.(1)证明:()f x 在区间π0,2⎛⎫ ⎪⎝⎭存在唯一的极值点;(⑧)(2)试讨论()f x 的零点个数.(零点分析,中档;第二问,未;)①【答案】(1)22e e a <<;(2)答案见解析.【解析】【分析】(1)若()f x 在(0,2)x ∈内有两个极值点,则()0f x '=在(0,2)x ∈内有两个不相等的变号根,等价于0x e ax -=在(0,2)x ∈上有两个不相等的变号根.令()x g x e ax =-,分类讨论()g x 有两个变号根时a 的范围;(2)化简原式可得:2()|ln |,(0,)xxh x x b x e =--∈+∞,分别讨论(1,)x ∈+∞和(0,1)x ∈时()h x 的单调性,可得()h x 的最小值,分类讨论最小值与0的关系,结合()h x 的单调性可以得到零点个数.【详解】(1)由题意可求得()()22(2)()2x xxa x x x e ax f x x ee'---=+-=,因为()f x 在(0,2)x ∈内有两个极值点,所以()0f x '=在(0,2)x ∈内有两个不相等的变号根,即0x e ax -=在(0,2)x ∈上有两个不相等的变号根.设()x g x e ax =-,则()x g x e a '=-,①当0a 时,(0,2),()0x x g x e a '∈=->,所以()g x 在(0,2)上单调递增,不符合条件.②当0a >时,令()0x g x e a '=-=得ln x a =,当ln 2a ,即2a e 时,(0,2),()0x x g x e a '∈=-<,所以()g x 在(0,2)上单调递减,不符合条件;当ln 0a ,即01a < 时,(0,2),()0x x g x e a '∈=->,所以()g x 在(0,2)上单调递增,不符合条件;当0ln 2a <<,即21a e <<时,()g x 在(0,ln )a 上单调递减,(ln ,2)a 上单调递增,若要0xe ax -=在(0,2)x ∈上有两个不相等的变号根,则(0)0,(2)0,(ln )0,0ln 2,g g g a a >⎧⎪>⎪⎨<⎪⎪<<⎩,解得22e e a <<.综上所述,22e e a <<.(2)设2211()|ln |()2|ln |,(0,)2x x x h x x f x x x b x b x xee ⎡⎤=--+-=--∈+∞⎢⎥⎣⎦,令2x x y e =,则212x x y e '-=,所以2x x y e =在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减.(ⅰ)当(1,)x ∈+∞时,ln 0x >,则2()ln x xh x x b e=--,所以22()21x xe h x ex x '-⎛⎫=+- ⎪⎝⎭.因为2210,0xe x x->>,所以()0h x '>,因此()h x 在(1,)+∞上单调递增.(ⅱ)当(0,1)x ∈时,ln 0x <,则2()ln x xh x x b e=---,所以22()21x xe h x ex x '-⎛⎫=-+- ⎪⎝⎭.因为()22221,,1,01,1,x xxe ee ex x ∈><<∴>即21,xe x-<-,又211,x -<所以22()210x xe h x ex x '-⎛⎫=-+-< ⎪⎝⎭,因此()h x 在(0,1)上单调递减.综合(ⅰ)(ⅱ)可知,当(0,)x ∈+∞时,2()(1)h x h e b -=-- ,当2(1)0h e b -=-->,即2b e -<-时,()h x 没有零点,故关于x 的方程根的个数为0,当2(1)0h e b -=--=,即2b e -=-时,()h x 只有一个零点,故关于x 的方程根的个数为1,当2(1)0h e b -=--<,即2b e ->-时,①当(1,)x ∈+∞时,221()ln ln ln 1x x h x x b x b x b e e ⎛⎫=-->-+>-- ⎪⎝⎭,要使()0h x >,可令ln 10x b -->,即()1,bx e+∈+∞;②当(0,1)x ∈时,121()ln ln ln 12x x h x x b x e b x b e -⎛⎫=-----+>--- ⎪⎝⎭,要使()0h x >,可令ln 10x b --->,即()10,bx e--∈,所以当2b e ->-时,()h x 有两个零点,故关于x 的方程根的个数为2,综上所述:当2b e -<-时,关于x 的方程根的个数为0,当2b e -=-时,关于x 的方程根的个数为1,当2b e ->-时,关于x 的方程根的个数为2.【点睛】本题考查已知极值点的个数求参数,以及分类讨论求函数的零点个数问题,属于难题.关键点点睛:分类讨论求函数的零点时,(1)先从函数有无零点得到参数的一个范围;(2)函数有零点时,再判断函数零点是否在给定区间内,得到参数下一步的范围.②【答案】(1)()1,+∞(2)证明见解析【解析】【分析】(1)根据零点存在性定理进行判定;(2)根据题意,求出切线,然后转化所给不等式逐步分析求证.【小问1详解】()()()22ln e 21,2e 202x x mh x m x h x m x =-+==⇒='-当ln 2m x <时,()()0,h x h x '<单调递减;当ln 2mx >时,()()0,h x h x '>单调递增,()min ln ()ln 1ln 2m h x h m m m m m⎛⎫∴==-+=- ⎪⎝⎭要使()h x 有两个零点,首先必有ln 01m m m -<⇒>当1m >时,注意到()()2110,e 212em h h m m m ⎛⎫-=>=-+ ⎪⎝⎭2224220m m m m m >--=->()h x ∴在1ln ,22m ⎛⎫- ⎪⎝⎭和ln ,2m m ⎛⎫⎪⎝⎭上各有一个零点,符合题意综上:m 取值范围为()1,+∞【小问2详解】证明:()22e xf x '=,设()()21g x m x =+与()f x 切于()20,ex P x ()()()00220202e 20,1,21,e 2121exx x m x m g x x h x x m x ⎧=⎪∴⇒=∴=∴=+∴=--⎨+=⎪⎩要证:()()22e 2ah a h b a b-≤-⇔-证:222e 2e 22e 2a b a a ba b--+≤--即证:222e e 2e a b a a b-≤-,即证:()221e2b aa b --≤-令22,0a b t t -=>⇔证明:1e ,e 1t t t t ---≤+≥构造()()()e ,1e0,ttF t t F t F t --=+=>∴'-在()0,∞+上()()01F t F ∴>=,证毕!【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.③【答案】(1)()2e e 11e e 1-+-(,)(2)答案见解析【解析】【分析】(1)先利用参变量分离法,可得ln ln x xa x x x=--,然后构造函数ln ()ln x xh x x x x=--,判断()h x 单调性,然后作出函数的大致图像,确定a 的范围即可;(2)由(1)知,12301e x x x <<<<<,可设ln ()xu x x=,则1()1h x u u =--,然后利用导数确定()u x 的图像,由根的分布情况及111ln x u x =,32223ln ln x x u x x ==运算可得结果.【小问1详解】解:令()0f x =,得2ln (0)ln x ax x x x x+=>-,∴ln ln x x a x x x =--.设ln ()ln x xh x x x x=--,221ln (1)1ln ()(ln )x x x x x h x x x x ----=--'2222(1ln )(ln )(ln )x x x x x x x ⎡⎤---⎣⎦=-22222(1ln )2ln (ln )ln (1ln )(2ln )(ln )(ln )x x x x x x x x x x x x x x ⎡⎤----⎣⎦==--设()2ln x x x ϕ=-,121()2x x x x ϕ'-=-=,易知()x ϕ在102⎛⎫ ⎪⎝⎭,单调递减,在12⎛⎫+∞ ⎪⎝⎭,单调递增,∴min 11()()1ln1ln 2022x ϕϕ==-=+,∴()2ln 0x x x ϕ=->,则由()0h x '=,得1x =或e x =,令()0h x '>,解得()1,e x ∈;令()0h x '<,解得()()01e,x ∞∈⋃+,()h x ∴在()01,单调递减,在()1,e 单调递增,在()e,∞+单调递减,()h x ∴有极小值()11h =,有极大值()()2e 1e e 1e e 1e e e 1h -+=-=--,又1ln ()ln 1xh x x x x=--,当0x +→时,ln 1ln =⋅→-∞x x x x ,()∴→+∞h x ,当x →+∞时,ln 0xx→,∴()1h x →,()h x ∴的图像如下:由图可知,要使()f x 有3个不同零点,即()h x a =有3个不同零点,实数a 的取值范围为()2e e 11,e e 1⎛⎫-+ ⎪ ⎪-⎝⎭.【小问2详解】由(1)知,12301e x x x <<<<<,令ln ()x u u x x ==,则1()1h x u u=--,21ln xu x-=',故当()0,e x ∈时,()u x 单调递增;当()e,x ∞∈+时,()u x 单调递减.且0x +→时,u ∞→-;()10u =;x →+∞时,0u →;()()max1e .eu x u ==所以ln ()xu x x=的图像如下:由11u a u-=-,得1(1)(1)u u a u --=-,即2(1)10u a u a +-+-=,由根的分布知:2(1)10u a u a +-+-=有两根1u ,2u ,且1210eu u <<<,由图①②知,111ln x u x =,32223ln ln x x u x x ==,又121211u u au u a+=-⎧⎨=-⎩,∴1212u u u u +=,∴12111u u +=,∴3121231211212ln ln ln x x x x x x u u u ++=+=-,又10<u ,∴110u ->,故3121232ln ln ln x x x x x x ++>.【点睛】本题考查利用导数研究函数的零点,利用导数证明不等式,考查逻辑思维能力和运算求解能力,属于难题.导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.④【答案】(1)31,16π⎛⎫--- ⎪ ⎪⎝⎭(2)22,024⎫-⎪⎪⎣⎭【解析】【分析】(1)令()cos sin x xF x x=,求出其导数后可判断函数的单调性,从而可求其值域,故可求实数a 的取值范围;(2)求出()f x ',令()()G x f x =',求出()G x ',利用题设条件可得()0G x '>,从而可得()f x '在0,2π⎛⎫⎪⎝⎭存在唯一的零点且可得()f x '的符号情况,从而可得()f x 的单调性,故可得其最小值,再利用导数可求其取值范围.【小问1详解】由()0f x =得cos 1sin x x a x +=,令()cos sin x xF x x=,则()2sin cos 0sin x x x F x x -'=<,所以()F x 在5,26ππ⎛⎫⎪⎝⎭上单调递减,()53,06F x π⎛⎫∈- ⎪ ⎪⎝⎭,从而531,16a π⎛⎫∈--- ⎪ ⎪⎝⎭.【小问2详解】令()()cos sin G x f x a x x x '==+,因为0,,024x a ππ⎛⎫∈-≤< ⎪⎝⎭,故()()1sin cos 0G x a x x x '=-+>,所以()G x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,又()00G a =<,022G ππ⎛⎫=> ⎪⎝⎭,所以存在唯一实数00,2x π⎛⎫∈ ⎪⎝⎭,使得()00G x =,且当()00,x x ∈时,()0f x '<,当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0f x '>,故()f x 在()00,x 上单减,在0,2x π⎛⎫⎪⎝⎭上单增,从而()f x 的最小值()()()00001sin cos g a f x a x x x ==+-,∵000cos sin 0a x x x +=,∴000sin cos x x a x -=,故()()()00000001sin cos sin cos x g a f x a x x x x x ==+-=-.令()sin 0cos 2x x h x x x π-⎛⎫=<< ⎪⎝⎭,则()2sin cos 0cos x x xh x x +'=-<,所以()h x 在0,2π⎛⎫⎪⎝⎭上单减,由题意04a π-<≤可得()()004h h x h π⎛⎫< ⎪⎝⎭≤,所以004x π<≤,令()sin 0cos 4x H x x x x π⎛⎫=-< ⎪⎝⎭≤,则()()222cos cos 1sin cos sin cos cos cos x x x x x x x H x x x x--+=-=()2sin cos sin 0cos x x x x x -+=<,所以()H x 在0,4π⎛⎤⎥⎝⎦上单减,故()g a 的取值范围为22,024⎫-⎪⎪⎣⎭.【点睛】思路点睛:含参数的零点问题,可利用参变分离把参数的范围问题转化为不含参数的新函数的值域问题,在函数的单调性的讨论中,如果导函数的零点不易求得,可虚设零点来简化问题的讨论.⑤【答案】(1)答案见解析;(2)证明见解析.【解析】【分析】(1)先对函数()f x 进行求导,然后对a 进行分类讨论,便可得到函数()f x 零点的个数;(2)利用(1)的结论,便可知函数在2a e >时有两个零点,再构造一个新函数,可将双变量变为单变量,对该新函数进行研究即可.【小问1详解】因为()()2220a x af x x x x x-'=-=>①当0a ≤,()0f x '>,函数()f x 在区间()0,∞+单调递增,(i )0a =时,函数()f x 在()0,∞+上无零点;(ii )0a <,由0x →时,()f x →-∞,()20f e e a =->,∴()f x 在()0,∞+只有一个零点;②当0a >时,函数()f x 在区间2a ⎛ ⎝上单调递减,在区间2a ⎫+∞⎪⎪⎭上单调递增;(注意0x →时,()f x →+∞,x →+∞时,()f x →+∞)所以()ln 1ln 22222a a a a a f x f a ⎛⎫≥=-=- ⎪⎝⎭,(i )02a f >即02e a <<时,()f x 无零点;(ii )02a f =,即2a e =时,()f x 只有一个零点;(iii )02a f <即2a e =时,()f x 有两个零点;综上所述,当0a <或2a e =时,()f x 在只有一个零点;当02a e ≤<时,()f x 无零点;当2a e >时,()f x 有两个零点;方法二:0a =时,函数()2f x x =在()0,∞+上无零点;0a ≠时,由()21ln 0x f x a x =⇒=,令()2ln x g x x =,则()()312ln 0x g x x x -'=>,由()312ln 0x g x x e x -'==⇒=,则(x e ∈时,()g x 单调递增,)x e ∞∈+时,()g x 单调递减,则()12g x ge e =≤,做出简图,由图可知:(注意:0x →时,()g x →-∞,x →+∞时()0g x →)当10a <或12e a =,即0a <或2a e =时,21ln x a x=只有一个根,即()f x 在()0,∞+只有一个零点;当1102a e <<时,即2a e >时,21ln x a x =有两个根,即()f x 在()0,∞+有两个零点;当112a e>时,即02e a <<时,21ln x a x =无实根,即()f x 在()0,∞+无零点;综上所述,当0a <或2a e =时,()f x 在只有一个零点;当02a e ≤<时,()f x 无零点;当2a e >时,()f x 有两个零点;【小问2详解】由(1)可知2a e >时,()f x 有两个零点,设两个零点分别为12,x x ,且210x x >>,由()()21112222ln 00ln 0x a x f x f x x a x ⎧-===⇒⎨-=⎩,即211222ln ln x a x x a x ⎧=⎨=⎩,所以()()222212122121ln ln ,ln ln x x a x x x x a x x +=+-=-,即()222121122221ln ln ln ln x x x x x x x x -+=+-要证明12x x e >,即证12ln ln 1x x +>,需证()2221122221ln ln 1x x x x x x ++>-,再证2221212221ln ln x x x x x x -->+,然后证221221211ln 01x x x x x x ⎛⎫- ⎪⎝⎭->⎛⎫+ ⎪⎝⎭,设21x x x =,则1x >,即证221ln 01x x x -->+,即22ln 101x x +->+,令()()22ln 111h x x x x =+->+,则()()()()()()22222222222141140111x x x x h x x x x x x x +--'=-==>+++,故函数()h x 在()1,+∞上单调递增,所以()()10h x h >=,即有22ln 101x x +->+,所以12x x e >.⑥【答案】见解析【详解】(1)依题意知:(0,)x ∈+∞,()f x alnx a '=+,∴1(),((0,))1g x alnx a x x =++∈+∞+∴22(21)()(1)ax a x a g x x x +-+'=+,()g x 有两个极值点,()g x ∴'在(0,)+∞有两个变号零点,令()0g x '=得:2(21)0ax a x a +-+=,(0)a ≠,关于x 的一元二次方程有两个不等的正根,记为1x ,2x ,∴1212000x x x x >⎧⎪+>⎨⎪⋅>⎩ ,即410210a a a -+>⎧⎪-⎨->⎪⎩,解得14102a a ⎧<⎪⎪⎨⎪<<⎪⎩,∴104a <<,故a 的取值范围为:1(0,)4.(2)证明:当1a =时,()sin 1sin 1sin 10x x x f x e x xlnx e x e x xlnx <+-⇔<+-⇔+-->,设()sin 1(0)x M x e x xlnx x =+-->,()cos (1)x M x e x lnx '=+-+,()2x M x e lnx ∴'-- ,先证1x e x >+,令()1x g x e x =--,()1x g x e '=-,当0x >时,()0g x '>,()g x ∴在[0,)+∞上单调递增,又(0)0g = ,0x ∴>时()0g x >,即1x e x >+.再证1lnx x - ,令()1h x lnx x =-+,11()1x h x x x -'=-=,当01x <<时,()0h x '>,()h x 单调递增;当1x >时,()0h x '<,()h x 单调递减.()h x h ∴ (1)0=,1lnx x ∴- 成立,()2(1)(1)20x M x e lnx x x ∴'=-->++--=,(0,)x ∴∈+∞时,()M x 单调递增,∴当[1x ∈,)+∞,()M x M (1)sin110e =+->,∴当(0,1)x ∈,0xlnx ->,0()sin 1sin 1sin 010x x M x e x xlnx e x e ∴=+-->+->+-=,(0,)x ∴∈+∞,()0M x >,命题得证.⑦【答案】(1)证明见解析(2)12【分析】(1)首先求出函数的导函数,即可得到()f x '在()0,∞+上单调递增,再计算(0)f ',构造函数,利用导数说明(0)0f '<,再计算(1)f a '+,即可得到(1)0f a '+>,从而得证;(2)由(1)可知存在唯一的0(0,)x ∈+∞,使得0()0f x '=,即001x a e x a -=+,即可得到min 0()()f x f x =,即可得到001ln()1x a x a -+=+,再根据1ln y x x=-的单调性得到01x a =-,即可得到121a e -=,从而求出a 的值;(1)证明:∵()()()e ln 0x a f x x a a -=-+>,∴()1e x a f x x a--'=+.∵e x a y -=在区间()0,∞+上单调递增,1y x a=+在区间()0,∞+上单调递减,∴函数()f x '在()0,∞+上单调递增.又1(0)a aa a e f e a ae --'=-=,令()(0)a g a a e a =->,()10a g a e '=-<,则()g a 在()0,∞+上单调递减,()(0)1g a g <=-,故(0)0f '<.令1m a =+,则1()(1)021f m f a e a ''=+=->+,所以函数()f x '在()0,∞+上存在唯一的零点.(2)解:由(1)可知存在唯一的0(0,)x ∈+∞,使得0001()e 0x a f x x a -'=-=+,即001x a e x a -=+().函数1()x a f x e x a-'=-+在()0,∞+上单调递增,∴当0(0,)x x ∈时,()0f x '<,()f x 单调递减;当0(,)x x ∈+∞时,()0f x '>,()f x 单调通增;∴0min 00()()e ln()x a f x f x x a -==-+,由()式得min 0001()()ln()f x f x x a x a==-++.∴001ln()1x a x a-+=+,显然01x a +=是方程的解,又∵1ln y x x =-是单调递减函数,方程001ln()1x a x a -+=+有且仅有唯一的解01x a +=,把01x a =-代入()式,得121a e -=,∴12a =,即所求实数a 的值为12.【点睛】思路点睛:函数的零点问题,一般需要利用函数的单调性和零点存心定理进行判断,对于导数零点不易求的情形,可通过虚设零点来处理.⑧答案:【解析】(1)函数()f x 的定义域为(0,)+∞,导函数为1()12cos f x x x'=-+.……1分当π02x <<时,21()2sin 0f x x x ''=--<,所以()f x '在π0,2⎛⎫ ⎪⎝⎭单调递减.………2分又因为π303πf ⎛⎫'=> ⎪⎝⎭,π2102πf ⎛⎫'=-< ⎪⎝⎭,根据函数零点存在定理,()f x '在区间π0,2⎛⎫ ⎪⎝⎭有且只有一个零点0ππ,32x ⎛⎫∈ ⎪⎝⎭.…………3分当00x x <<时,()0f x '>;当0x x >时,()0f x '<.因此,()f x 在0(0,)x 单调递增,在0π,2x ⎛⎫ ⎪⎝⎭单调递减,故()f x 在区间π0,2⎛⎫ ⎪⎝⎭存在唯一的极值点0x x =.…………4分(2)令()ln g x x x =-,则1()1g x x '=-.当01x <<时,()0g x '>;当1x >时,()0g x '<.因此,()g x 在(0,1)单调递增,在(1,)+∞单调递减.………………………5分由于()()2sin ()2f x g x x g x =+≤+,且当4x >时,()(2)ln 442g x g <=-<-,故当3π42x ≥>时,()0f x <,从而()f x 在区间3π,2⎡⎫+∞⎪⎢⎣⎭没有零点.………………7分当π3π22x <<时,cos 0x <,从而12()110πf x x '<-<-<,()f x 在π3π,22⎛⎫ ⎪⎝⎭单调递减.又πππ3πln 20,02222f f ⎛⎫⎛⎫=-+>< ⎪ ⎪⎝⎭⎝⎭,根据函数零点存在定理,()f x 在区间π3π,22⎛⎫ ⎪⎝⎭有且只有一个零点1π3π,22x ⎛⎫∈ ⎪⎝⎭.………………………………………………9分当π02x <<时,由(1)知()f x 在0(0,)x 单调递增,在0π,2x ⎛⎫ ⎪⎝⎭单调递减.又0πππ1(1)10,()0662f g g f x f ⎛⎫⎛⎫⎛⎫=+<+=>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,根据函数零点存在定理,()f x 在区间π0,2⎛⎫ ⎪⎝⎭有且只有一个零点20π,6x x ⎛⎫∈ ⎪⎝⎭.………11分综上所述,()f x 有且只有2个零点.…………………………………………………12分。

小升初河北省石家庄市2022-2023学年人教版小学六年级下册数学真题分题型 填空题(中档题)含解析

小升初河北省石家庄市2022-2023学年人教版小学六年级下册数学真题分题型 填空题(中档题)含解析

【小升初】河北省石家庄市(2020-2022)人教版小学六年级下册数学真题试卷分题型专项练习14填空题(中档题)一、亿以内数的读写(共1小题)1.(2021•新华区)五百七十万八千零六写作,这个数四舍五入到万位的近似数是万。

二、亿以上的数位和组成(共1小题)2.(2021•新乐市)我国香港地区的总面积是十一亿零四百四十三万平方米,横线上的数写作,改写成用“万”作单位的数是万,省略亿位后面的尾数约是。

三、亿以上数的读写(共1小题)3.(2021•新华区)2021年5月11日,全国第七次人口普查结果公布,我国人口数量为十四亿四千三百四十九万七千三百七十八人,这个数写作人,省略“亿”后面的尾数约是人。

四、求几个数的最大公因数的方法(共1小题)4.(2021•灵寿县)40和72的最大公因数是,公倍数中最小的四位数是。

五、合数与质数的初步认识(共1小题)5.(2021•裕华区)18的因数中,既是偶数又是质数的数是,既是奇数又是合数的数是;从因数中选出四个数组成比例,组成的比例是。

六、倒数的认识(共1小题)6.(2021•新华区)1.6的倒数是;1的倒数是。

七、百分数的意义、读写及应用(共1小题)7.(2021•新华区)某班有50人参加考试,不及格的有1人,及格率是。

八、负数的意义及其应用(共1小题)8.(2021•新华区)小东体重35千克,小强体重38千克,天天体重32千克。

与小东相比,小强的体重多3千克,记为+3千克,天天的体重少千克,记为千克。

九、质量的单位换算(共1小题)9.(2021•新华区)6小时40分=小时15米=千米5千克80克=千克6公顷80平方米=平方米十、用字母表示数(共2小题)10.(2022•栾城区)已知是真分数,是假分数,是最简分数。

那么a=。

11.(2022•桥西区)如果a,b,c是三个任意的自然数,那么,,这三个数中你认为至少会有个自然数。

十一、比的意义(共5小题)12.(2022•鹿泉区)甲仓库存粮的和乙仓库存粮的相等,甲仓库与乙仓库存粮的比是。

中考数学总复习第二编中档专项训练篇中档题型训练二方程组不等式组的解法及其应用试题

中考数学总复习第二编中档专项训练篇中档题型训练二方程组不等式组的解法及其应用试题

中档题型训练(二) 方程(组)、不等式(组)解法及其应用 本专题主要考察方程(组)、不等式(组)解法以及方程(组)与不等式应用,遵义中考往往以解答题形式出现,属中档题.复习时要熟练掌握方程(组)与不等式(组)解法以及它们应用,并会检验解答结果正确与否.方程(组)解法【例1】(2021遵义红花岗一模)解方程组:⎩⎪⎨⎪⎧2〔x -y 〕3-〔x +y 〕4=-112,3〔x +y 〕-2〔2x -y 〕=3.【解析】先化简方程组,再灵活选择代入法或加减法. 【学生解答】解:原方程组整理得:⎩⎪⎨⎪⎧5x -11y =-1,①-x +5y =3.②由②得x =5y -3.③ 将③代入①得25y -15-11y =-1,14y =14,y =1.将y =1代入③得x =2.∴原方程组解为⎩⎪⎨⎪⎧x =2,y =1.1.(2021遵义六中二模)解方程:12x +2·(54x +1)=8+x. 解:去括号,得12x +52x +2=8+x ,移项,得12x +52x -x =8-2,合并同类项,得2x =6,系数化为1,得x =3.2.(2021遵义一中二模)解方程:x 2+2x -3=0.解:∵a=1,b =2,c =-3,b 2-4ac =22-4×1×(-3)=16>0,∴x =-2±162=-2±42.∴x 1=1,x 2=-3. 3.(2021遵义二中一模)解方程组:⎩⎪⎨⎪⎧x -3y =1,①x +2y =6.②解:②-①,得y =1.把y =1代入①,得x =4.∴原方程组解为⎩⎪⎨⎪⎧x =4,y =1.4.(2021遵义红花岗二模)解三元一次方程组:⎩⎪⎨⎪⎧x -2y +z =0,①3x +y -2z =0,②7x +6y +7z =100.③解:①×2+②,得5x -3y =0,解得x =35y ,将x =35y 代入①得z =75y ,将x =35y ,z =75y 代入③得,215y +6y +495y =100,解得y =5,∴x =3,z =7,∴原方程组解为⎩⎪⎨⎪⎧x =3,y =5,z =7.5.(2021遵义六中二模)解方程:12x -1=12-34x -2. 解:x =3.6.(2021遵义十一中一模中考)解方程:x x -1+1x 2-1=1. 解:x =-2.解不等式(组)【例2】(2021遵义十九一模)解不等式组:⎩⎪⎨⎪⎧9x +5<8x +7,①43x +2>1-23x.②并写出其整数解.【解析】先求不等式组解集,在解集中找整数解.【学生解答】解不等式①得x<2.解不等式②得x>-12.把①、②解集表示在数轴上,如图,故原不等式组解集是:-12<x<2.其整数解是:0,1. 7.(2021连云港中考)解不等式1+x 3<x -1,并将解集在数轴上表示出来. 解:去分母,得:1+x<3x -3,移项,得:x -3x<-3-1,合并同类项,得:-2x<-4,系数化为1,得:x>2,将解集表示在数轴上如下图.8.(2021郴州中考)解不等式组⎩⎪⎨⎪⎧x -1>0,①3〔x -1〕<2x.②解:解①得x>1,解②得x<3,所以不等式组解集为1<x<3.9.(2021南京中考)解不等式组⎩⎪⎨⎪⎧3x +1≤2〔x +1〕,-x<5x +12,并写出它整数解. 解:解不等式3x +1≤2(x+1),得:x≤1,解不等式-x<5x +12,得:x>-2,那么不等式组解集为:-2<x≤1,那么不等式组整数解为-1、0、1.10.(2021原创)关于x ,y 方程组⎩⎪⎨⎪⎧5x +2y =11a +18,2x -3y =12a -8解满足x>0,y>0,求实数a 取值范围. 解:解方程组得⎩⎪⎨⎪⎧x =3a +2,y =-2a +4.由题意得⎩⎪⎨⎪⎧3a +2>0,-2a +4>0.解这个不等式组得-23<a<2. 方程(组)、不等式(组)应用【例3】(2021遵义一中一模)随着铁路客运量不断增长,重庆火车站越来越拥挤,为了满足铁路交通快速开展,该火车站从去年开场启动了扩建工程.其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间乘积恰好等于两队单独完成所需时间之与6倍.(1)求甲、乙两队单独完成这项工程各需几个月;(2)假设甲队每月施工费为100万元,乙队每月施工费比甲队多50万元.在保证工程质量前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间2倍,那么,甲队最多施工几个月才能使工程款不超过1 500万元?(甲、乙两队施工时间按月取整数)【解析】(1)利用两队单独完成此项工程所需时间关系列出一元二次方程求解即可.(2)利用“甲队工程款+乙队工程款≤1 500〞列出不等式求解.【学生解答】解:(1)设甲队单独完成这项工程需要x 个月,乙队单独完成这项工程需要(x -5)个月,由题意得x(x -5)=6(x +x -5).整理得x 21=2,x 21=2(不合题意,舍去),故x =15,x -5=10.答:甲队单独完成这项工程需要15个月,乙队单独完成这项工程需要10个月;(2)设在完成这项工程中甲队做了m 个月,那么乙队做了m 2个月,根据题意列不等式,得100m +150·m 2≤1 500.解得m≤847.∵m 为整数,∴m 最大整数值为8. 答:完成这项工程,甲队最多施工8个月.11.(2021江西中考)如图是一根可伸缩鱼竿,鱼竿是用10节大小不同空心套管连接而成,闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管长度(如图(1)所示),使用时,可将鱼竿每一节套管都完全拉伸(如图(2)所示),图(3)是这根鱼竿所有套管都处于完全拉伸状态下平面示意图,第1节套管长50 cm ,第2节套管长46 cm ,以此类推,每一节套管都比前一节套管少4 cm ,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有一样长度重叠,设其长度为x cm .(1)请直接写出第5节套管长度;(2)当这根鱼竿完全拉伸时,其长度为311 cm ,求x 值.解:(1)第5节套管长度为:50-4×(5-1)=34(cm );(2)第10节套管长度为:50-4×(10-1)=14(cm ),设每相邻两节套管间重叠长度为x cm ,根据题意得:(50+46+42+…+14)-9x =311,即:320-9x =311,解得:x =1.答:每相邻两节套管间重叠长度为1 cm .12.(2021百色中考)在直角墙角AOB(OA⊥OB,且OA 、OB 长度不限)中,要砌20 m 长墙,与直角墙角AOB 围成地面为矩形储仓,且地面矩形AOBC 面积为96 m 2.(1)求该地面矩形长;(2)有规格为0.80×0.80与1.00×1.00(单位: m )地板砖单价分别为55元/块与80元/块,假设只选其中一种地板砖都恰好能铺满储仓矩形地面(不计缝隙),用哪一种规格地板砖费用较少?解:(1)设该地面矩形长是x m ,那么依题意得:x(20-x)=96,解得x 1=12,x 2=8(舍去).答:该地面矩形长是12 m ;(2)规格为0.80×0.80所需费用:96÷(0.80×0.80)×55=8 250(元);规格为 1.00×1.00所需费用:96÷(1.00×1.00)×80=7 680(元).因为8 250<7 680,所以采用规格为×所需费用较少.13.(2021新疆中考)周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),方案安排28场比赛,应邀请多少支球队参加比赛?解:设要邀请x 支球队参加比赛,由题意,得12x(x -1)=28,解得:x 1=8,x 2=-7(舍去).答:应邀请8支球队参加比赛.14.(2021随州中考)某校学生利用双休时间去距学校10 km 炎帝故里参观,一局部学生骑自行车先走,过了20 min 后,其余学生乘汽车沿一样路线出发,结果他们同时到达.汽车速度是骑车学生速度2倍,求骑车学生速度与汽车速度.解:设骑车学生速度为x km /h ,汽车速度为2x km /h ,可得:10x =102x +2060,解得x =15,经检验,x =15是原方程解,2x =2×15=30.答:骑车学生速度与汽车速度分别是15 km /h ,30 km /h .15.(2021西宁中考)青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,,新建120个公共自行车站点、配置2 205辆公共自行车.(1)请问每个站点造价与公共自行车单价分别是多少万元?(2)请你求出2021年到2021年市政府配置公共自行车数量年平均增长率.解:(1)设每个站点造价x 万元,自行车单价为y 万元.根据题意可得:⎩⎪⎨⎪⎧40x +720y =112,120x ,解得⎩⎪⎨⎪⎧x =1,y =0.1..答:每个站点造价为1万元,自行车单价为0.1万元;(2)设2021年到2021年市政府配置公共自行车数量年平均增长率为a.根据题意可得:720(1+a)2=2 205,解此方程:(1+a)2=441144,即:a 1=34=75%,a 2=-114(不符合题意,舍去).答:2021年到2021年市政府配置公共自行车数量年平均增长率为75%.16.(2021永州中考)某种商品标价为400元/件,经过两次降价后价格为324元/件,并且两次降价百分率一样.(1)求该种商品每次降价百分率;(2)假设该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售总利润不少于3 210元.问第一次降价后至少要售出该种商品多少件?解:(1)设该种商品每次降价百分率为x%,依题意得:400×(1-x%)2=324,解得:x =10,或x =190(舍去).答:该种商品每次降价百分率为10%;(2)设第一次降价后售出该种商品m 件,那么第二次降价后售出该种商品(100-m)件,第一次降价后单件利润为:400×(1-10%)-300=60(元/件);第二次降价后单件利润为:324-300=24(元/件).依题意得:60m +24×(100-m)=36m +2 400≥3 210,,∴m ≥23.答:为使两次降价销售总利润不少于3 210元.第一次降价后至少要售出该种商品23件.17.(2021遵义一中一模)某蔬菜经营户从蔬菜批发市场批发蔬菜进展零售,局部蔬菜批发价格与零售价格如下表:蔬菜品种西红柿 青椒 西兰花 豆角 批发价(元/kg )8 零售价(元/kg ) 14请解答以下问题:(1)第一天,该经营户批发西红柿与西兰花两种蔬菜共300 kg ,用去了1 520元钱,这两种蔬菜当天全部售完后一共能赚多少元钱?(2)第二天,该经营户用1 520元钱仍然批发西红柿与西兰花,要想当天全部售完后所赚钱数不少于1 050元,那么该经营户最多能批发西红柿多少千克?解:(1)设批发西红柿x kg ,西兰花y kg .由题意得{x +y =300,+8y =1 520.解得⎩⎪⎨⎪⎧x =200,y =100.200×(5.4-3.6)+100×(14-8)=960(元).答:这两种蔬菜当天全部售完后一共能赚960元钱;(2)设批发西红柿m kg ,由题意得(5.4-)m +(14-8)×1 520-3.6m 8≥1 050.解得m≤100.答:该经营户最多能批发西红柿100 kg . 18.(2021遵义十六中三模)某学校方案从商场购置A 、B 两种型号小黑板,经洽谈,购置一块A 型小黑板比购置一块B 型小黑板多用20元,且购置5块A 型小黑板与4块B 型小黑板共需820元.求:(1)购一块A 型小黑板,一块B 型小黑板各需多少元?(2)根据这所学校实际情况,需从商场购置A 、B 两种型号小黑板共60块,要求购置A 、B 两种型号小黑板总费用不超过5 240元,并且购置A 型小黑板数量应大于购置A 、B 两种型号黑板总数量13,请你通过计算,求出该学校从商场购置A 、B 两种型号小黑板有哪几种方案?解:(1)设购置一块A 型小黑板需要x 元,那么一块B 型小黑板需要(x -20)元.由题意得,5x +4(x -20)=820,解得x =100,∴x -20=80.答:购置一块A 型小黑板需要100元,一块B 型小黑板需要80元;(2)设购置A 型小黑板m 块,那么购置B 型小黑板(60-m)块,由题意得⎩⎪⎨⎪⎧100m +80〔60-m 〕≤5 240,m>60×13,解得20<m≤22,而m 为整数,所以m 为21或22.当m =21时,60-m =39;当m =22时,60-m =38.所以有两种购置方案:方案一:购置A 型号小黑板21块,B 型号小黑板39块;方案二:购置A 型号小黑板22块,B 型号小黑板38块.。

北师大数学八年级上培优组卷-一次函数中档解答题

北师大数学八年级上培优组卷-一次函数中档解答题

北师大数学八年级上培优组卷-一次函数-中档解答题一.解答题(共25小题)1.如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为L/km、L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?2.快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.3.暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?4.为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:港口运费(元/吨)甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.5.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.6.若正比例函数y1=﹣x的图象与一次函数y2=x+m的图象交于点A,且点A的横坐标为﹣1.(1)求该一次函数的解析式;(2)直接写出方程组的解;(3)在一次函数y2=x+m的图象上求点B,使△AOB(O为坐标原点)的面积为2.7.如图:直线y=kx+3与x轴、y轴分别交于A、B两点,tan∠OAB=,点C(x,y)是直线y=kx+3上与A、B不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C运动到什么位置时△AOC的面积是4.8.已知一次函数y=kx+b的图象经过点A(﹣1,﹣1)和点B(1,﹣3).求:(1)直接写出一次函数的表达式;(2)直接写出直线AB与坐标轴围成的三角形的面积;(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.9.如图①,C地位于A,B两地之间,甲步行直接从C地前往B地,乙骑自行车由C地先回A地,再从A地前往B地(在A地停留时间忽略不计).已知两人同时出发且速度不变,乙的速度是甲的2.5倍,设出发xmin后甲、乙两人离C地的距离分别为y1m,y2m,图②中线段OM表示y1与x的函数图象.(1)甲的速度为m/min,乙的速度为m/min;(2)在图②中画出y2与x的函数图象;(3)求甲乙两人相遇的时间;(4)在上述过程中,甲乙两人相距的最远距离为m.10.如图1,甲、乙两人在一条笔直的公路上同向匀速而行,甲从A点开始追赶乙,甲、乙两人之间的距离y(m)与追赶的时间x(s)的关系如图2所示.已知乙的速度为5m/s.(1)求甲、乙两人之间的距离y(m)与追赶的时间x(s)之间的函数关系式;(2)甲从A点追赶乙,经过40s,求甲前行了多少m?(3)若甲追赶10s后,甲的速度增加1.2m/s,请求出10秒后甲、乙两人之间的距离y(m)与追赶的时间x (s)之间的函数关系式,并在图2中画出它的图象.11.为便民惠民,人民公园特推出下列优惠方案:①普通卡:每人每次20元;②贵宾卡:年费为200元,每人每次10元;③至尊卡:年费为500元,但进入不再收费.设某人参观x次时,所需总费用为y元.(1)直接写出选择普通卡和贵宾卡消费时的函数关系式;(2)在同一个坐标系中,若三种方案对应的函数图象如图所示,求出点A,B,C的坐标;(3)根据图象,直接写出选择哪种方案更合算.12.在同一直角坐标系中,直线y=﹣x+3与y=3x﹣5相交于C点,分别与x轴交于A、B两点.P、Q分别为直线y=﹣x+3与y=3x﹣5上的点.(1)求△ABC的面积;(2)若P、Q关于原点成中心对称,求P点的坐标;(3)若△QPC≌△ABC,求Q点的坐标.13.已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.14.如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,且OB=OC.(1)求B点的坐标和k的值.(2)若点A(x,y)是第一象限内直线y=kx﹣1的一个动点,试写出△AOB的面积与x的函数关系式.(3)当点A运动到什么位置时,△AOB的面积是.15.直线y=2x﹣2与x轴交于点A,与y轴交于点B.(1)求点A、B的坐标;(2)点C在x轴上,且S△ABC=3S△AOB,直接写出点C坐标.16.如图,直线y=x﹣2分别交x轴、y轴于A、B两点,O是原点.(1)求△AOB的面积.(2)过△AOB的顶点B画一条直线把△AOB分成面积相等的两部分,求出直线解析式.17.如图,已知一条直线经过点A(5,0)、B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,请问直线y=﹣x+4是否也经过点C?18.已知:一次函数y=﹣x+4的函数与x轴、y轴交于A、B两点.(1)求A、B两点的坐标;(2)求线段AB的长度;(3)在x轴上是否存在点C,使△ABC为等腰三角形?若存在,请直接写出C点的坐标;若不存在,请说明理由.19.已知点A、B分别在x轴,y轴上,OA=OB,点C为AB的中点,AB=12(1)如图1,求点C的坐标;(2)如图2,E、F分别为OA上的动点,且∠ECF=45°,求证:EF2=OE2+AF2;(3)在条件(2)中,若点E的坐标为(3,0),求CF的长.20.如图,已知:A、B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C (0,2),直线PB交y轴于点D,此时,S△AOP=6.(1)求P的值;(2)若S△BOP=S△DOP,求直线BD的函数解析式.21.已知弹簧在其弹性限度内,它的长度y(厘米)与所挂重物质量x(千克)的关系可表示为y=kx+b的形式,其中k称为弹力系数,测得弹簧A的长度与所挂重物(不超过弹性限度)的关系如图1.(1)求弹簧A的弹力系数;(2)假设在其它条件不变的情况下,弹簧的弹力系数k与弹簧的直径d(如图2)成正比例.已知弹簧B的直径是弹簧A的1.5倍,且其它条件均与弹簧A相同(包括不挂重物时的长度).当弹簧B挂一重物后,测得此时弹簧长度为9厘米,求该重物的质量.22.某游乐场每天的赢利额y(元)与售出的门票x(张)之间的函数关系如图所示.(1)如果0≤x≤300,且x为整数,求y关于x的函数解析式;(2)要使游乐场一天的赢利超过1000元,试问该天至少应售出多少张门票?(3)请思考并解释图象与y轴交点(0,﹣1000)的实际意义.(4)根据图象,请你再提供2条信息.23.星期天,小强从学校步行去图书馆,同时,先到图书馆的小华骑车返校取忘带的学生卡,拿到卡返回途中遇到小强,小强又坐车来到图书馆,如图是两人离开图书馆的距离y(米)与出发时间x(分)之间的函数图象,根据图象信息解答问题:(1)求小华返回时的速度;(2)小强比步行提前多少分钟到图书馆?(3)求小强与小华相距1000米的时间.24.在A、B两地之间有汽车站C站(如图1),客车由A地驶向C站,货车由B地驶向A地,两车同时出发,匀速行驶.图2是客车、货车离C站的距离y1y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(2)客、货两车何时相遇?25.如图,A、B分别是x轴上位于原点左右两侧的两点,点P(2,p)在第一象限内,直线PA交y轴与点C(0,2),直线PB交y轴与点D,且S△AOP=6,(1)求S△COP;(2)求点A的坐标及p的值;(3)若S△AOP=S△BOP,求直线BD的解析式.一次函数-中档题型111参考答案与试题解析一.解答题(共25小题)13.(2016•怀化)已知一次函数y=2x+4(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x轴的交点A的坐标,与y轴交点B的坐标;(3)在(2)的条件下,求出△AOB的面积;(4)利用图象直接写出:当y<0时,x的取值范围.【解答】解:(1)当x=0时y=4,当y=0时,x=﹣2,则图象如图所示(2)由上题可知A(﹣2,0)B(0,4),(3)S△AOB=×2×4=4,(4)x<﹣2.14.(2016春•西华县期末)如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,且OB=OC.(1)求B点的坐标和k的值.(2)若点A(x,y)是第一象限内直线y=kx﹣1的一个动点,试写出△AOB的面积与x的函数关系式.(3)当点A运动到什么位置时,△AOB的面积是.【解答】解:(1)令y=kx﹣1中x=0,则y=﹣1,∴C(0,﹣1),OC=1.∵OB=OC,∴OB=,∴点B的坐标为(,0),把B(,0)代入y=kx﹣1中,得0=k﹣1,解得:k=2.(2)∵点A(x,y)是第一象限内直线y=2x﹣1的一个动点,∴A(x,2x﹣1)(x>),∴S=•OB•y=×(2x﹣1)=x﹣(x>).(3)当S=时,有x﹣=,解得:x=1,∴y=2x﹣1=1,故当点A的坐标为(1,1)时,△AOB的面积为.15.(2016春•朝阳区期末)直线y=2x﹣2与x轴交于点A,与y轴交于点B.(1)求点A、B的坐标;(2)点C在x轴上,且S△ABC=3S△AOB,直接写出点C坐标.【解答】解:(1)令y=2x﹣2中y=0,则2x﹣2=0,解得:x=1,∴A(1,0).令y=2x﹣2中x=0,则y=﹣2,∴B(0,﹣2).(2)依照题意画出图形,如图所示.设点C的坐标为(m,0),S△AOB=OA•OB=×1×2=1,S ABC=AC•OB=|m﹣1|×2=|m﹣1|,∵S△ABC=3S△AOB,∴|m﹣1|=3,解得:m=4或m=﹣2,即点C的坐标为(4,0)或(﹣2,0).16.(2016春•宜宾期末)如图,直线y=x﹣2分别交x轴、y轴于A、B两点,O是原点.(1)求△AOB的面积.(2)过△AOB的顶点B画一条直线把△AOB分成面积相等的两部分,求出直线解析式.【解答】解:(1)令y=x﹣2中x=0,则y=﹣2,∴点B(0,﹣2);令y=x﹣2中y=0,则x﹣2=0,解得:x=3,∴点A(3,0).S△AOB=OA•OB=×2×3=3.(2)作出线段AO的中点C,连接BC,如图所示.∵点A(3,0),∴点C(,0).设直线BC的解析式为y=kx+b(k≠0),将点B(0,﹣2)、C(,0)代入y=kx+b中,得:,解得:,∴直线BC的解析式为y=x﹣2.17.(2016春•海珠区期末)如图,已知一条直线经过点A(5,0)、B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,请问直线y=﹣x+4是否也经过点C?【解答】解:(1)设直线AB的解析式为y=kx+b(k≠0),将点A(5,0)、B(1,4)代入y=kx+b中,得:,解得:,∴直线AB的解析式为y=﹣x+5.(2)联立两直线解析式得:,解得:,∴点C(3,2).∵y=﹣×3+4=2,∴直线y=﹣x+4也经过点C.18.(2016春•中山市期中)已知:一次函数y=﹣x+4的函数与x轴、y轴交于A、B两点.(1)求A、B两点的坐标;(2)求线段AB的长度;(3)在x轴上是否存在点C,使△ABC为等腰三角形?若存在,请直接写出C点的坐标;若不存在,请说明理由.【解答】解:(1)在y=﹣x+4中,令y=0可求得x=3,令x=0可求得y=4,∴A(3,0),B(0,4);(2)由A(3,0),B(0,4)可得OA=3,OB=4,在Rt△AOB中,由勾股定理可得AB===5,即AB的长度为5;(3)假设存在满足条件的C点,其坐标为(x,0),则AC=|x﹣3|,BC==,若△ABC为等腰三角形时,则有AC=BC、AC=AB或BC=AB,①当AC=BC时,则有|x﹣3|=,解得x=﹣,此时C点坐标为(﹣,0),②当AC=AB时,则有|x﹣3|=5,解得x=8或x=﹣2,此时C点坐标为(8,0)或(﹣2,0),③当BC=AB时,则有=5,解得x=3或﹣3,当x=3时,A、C重合,不能构成三角形,舍去,故此时C 点坐标为(﹣3,0),综上可知存在满足条件的C点,其坐标为(﹣,0)或(8,0)或(﹣2,0)或(﹣3,0).19.(2016春•武汉校级月考)已知点A、B分别在x轴,y轴上,OA=OB,点C为AB的中点,AB=12(1)如图1,求点C的坐标;(2)如图2,E、F分别为OA上的动点,且∠ECF=45°,求证:EF2=OE2+AF2;(3)在条件(2)中,若点E的坐标为(3,0),求CF的长.【解答】解:(1)连接OC,作CM⊥OA于点M,如图1所示.∵OA=OB,∠AOB=90°,∴△AOB为等腰直角三角形,∴OA=OB=12.∵点C为线段AB的中点,∴OC⊥AB,∴△OCA为等腰直角三角形,又∵CM⊥OA,∴CM=OM=MA=OA=6.故点C的坐标为(6,6).(2)证明:连接OC,在OB上截取OM=AF,连接CM、ME,如图2所示.∵△AOB、△OCA、△OCB均为等腰直角三角形,∴∠A=∠B=∠BOC=45°,OC=AC.在△ACF和△OCM中,,∴△ACF≌△OCM(SAS),∴CM=CF,∠OCM=∠ACF.∵∠ACO=∠ACF+∠ECF+∠OCE=90°,∠ECF=45°,∴∠ACF+∠OCE=45°=∠OCM+∠OCE=∠ECM=∠ECF.在△ECF和△ECM中,,∴△ECF≌△ECM(SAS),∴ME=EF.在Rt△MOE中,∠MOE=90°,∴EF2=ME2=OE2+OM2=OE2+AF2.(3)过点C作CN⊥OA于点N,如图3所示.设AF=x=OM,则EF=OA﹣OE﹣AF=12﹣3﹣x=9﹣x=EM,由(2)可得:(9﹣x)2=32+x2,解得:x=4,∴OF=OA﹣AF=12﹣4=8.∵△OCA为等腰直角三角形,∴CN=ON=OA=6,NF=OF﹣ON=8﹣6=2.在Rt△CNF中,∠CNF=90°,CN=6,NF=2,∴CF==2.20.(2015春•荔城区期末)如图,已知:A、B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,此时,S△AOP=6.(1)求P的值;(2)若S△BOP=S△DOP,求直线BD的函数解析式.【解答】解:(1)过点P作PF⊥y轴于点F,则PF=2.∵C(0,2),∴CO=2.∴S△COP=×2×2=2.∵S△AOP=6,S△COP=2,∴S△COA=4,∴OA×2=4∴OA=4,∴A(﹣4,0),∴S△AOP=×4|p|=6,∴|p|=3∵点P在第一象限,∴p=3;(2)过点O作OH⊥BD,则OH为△BOP△DOP的高,∵S△BOP=S△DOP,且这两个三角形同高,∴DP=BP,即P为BD的中点,作PE⊥x轴于点E(2,0),F(0,3).∴OB=2PF=4,OD=2PE=6,∴B(4,0),D(0,6).设直线BD的解析式为y=kx+b(k≠0),则,解得k=﹣,b=6.∴直线BD的函数解析式为y=﹣x+6.21.(2014•黄浦区二模)已知弹簧在其弹性限度内,它的长度y(厘米)与所挂重物质量x(千克)的关系可表示为y=kx+b的形式,其中k称为弹力系数,测得弹簧A的长度与所挂重物(不超过弹性限度)的关系如图1.(1)求弹簧A的弹力系数;(2)假设在其它条件不变的情况下,弹簧的弹力系数k与弹簧的直径d(如图2)成正比例.已知弹簧B的直径是弹簧A的1.5倍,且其它条件均与弹簧A相同(包括不挂重物时的长度).当弹簧B挂一重物后,测得此时弹簧长度为9厘米,求该重物的质量.【解答】解:(1)把(4,8),(8,10)代入y=kx+b得:,解得,故弹簧A的弹力系数为.(2)设弹簧B弹力系数为k b,弹簧A的直径为d A,则弹簧B的直径为.由题意得.∴.又∵弹簧B与弹簧A不挂重物时的长度相同,∴弹簧B长度与所挂重物质量的关系可表示为.把y=9代入得:9=x+6解得:x=4.故此时所挂重物质量为4千克.22.(2014•姜堰市校级模拟)某游乐场每天的赢利额y(元)与售出的门票x(张)之间的函数关系如图所示.(1)如果0≤x≤300,且x为整数,求y关于x的函数解析式;(2)要使游乐场一天的赢利超过1000元,试问该天至少应售出多少张门票?(3)请思考并解释图象与y轴交点(0,﹣1000)的实际意义.(4)根据图象,请你再提供2条信息.【解答】解:(1)设0≤x≤200时,y=kx﹣1000,把(100,0)代入可得:0=100k﹣1000,解得,k=10,那么可得函数式为:y=10x﹣1000.设第二段范围的函数式为:y=kx+b,把(200,500)和(300,2000)代入可得:,解得:.即y=15x﹣2500;(2)∵y>1000,那么根据图象,则15x﹣2500>1000,解得,x>,x取整则x=234(张);(3)图象与y轴交点(0,﹣1000)的实际意义为:当每天不卖门票时,每天亏损1000元;(4)由函数图象可以得出:当销售100张门票时,赢利为0元;当销售200张门票时,单价为10元一张的利润大于15元一张的利润.答案不唯一,合理即可.23.(2016•柘城县一模)星期天,小强从学校步行去图书馆,同时,先到图书馆的小华骑车返校取忘带的学生卡,拿到卡返回途中遇到小强,小强又坐车来到图书馆,如图是两人离开图书馆的距离y(米)与出发时间x(分)之间的函数图象,根据图象信息解答问题:(1)求小华返回时的速度;(2)小强比步行提前多少分钟到图书馆?(3)求小强与小华相距1000米的时间.【解答】解:(1)小华返回的速度为3000÷(50﹣30)=150(米/分).答:小华返回时的速度为150米/分.(2)点B的纵坐标为:150×(50﹣45)=750.小强步行的速度为:(3000﹣750)÷45=50(米/分),小强比步行提前到图书馆的时间为:3000÷50﹣50=10(分钟).答:小强比步行提前10分钟到图书馆.(3)设直线OA的解析式为y=kx+b,将点O(0,0),A(30,3000)代入y=kx+b中得:,解得:.∴线段OA的解析式为y=100x(0≤x≤30);同理可得:线段AB的解析式为y=﹣150x+7500(30<x≤45);线段BD的解析式为y=﹣50x+3000.当0≤x≤30时,令|﹣50x+3000﹣100x|=1000,解得:x1=,x2=;当30<x≤45时,令﹣150x+7500﹣(﹣50x+3000)=1000,解得:x3=35.∴小强与小华相距1000米的时间为、或35分钟.24.(2016•莲湖区二模)在A、B两地之间有汽车站C站(如图1),客车由A地驶向C站,货车由B地驶向A地,两车同时出发,匀速行驶.图2是客车、货车离C站的距离y1y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(2)客、货两车何时相遇?【解答】解:(1)根据图形可知点D(2,0),∵两小时前货车的速度为60÷2=30(千米/时),∴货车行驶360千米所需时间为360÷30=12(小时),∴点P(14,360).设直线DP的解析式为y2=kx+b(k≠0),将点D和点P的坐标代入y2中得:,解得:.∴两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式为y2=30x﹣60.(2)设直线EF的函数解析式为y1=mx+n(m≠0),将点(6,0)和点(0,360)代入y1中得:,解得:.∴直线EF的函数解析式为y1=﹣60x+360.联立直线DP和EF的函数解析式得方程组:,解得:.答:客、货两车小时相遇.25.(2016春•单县期末)如图,A、B分别是x轴上位于原点左右两侧的两点,点P(2,p)在第一象限内,直线PA交y轴与点C(0,2),直线PB交y轴与点D,且S△AOP=6,(1)求S△COP;(2)求点A的坐标及p的值;(3)若S△AOP=S△BOP,求直线BD的解析式.【解答】解:(1)作PE⊥y轴于E,∵P的横坐标是2,则PE=2.∴S△COP=OC•PE=×2×2=2;(2)∴S△AOC=S△AOP﹣S△COP=6﹣2=4,∴S△AOC=OA•OC=4,即×OA×2=4,∴OA=4,∴A的坐标是(﹣4,0).设直线AP的解析式是y=kx+b,则,解得:.则直线的解析式是y=x+2.当x=2时,y=3,即p=3;(3)∵S△AOP=S△BOP,∴OB=OA=4,则B的坐标是(4,0),设直线BD的解析式是y=mx+n,则,解得.则BD的解析式是:y=﹣x+6.1.(2016•南京)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为0.13L/km、0.14L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?【解答】解:(1)设AB的解析式为:y=kx+b,把(30,0.15)和(60,0.12)代入y=kx+b中得:解得∴AB:y=﹣0.001x+0.18,当x=50时,y=﹣0.001×50+0.18=0.13,由线段BC上一点坐标(90,0.12)得:0.12+(100﹣90)×0.002=0.14,故答案为:0.13,0.14;(2)由(1)得:线段AB的解析式为:y=﹣0.001x+0.18;(3)设BC的解析式为:y=kx+b,把(90,0.12)和(100,0.14)代入y=kx+b中得:解得,∴BC:y=0.002x﹣0.06,根据题意得解得,答:速度是80km/h时,该汽车的耗油量最低,最低是0.1L/km.2.(2016•牡丹江)快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.【解答】解:(1)快车速度:180×2÷()=120千米/时,慢车速度:120÷2=60千米/时;(2)快车停留的时间:﹣×2=(小时),+=2(小时),即C(2,180),设CD的解析式为:y=kx+b,则将C(2,180),D(,0)代入,得,解得,∴快车返回过程中y(千米)与x(小时)的函数关系式为y=﹣120x+420(2≤x≤);(3)相遇之前:120x+60x+90=180,解得x=;相遇之后:120x+60x﹣90=180,解得x=;快车从甲地到乙地需要180÷120=小时,快车返回之后:60x=90+120(x﹣﹣)解得x=综上所述,两车出发后经过或或小时相距90千米的路程.3.(2016•新疆)暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?【解答】解:(1)从小刚家到该景区乘车一共用了4h时间;(2)设AB段图象的函数表达式为y=kx+b.∵A(1,80),B(3,320)在AB上,∴,解得.∴y=120x﹣40(1≤x≤3);(3)当x=2.5时,y=120×2.5﹣40=260,380﹣260=120(km).故小刚一家出发2.5小时时离目的地120km远.4.(2016•衡阳)为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:港口运费(元/吨)甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.【解答】解(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80﹣x)吨,从乙仓库运往A港口的有(100﹣x)吨,运往B港口的有50﹣(80﹣x)=(x﹣30)吨,所以y=14x+20(100﹣x)+10(80﹣x)+8(x﹣30)=﹣8x+2560,x的取值范围是30≤x≤80.(2)由(1)得y=﹣8x+2560y随x增大而减少,所以当x=80时总运费最小,当x=80时,y=﹣8×80+2560=1920,此时方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.5.(2016•河北模拟)如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.【解答】解:(1)∵B(﹣3,3),将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,∴﹣3+1=﹣2,3﹣2=1,∴C的坐标为(﹣2,1),设直线l1的解析式为y=kx+c,∵点B、C在直线l1上,∴代入得:解得:k=﹣2,c=﹣3,∴直线l1的解析式为y=﹣2x﹣3;(2)∵将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,C(﹣2,1),∴﹣2﹣3=﹣5,1+6=7,∴D的坐标为(﹣5,7),代入y=﹣2x﹣3时,左边=右边,即点D在直线l1上;(3)把B的坐标代入y=x+b得:3=﹣3+b,解得:b=6,∴y=x+6,∴E的坐标为(0,6),∵直线y=﹣2x﹣3与y轴交于A点,∴A的坐标为(0,﹣3),∴AE=6+3=9,∵B(﹣3,3),∴△ABE的面积为×9×|﹣3|=13.5.6.(2016•黄冈一模)若正比例函数y1=﹣x的图象与一次函数y2=x+m的图象交于点A,且点A的横坐标为﹣1.(1)求该一次函数的解析式;(2)直接写出方程组的解;(3)在一次函数y2=x+m的图象上求点B,使△AOB(O为坐标原点)的面积为2.【解答】解:(1)将x=﹣1代入y=﹣x,得y=1,则点A坐标为(﹣1,1).将A(﹣1,1)代入y=x+m,得﹣1+m=1,解得m=2,所以一次函数的解析式为y=x+2;(2)方程组的解为;(3)设直线直线y=x+2与y轴的交点为C,与x轴的交点为D,则C(0,2),D(﹣2,0),∵A(﹣1,1),∴S△AOC=S△AOD=×2×1=1,①当B点在第一象限时,则S△BOC=1,设B的横坐标为m,∴S△BOC=×2×m=1,解得m=1,∴B(1,3);②当B点在第三象限时,则S△BOD=1,设B的纵坐标为n,∴S△BOD=×2×(﹣n)=1,解得n=﹣1,∴B(﹣3,﹣1).综上,B的坐标为(1,3)或(﹣3,﹣1).7.(2016•微山县校级一模)如图:直线y=kx+3与x轴、y轴分别交于A、B两点,tan∠OAB=,点C(x,y)是直线y=kx+3上与A、B不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C运动到什么位置时△AOC的面积是4.【解答】解:(1)∵直线y=kx+3与y轴交于B点,∴B(0,3),∵tan∠OAB=,∴OA=4,∴A(4,0),∵直线y=kx+3过A(4,0),∴4k+3=0,∴k=﹣,∴直线的解析式为:y=﹣x+3;(2)∵A(4,0),∴AO=4,∵△AOC的面积是4,∴△AOC的高为:2,∴C点的纵坐标为2或﹣2,∵直线的解析式为:y=﹣x+3经过C点,∴2=﹣x+3,或﹣2=﹣x+3,解得x=,或x=∴点C点坐标为(,2)或(,﹣2)时,△AOC的面积是4.8.(2016•张家港市校级模拟)已知一次函数y=kx+b的图象经过点A(﹣1,﹣1)和点B(1,﹣3).求:(1)直接写出一次函数的表达式y=﹣x﹣2;(2)直接写出直线AB与坐标轴围成的三角形的面积2;(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.【解答】解:(1)∵一次函数y=kx+b的图象经过点A(﹣1,﹣1)和点B(1,﹣3),∴,解得,∴一次函数为y=﹣x﹣2;(2)在y=﹣x﹣2中,分别令x=0、y=0,可求得一次函数与两坐标轴的交点坐标分别为(0,﹣2)、(﹣2,0),∴直线与两坐标轴围成的三角形的面积为:S=×2×2=2;(3)作点A关于x轴的对称点A′,连接BA′与x轴的交点即为点P.设直线BA′的解析式为y=mx+n,将点A′(﹣1,1)和点B(1,﹣3)代入可得:,解得:.故直线BA′的解析式为y=﹣2x﹣1,令y=0,可得﹣2x﹣1=0,解得:x=﹣,故点P的坐标为(﹣,0).故答案为y=﹣x﹣2;2.9.(2016•南京校级一模)如图①,C地位于A,B两地之间,甲步行直接从C地前往B地,乙骑自行车由C地先回A地,再从A地前往B地(在A地停留时间忽略不计).已知两人同时出发且速度不变,乙的速度是甲的2.5倍,设出发xmin后甲、乙两人离C地的距离分别为y1m,y2m,图②中线段OM表示y1与x的函数图象.(1)甲的速度为80m/min,乙的速度为200m/min;(2)在图②中画出y2与x的函数图象;(3)求甲乙两人相遇的时间;(4)在上述过程中,甲乙两人相距的最远距离为960m.【解答】解:(1)甲的速度为:2400÷30=80(m/min);乙的速度为:80×2.5=200(m/min).故答案为:80;200.(2)600÷200=3(min),600×2÷200=6(min).2400÷200+6=18(min).∴y2与x的函数图象过点(0,0)、(3,600)、(6,0)、(18,2400).画出图形如图所示.(3)设甲乙两人相遇的时间为xmin,依题意得:80x=200(x﹣6),解得:x=10.答:甲乙两人相遇的时间为10min.(4)∵乙的速度>甲的速度,∴当x=3时,乙达到A地,此时甲乙两人间距可能最远,3×(80+200)=840(m);当x=18时,甲乙两人间距为:2400﹣80×18=960(m).∵960>840,∴甲乙两人相距的最远距离为960m.故答案为:960.10.(2016•丹阳市模拟)如图1,甲、乙两人在一条笔直的公路上同向匀速而行,甲从A点开始追赶乙,甲、乙两人之间的距离y(m)与追赶的时间x(s)的关系如图2所示.已知乙的速度为5m/s.(1)求甲、乙两人之间的距离y(m)与追赶的时间x(s)之间的函数关系式;(2)甲从A点追赶乙,经过40s,求甲前行了多少m?(3)若甲追赶10s后,甲的速度增加1.2m/s,请求出10秒后甲、乙两人之间的距离y(m)与追赶的时间x (s)之间的函数关系式,并在图2中画出它的图象.【解答】解:(1)设y=kx+b,∵函数图象经过点(0,90),(50,0),∴,解得,∴y=﹣x+90;(2)5×40+90﹣(﹣×40+90),=200+90﹣(﹣72+90),=272m;(3)甲的速度为:272÷40=6.8m/s,所以,甲的速度增加后为:6.8+1.2=8m/s,x=10时,y=﹣×10+90=72m,由题意得,相遇时,5(x﹣10)+72=8(x﹣10),解得x=34,①10<x≤34时,y=5(x﹣10)+72﹣8(x﹣10)=﹣3x+102,②x>34时,y=8(x﹣34)﹣5(x﹣34)=3x﹣102,函数图象如图所示.11.(2016•驻马店模拟)为便民惠民,人民公园特推出下列优惠方案:①普通卡:每人每次20元;②贵宾卡:年费为200元,每人每次10元;③至尊卡:年费为500元,但进入不再收费.设某人参观x次时,所需总费用为y元.(1)直接写出选择普通卡和贵宾卡消费时的函数关系式;(2)在同一个坐标系中,若三种方案对应的函数图象如图所示,求出点A,B,C的坐标;(3)根据图象,直接写出选择哪种方案更合算.【解答】解:(1)普通卡:y1=20x;贵宾卡:y2=10x+200;(2)令y1=500得:20x=500,解得:x=25,∴点B坐标为(25,500);令y2=500得:10x+200=500,解得:x=30,∴点C的坐标为(30,500);联立y1、y2得:,解得:,∴点A的坐标为(20,400);∴A(20,400),B(25,500),C(30,500).(3)①当0<x<20时,选择普通卡更合算;②当x=20时,选择普通卡和贵宾卡的总费用相同,均比至尊卡合算;③当20<x<30时,选择贵宾卡更合算;④当x=30时,选择贵宾卡和至尊卡的总费用相同,均比普通卡合算;⑤当x>30时,选择至尊卡更合算.12.(2016•泰州三模)在同一直角坐标系中,直线y=﹣x+3与y=3x﹣5相交于C点,分别与x轴交于A、B两点.P、Q分别为直线y=﹣x+3与y=3x﹣5上的点.(1)求△ABC的面积;(2)若P、Q关于原点成中心对称,求P点的坐标;(3)若△QPC≌△ABC,求Q点的坐标.【解答】解:(1)依照题意画出图形,如图1所示.令y=﹣x+3中y=0,则x=3,∴A(3,0);令y=3x﹣5中y=0,则x=,∴B(,0);联立两直线解析式成方程组,得:,解得:,∴C(2,1).S△ABC=AB•y C=(3﹣)×1=.(2)∵点P在直线y=﹣x+3上,∴设P(m,﹣m+3),∵P、Q关于原点成中心对称,∴Q(﹣m,m﹣3).∵点Q在直线y=3x﹣5上,∴m﹣3=﹣3m﹣5,解得:m=﹣,∴点P的坐标为(﹣,).(3)依照题意画出图形,如图2所示.若要△QPC≌△ABC,只需PQ∥AB,且PQ=AB即可.设P(3﹣n,n),则Q(,n),∵PQ=AB,∴﹣(3﹣n)=3﹣,解得:n=2,∴点Q(,2).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中档题型训练(一) 数与式的运算与求值
本专题主要考查实数的运算、整式与分式的化简与求值,纵观河北8年中考往往以计算题、化简求值题的形式出现,属基础题.复习时要熟练掌握实数的各种运算,并注意混合运算中的符号与运算顺序;在整式化简时要灵活运用乘法公式及运算律;在分式的化简时要灵活运用因式分解知识,分式的化简求值,还应注意整体思想和各种解题技巧.
实数的运算
【例1】(2015巴中中考)计算:|-3|+2sin 45°+tan 60°-⎝⎛⎫-13-1-12+(π-3)0. 【解析】先理清和熟悉每项小单元的运算方法,把握运算的符号技巧.
【学生解答】
1.(2015武威中考)(π-5)0+4+(-1)2015-3tan 60°.
2.(2015深圳中考)|2-3|+2sin 60°+⎝⎛⎭
⎫12-1-(2015)0.
3.(2015常德中考)计算(-5sin 20°)0-⎝⎛⎭⎫-13-2+|-24|+3-27.
4.(2015山西中考)计算:(-3-1)×(-32)2-2-1÷(-12
)3.
整式的运算与求法
【例2】(2015娄底中考)先化简,再求值:(x +y)(x -y)-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =
33
. 【解析】认真观察式子特点,灵活运用乘法公式化简,再考虑代入求值.
【学生解答】
5.(2015宁波中考)化简:(a +b)2+(a -b)(a +b)-2ab.
6.(2015北京中考)已知x 2-4x -1=0,求代数式(2x -3)2-(x +y)(x -y)-y 2的值.
7.(2015广州中考)已知多项式A =(x +2)2+(1-x)(2+x)-3.
(1)化简多项式A ;
(2)若(x +1)2=6,求A 的值.
分式的化简求值
【例3】(2015菏泽中考)已知x 2-4x +1=0,求2(x -1)x -4
-x +6x 的值. 【解析】先化简所求式子,再看其结果与已知条件之间的联系,能否整体代入.
【学生解答】
8.(2015株洲中考)先化简,再求值:⎝⎛⎭⎫x x -2-3x -2·x 2
-4x -3,其中x =4.
9.(2015六盘水中考)先化简代数式⎝⎛⎭⎫3a a -2-a a +2÷a a 2-4
,再从0,1,2三个数中选择适当的数作为a 的值代入求值.
10.(2015资阳中考)先化简,再求值:⎝⎛⎭⎫a +1a +2÷⎝⎛⎭
⎫a -2+3a +2,其中a 满足a -2=0.
11.(2015德州中考)先化简,再求值:a 2-b 2a ÷⎝
⎛⎭⎫a -2ab -b 2a ,其中a =2+3,b =2- 3.
12.(2015遵义中考)已知实数a 满足a 2+2a -15=0,求1a +1-a +2a 2-1÷(a +1)(a +2)a 2-2a +1
的值.
13.(2014重庆中考)先化简,再求值:⎝ ⎛⎭⎪⎫x +2x -x -1x -2÷x -4x 2-4x +4
,其中x 是不等式3x +7>1的负整数解.。

相关文档
最新文档