2008拱墅区中考模拟(一)数学答题卷
2008年中考数学模拟试卷(三)

2008年中考数学模拟试卷(三)(总分150分,时间120分钟)本试卷分试卷I (选择题)和试卷II (非选择题)两部分.试卷I (选择题,共30分)一、选择题(每小题3分,共30分)1,sin45°的值是()A.12B.22C.32D.1 2,如图1所示,两温度计读数分别为我国某地今年2月份某天的最低气温与最高气温, 那么这天的最高气温比最低气温高( )A. 5℃B. 7℃C. 12℃D. -12℃3,小明设计了一个关于实数运算的程序:输出的数比该数的平方小1,小刚按此程序输入23后,输出的结果应为( )A.10B.11C.12D.134,国家实行一系列“三农”优惠政策后,农民收入大幅度增加,如图2是我省2001年至2006年农村居民人均年收入统计图,则这6年中农村居民人均年收入的中位数是( )A.5132B.6196C.5802D.56645,小明把如图3所示的扑克牌放在一张桌子上, 请一位同学避开他任意将其中一张牌倒过来, 然后小明很快辨认了被倒过来的那张扑克牌是( )A.方块5B.梅花6C.红桃7D.黑桃86,如图4农村常搭建横截面为半圆形的全封闭塑料薄膜蔬菜大棚.如果不考虑塑料薄膜埋在土里的部分,那么搭建一个这样的蔬菜大棚需用塑料薄膜的面积是()A.64πm 2B.72πm 2C.78πm 2D.80πm 27,根据下列表格的对应值:xax 2+bx+c - -判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)一个解x 的范围是() A.3<x <.<x < C.<x <.<x <8,剪纸是中国的民间艺术.剪纸方法很多,如图5是一种剪纸方法的图示(先将纸折叠,然后再剪,展开后即得到图案):如图6所示的四副图案,不能用上述方法剪出的是( )9,在一个V 字形支架上摆放了两种口径不同的试管,如图7,是它的轴截面,已知⊙O 1 的半径是1,⊙O 2的半径是3,则图中阴影部分的面积是()A.π438-B.π61134-C.π234-D.π31138- 10,抛物线y =ax 2+bx +c 的图象大致如图所示,有下列说法:①a >0,b <0,c <0;②函数图象可以通过抛物线y =ax 2向下平移,再向左平移得到;③直线y =ax +b 必过第一、二、三象限;A B C D图6图1 2001年至2006年浙江省农村居民人均收入统计图图2 颠倒前 颠倒后图3 图4 图5 图7④直线y =ax +c 与此抛物线有两个交点,其中正确的有()个 A.1 B.2 C.3 D.4 试卷II (非选择题,共120分)二、填空题(每小题3分,共24分)11,根据国家统计局5月23日发布的公告显示,2006年一季度GDP 值为43390亿元,其中第一、第二、第三产业所占比例如图9所示,根据图中数据可知,今年一季度第一产业的GDP 值约为________亿元(结果精确到).12,如图10,有两棵树,一棵高10m ,另一棵高4m ,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行m.13,a ,b ,c ,d 为实数,先规定一种新的运算:a b c d =ad -bc ,那么2(1)x -45=18时,x =______.14,如图11,O 为矩形ABCD 的中心,将直角三角板的直角顶点与O 点重合,转动三角板使两直角边始终与BC 、AB 相交,交点分别为M 、N ,如果AB =4,AD =6,OM =x ,ON =y ,则y•与x 的关系是___.15,假定有一排蜂房,形状如图12,一只蜜峰在左下角,由于受了点伤,只能爬行,不能飞,而且始终向右方(包括右上、右下)爬行,从一间蜂房爬到右边相邻的蜂房中去.例如,蜜蜂爬到1号蜂房的爬法有:蜜蜂→1号;蜜蜂→0号→1号共有2种不同的爬法,若蜜蜂从最初位置爬到4号蜂房共有n 种不同爬法,则n 等于___.16,等腰△ABC 的底边BC =8cm ,腰长AB =5cm ,一动点P 在底边上从点B 开始向点C 以/秒的速度运动,当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为秒. 17,如图13,从卫生纸的包装纸上得到以下资料:两层300格,每格×11cm ,图甲.用尺量出整卷卫生纸的半径(R )与纸筒内芯的半径(r ),分别为和,图乙.那么该两层卫生纸的厚度为cm.(π取,结果精确到)18,按如图14所示的规律摆放三角形: 则第(4)堆三角形的个数为_______;第(n )堆三角形的个数为_______. 三、解答题(每题6分,共24分)19,解不等式组3(21)42132 1.2x x x x ⎧--⎪⎪⎨+⎪>-⎪⎩≤,把解集表示在数轴上,并求出不等式组的整数解. 20,如图15,小丽在观察某建筑物AB .(1)请你根据小亮在阳光下的投影,画出建筑物AB 在阳光下的投影.(2)已知小丽的身高为,在同一时刻测得小丽和建筑物AB 的投影长分别为和8m ,求建筑物AB的高.21,小强和小新都喜爱如图16所示的三幅手机彩屏图片,假定他俩各为自己的手机从中随机选取一幅图片,试用树状图或列表法求小强和小新都选中小鸟图片的概率.22,如图17,在Rt △ABC 中,∠C =90°,∠A =60°,AB =12cm,若点P 从B 点出发以2cm/秒的速度向A 点运动,点Q 从A 点出发以1cm/秒的速度向C 点运动,设P 、Q 分别从B 、A 同时A B 图15图10 图11 图9 图12 (3)(2)(1)图14甲 图13 乙出发,运动时间为t 秒.解答下列问题:(1)用含t 的代数式表示线段AP ,AQ 的长;(2)当t 为何值时△APQ 是以PQ 为底的等腰三角形?(3)当t 为何值时PQ ∥BC ?四、解答题(共72分)23,如图18,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连结BE 、DG .(1)观察猜想BE 与DG 之间的大小关系,并证明你的结论.(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程;若不存在,请说明理由. 24,美丽的东昌湖赋于江北水城以灵性,周边景点密布.如图19,A ,B 为湖滨的两个景点,C 为湖心一个景点.景点B 在景点C 的正东,从景点A 看,景点B 在北偏东75°方向,景点C 在北偏东30°方向.一游客自景点A 驾船以每分钟20米的速度行驶了10分钟到达景点C ,之后又以同样的速度驶向景点B ,该游客从景点C 到景点B 需用多长时间(精确到1分钟)? 25,已知反.比例函数y =k x 的图象经过点P (2,2),函数y =ax +b 的图象与直线y =-x 平行,并且经过反比例函数图象上一点Q (1,m ). (1)求出点Q 的坐标;(2)函数y =ax 2+bx +25k k有最大值还是最小值?这个值是多少? 26,已知:三角形ABC 中,∠A =90°,AB =AC ,D 为BC 的中点.(1)如图20,E ,F 分别是AB ,AC 上的点,且BE =AF ,求证:△DEF 为等腰直角三角形.(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE =AF ,其他条件不变,那么,△DEF 是否仍为等腰直角三角形?证明你的结论.27,已知甲、乙两辆汽车同时..、同方..向从同一地点....A 出发行驶.(1)若甲车的速度是乙车的2倍,甲车走了90千米后立即返回与乙车相遇,相遇时乙车走了1小时.求甲、乙两车的速度.(2)假设甲、乙每辆车最多只能带200升汽油,每升汽油可以行驶10千米,途中不能再加油,但两车可以互相借用对方的油,若两车都必须沿原路返回到出发点A ,请你设计一种方案使甲车尽可能地远离出发点A ,并求出甲车一共行驶了多少千米?.28,如图21,已知⊙O 的弦AB 垂直于直径CD ,垂足为F ,点E 在AB 上,且EA =EC .(1)求证:AC 2=AE ·AB ;(2)延长EC 到点P ,连结PB ,若PB =PE ,试判断PB 与⊙O 的位置关系,并说明理由. 29,如图22,在等腰梯形ABCD 中,AB =DC =5,AD =4,BC =10. 点E 在下底边BC 上,点F 在腰AB 上.(1)若EF 平分等腰梯形ABCD 的周长,设BE 长为x ,试用含x 的代数式表示△BEF 的面积;(2)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时分成1∶2的两部分?若存在,求出此时BE 的长;若不存在,请说明理由. 参考答案:一、1,B ;2,C ;3,B ;4,D ;5,A ;6,A ;7,C ;8,C ;9,D ;10,C .二、11,;12,10;13,根据题意,得10-4(1-x )=18.解得x =3;14,y =32x ;15,8;B A D G C FE 图18 75° 30° C B A 北 东 图19图20图2116,7或25;17,;18,14;3n +2.三、19,由第一个不等式,得x ≥-54,由第二个不等式,得x <3.所以原不等式组的解集为-54≤x <3.数轴表示略.不等式组的整数解是-1、0、1、2. 20,(1)如图.(2)如图,因为DE ,AF 都垂直于地面,且光线DF ∥AC ,所以Rt △DEF ∽Rt △ABC .所以DE EF AB BC =.所以1.65 1.28AB =.所以AB =11(m ).即建筑物AB 的高为11m . 21,表或树图略.P (两人都选小鸟)=19. 22,(1)由已知条件易知AC =6cm ,BP =2t ,AP =12-2t ,AQ =t ,(2)由AP =AQ ,即12-2t =t ,得t =4,即当t =4秒时△PCQ 是等腰三角形.(3)当AQ ∶AC =AP ∶AB 时PQ ∥BD ,即t ∶6=(12-2t )∶12,解得t =3.即当t =3秒时,PQ ∥BD . 四、23,(1)BE =DG .证明:因为四边形ABCD 和四边形ECGF 都是正方形,所以BC =DC ,EC =GC ,∠BCE =∠DCG =90°.所以△BCE ≌△DCG .所以BE =DG .(2)存在,它们是Rt △BCE 和Rt △DCG .将Rt △BCE 绕点C 顺时针旋转90°,可与Rt △DCG 完全重合.24,根据题意,得AC =20×A 作AD 垂直于直线BC ,垂足为D .在Rt △ADC 中,AD =AC ×cos ∠CAD =200×cos30°=3DC =AC ×sin ∠CAD =200×sin30°△ADB 中,DB =AD ×tan ∠BAD =3tan75°.所以CB =DB -DC =320CB =3-5≈游客自景点C 驶向景点B 约需27分钟.25,(1)因为点P (2,2)在反比例函数y =k x 的图像上,所以k =4,所以反比例函数的解析式为y =4x, 又因为点Q (1,m )在反比例函数的图像上,所以m =4,所以Q 点的坐标为(1,4),(1)因为函数y =ax +b 与y =-x 的图像平行,所以a =-1,将Q 点坐标代入y =-x +b 中,得b =5.所以y =ax 2+bx +25k k -=-x 2+5x -214=-252x ⎛⎫- ⎪⎝⎭+1,所以所求函数有最大值,当x =52时,最大值为1. 26,证明:①连结AD .因为AB =AC ,∠BAC =90°,D 为BC 的中点,所以AD ⊥BC ,BD =AD ,所以∠B =∠DAC =45°.又BE =AF ,所以△BDE ≌△ADF ,所以ED =FD ,∠BDE =∠ADF ,所以∠EDF =∠EDA +∠ADF =∠EDA +∠BDE =∠BDA =90°,所以△DEF 为等腰直角三角形,②若E ,F 分别是AB ,CA 延长线上的点,如图所示.连结AD .因为AB =AC ,∠BAC =90°,D 为BC 的中点,所以AD =BD ,AD ⊥BC ,所以∠DAC =∠ABD =45°,所以∠DAF =∠DBE =135°,又AF =BE ,所以△DAF ≌△DBE ,所以FD =ED ,∠FDA =∠EDB ,所以∠EDF =∠EDB +∠FDB =∠FDA +∠FDB =∠ADB =90°,所以△DEF 仍为等腰直角三角形.27,(1)设甲,乙两车速度分别是x 千米/时和y 千米/时,根据题意,得2,1190 2.x y x y =⎧⎨⨯+⨯=⨯⎩解之,得120,60.x y =⎧⎨=⎩即甲、乙两车速度分别是120千米/时、60千米/时.(2)方案一:设甲汽车尽ABF D E可能地远离出发点A 行驶了x 千米,乙汽车行驶了y 千米,则200102,20010.x y x y +⨯⨯⎧⎨-⨯⎩≤≤所以2x ≤200×10×3,即x ≤3000.即甲、乙一起行驶到离A 点500千米处,然后甲向乙借油50升,乙不再前进,甲再前进1000千米返回到乙停止处,再向乙借油50升,最后一同返回到A 点,此时,甲车行驶了共3000千米.方案二(画图法):如图4份,每份50升.100A 点.28,(1)连结BC .因为AB ⊥CD ,CD 为⊙O 的直径,所以BC =AC ,所以∠1=∠2,又因为AE =CE ,所以∠1=∠3,所以△AEC ∽△ACB .所以ACAE AB AC =,即AC 2=AB ·AE .(2)PB 与⊙O 相切.连结OB ,因为PB =PE ,所以∠PBE =∠PEB ,因为∠1=∠2=∠3,所以∠PEB =∠1+∠3=2∠1,而∠PBE =∠2+∠PBC ,所以∠OBC =∠OCB ,而Rt △BCF 中,∠OCB =90°-∠2=90°-∠1,所以∠OBC =90°-∠1,所以∠OBP =∠OBC +∠PBC =∠1+(90°-∠1)=90°,所以PB ⊥OB ,即PB 为⊙O 的切线.29,(1)由已知条件得:梯形周长为12BC 于G 过点A 作AK ⊥BC 于K 则可得:FG =125x -×4,所以x (7≤x ≤10).(2)存在.由(1)得-25x 2+245x =14,得x 1=7EF 将等腰梯形ABCD 的周长与面积同时平分,此时BE =7.(BEF ∶S AFECD =1∶2,(BE +BF )∶(AF +AD +DC )=1∶2 ,则有-25x 2+245x =285,整理,得3x 2-24x +70=0,此时求根公式有被开方式为576-840<0,所以不存在这样的实数x .即不存在线段EF 将等腰梯形ABCD 的周长和面积,同时分成1∶2的两部分.。
历届中考试卷及答案

09-04-07 2008年呼和浩特市中考试题及答案09-04-02 广东省肇庆市2007年初中毕业生学业考试数学试题09-03-26 2008年莆田市初中毕业、升学考试试卷(正版)09-03-21 天门市2008年中考数学试卷09-03-20 黔东南州2008年初中毕业升学统一考试数学试卷(word版) 08-12-09 福建省漳州市2008年中考试题及答案08-11-13 昆明市2008年数学中考试题及评分标准答案08-10-10 2008年吉林省长春市中考试题08-10-09 2008年长春市中考试题答案08-09-08 2008年湖南省湘西自治州中考数学试卷及答案08-08-28 2008年云南省高中(中专)招生统一考试数学试题及答案08-08-24 2008年广西省玉林、防城港市初中毕业升学考试数学试卷08-08-23 毕节地区2008年中考数学试题(图片版)08-08-23 黔东南州2008年中考数学试题(图片版)08-08-23 黔南州2008年中考(高中,中专,中师)试题及答案(图片版) 08-08-23 铜仁地区2008年中考数学试题(图片版)08-08-22 2008年甘肃省陇南市中考数学试题(图片版)08-08-13 2008年湖南省衡阳市初中毕业学业考试数学试卷08-08-11 2008年内蒙古锡林郭勒盟通辽市兴安盟呼伦贝尔市中考试卷08-08-05 2008年福建省渭田中学初中毕业、升学模拟考试数学试卷08-08-01 2008年广西省来宾中考数学试卷(扫描版)08-08-01 2008年安顺市初中毕业生学业、升学招生考试试题及答案08-07-29 2008年福建省三明市中考数学试题及答案(word版)08-07-29 2008年山东省莱芜市中等学校招生考试试题及答案08-07-28 2008年浙江省诸暨市提前招生考试试卷及答案08-07-26 2008年四川省绵阳市中考数学试卷及答案(word版)08-07-26 2008年甘肃省甘南州中考数学试卷(图片版)08-07-26 2008年内蒙古省包头市中考数学试卷及答案(图片版)08-07-26 2008年贵州省安顺市中考数学试卷(word)08-07-26 2008年三明市中考数学试题(word版)08-07-25 2008年中考数学试卷汇编(圆)及答案08-07-24 2007年福建省南平市初中毕业、升学考试数学试题08-07-23 2008年山东省淄博市中考数学试卷(word版)08-07-23 2008年广西省南宁中考数学试题(图片版)08-07-23 2008年福建省三明市中考数学试题及答案(图片版)08-07-21 2008年中考数学试卷及答案(课改区)08-07-18 2008年山东省淄博市中考数学试卷(扫描版)08-07-18 2008年福建省泉州市初中毕业、升学考试数学试题(word版) 08-07-18 2008年福建省厦门市中考数学考试题及答案(word版)08-07-18 2008年黑龙江省大庆市中考数学试卷(word版)08-07-18 2008年黑龙江省绥化市中考数学试卷及答案(word版)08-07-18 2008年内蒙古乌兰察布市初中升学试题及答案(word版)08-07-18 2008年湖南省邵阳市中考数学试卷及答案(word版)08-07-18 2008年四川省南充市中考数学试题及答案(word版)08-07-18 2008年四川省眉山市数学中考试卷(word版)08-07-17 2008年贵州省遵义市中考数学试题及答案(word版)08-07-17 2008年河南省高级中等学校招生统一考试卷及答案(word版) 08-07-17 2008年黑龙江省牡丹江市中考数学考试及答案08-07-17 2008年黑龙江双鸭山中考数学试卷及答案(word版)08-07-17 2008年山东省潍坊市数学中考试题及答案08-07-14 2008年内蒙古赤峰市中考数学试卷(word版)08-07-13 2008年内蒙古乌兰察布市中考数学试卷及答案(扫描版)08-07-13 2008年黑龙江大庆中考数学试卷(扫描版)08-07-13 2008年湖南省邵阳市中考数学试卷及答案(扫描版)08-07-13 2008年黑龙江双鸭山中考数学试卷及答案(扫描版)08-07-13 2008年辽宁省沈阳市中考数学试题及答案08-07-13 2008年青海省西宁市中考数学试卷及答案(word版)08-07-13 2008年四川省眉山市中考数学试卷(扫描版)08-07-13 2008年福建省厦门市中考数学试卷及答案(扫描版)08-07-13 2008年广东省佛山市中考数学试卷及参考答案。
中考数学考试模拟卷(带答案解析)

中考数学考试模拟卷(带答案解析)一、选择题(本题包括12道小题,每小题3分,共36分)1.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π2.(4.00分)某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.长方体D.四棱锥3.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,54.(4.00分)一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.65.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE 等于()A.15°B.30°C.45°D.60°6.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于127.已知m=+,则以下对m的估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<68.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y 尺,则符合题意的方程组是()A.B.C.D.9.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD 等于()A.40°B.50°C.60°D.80°10.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根11.如图,正方形ABCD及其内切圆O,随机地往正方形内投一粒米,落在阴影部分的概率是()A.B.1﹣C.D.1﹣12.如图,点D是▱OABC内一点,AD与x轴平行,BD与y轴平行,BD=,∠BDC=120°,S=,若反比例函数y=(x<0)的图象经过C,D两点,则k的值是()△BCDA.﹣6B.﹣6 C.﹣12D.﹣12二、填空题(本题包括5道小题,每小题3分,共15分,将答案直接填在答题卡对应题的横线上)13.(3分)菱形ABCD中,对角线AC=8,BD=6,则菱形的边长为.14.(3分)如图,依据尺规作图的痕迹,求∠α的度数°.15.(3分)如图,在矩形ABCD中,E为AD上的点,AE=AB,BE=DE,则tan∠BDE=.16.(3分)在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为.17.(3分)如图,⊙O是△ABC的外接圆,AC为直径,若AB=2,BC=3,点P从B点出发,在△ABC内运动且始终保持∠CBP=∠BAP,当C,P两点距离最小时,动点P的运动路径长为.三、解答题(本题包括9道小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.(8.00分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.[来源:Z*xx*]19.(8.00分)先化简,再求值:(﹣1)÷,其中m=+1.20.(8.00分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;[来源:学§科§网]②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.21.(8.00分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.22.(10.00分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.23.(10.00分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.24.(10分)如图,在Rt△AOB中,∠AOB=90°,以O为圆心,OB的长为半径的圆交边AB 于点D,点C在边OA上且CD=AC,延长CD交OB的延长线于点E.(1)求证:CD是圆的切线;(2)已知sin∠OCD=,AB=4,求AC长度及阴影部分面积.25.(10分)已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G在AD上,F在AB上,求的值为多少;(2)将正方形AFEG绕A点逆时针方向旋转α(0°<α<90°),如图2,求的值为多少;(3)AB=8,AG=AD,将正方形AFEG绕A逆时针方向旋转α(0°<α<360°),当C,G,E三点共线时,请直接写出DG的长度.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于C点,直线BC 方程为y=x﹣3.(1)求抛物线的解析式;(2)点P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;(3)点Q是抛物线上一点,若∠ACQ=45°,求点Q的坐标.参考答案与解析一、选择题1.【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.2.【分析】根据常见几何体的三视图逐一判断即可得.【解答】解:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;故选:C.3.【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:A、1+1=2,不满足三边关系,故错误;B、1+2<4,不满足三边关系,故错误;C、2+3>4,满足三边关系,故正确;D、2+3=5,不满足三边关系,故错误.故选:C.4.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求n.【解答】解:根据n边形的内角和公式,得:(n﹣2)•180=360,解得n=4.故选:B.5.【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.6.【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.7.【分析】直接化简二次根式,得出的取值范围,进而得出答案.【解答】解:∵m=+=2+,1<<2,∴3<m<4,故选:B.8.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.9.【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【解答】解:∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°﹣∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选:D.10.【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.11.【分析】直接表示出各部分面积,进而得出落在阴影部分的概率.【解答】解:设圆的半径为a,则圆的面积为:πa2,正方形面积为:4a2,故随机地往正方形内投一粒米,落在阴影部分的概率为:.故选:B.12.【分析】过点C作CE⊥y轴,延长BD交CE于点F,易证△COE≌△ABD,求得OE=,根据S△BCD=,求得CF=9,得到点D的纵坐标为4,设C(m,),则D(m+9,4),由反比例函数y=(x<0)的图象经过C,D两点,从而求出m,进而可得k的值.【解答】解:过点C作CE⊥y轴,延长BD交CE于点F,∵四边形OABC为平行四边形,∴AB∥OC,AB=OC,∴∠COE=∠ABD,∵BD与y轴平行,∴∠ADB=90°,在△COE和△ABD中,,∴△COE≌△ABD(AAS),∴OE=BD=,∵S△BDC=BD•CF=,∴CF=9,∵∠BDC=120°,∴∠CDF=60°,∴DF=3,点D的纵坐标为4,设C(m,),则D(m+9,4),∵反比例函数y=(x<0)的图象经过C,D两点,∴k=m=4(m+9),∴m=﹣12,∴k=﹣12,故选:C.二、填空题13.(3分)菱形ABCD中,对角线AC=8,BD=6,则菱形的边长为 5 .【分析】根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.【解答】解:解:∵四边形ABCD是菱形,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5故答案为:514.(3分)如图,依据尺规作图的痕迹,求∠α的度数60 °.【分析】先根据矩形的性质得出AB∥DC,故可得出∠ABD的度数,由角平分线的定义求出∠EBF的度数,再由EF是线段BD的垂直平分线得出∠BEF的度数,根据三角形内角和定理得出∠BFE的度数,进而可得出结论.【解答】解:∵∠A=∠ABC=∠BCD=90°,∴四边形ABCD是矩形,∴AB∥DC,∴∠ABD=∠CDB=60°.由作法可知,BF是∠ABD的平分线,∴∠EBF=∠ABD=30°.由作法可知,EF是线段BD的垂直平分线,∴∠BEF=90°,∴∠BFE=90°﹣30°=60°,∴∠α=60°.故答案为:60.15.(3分)如图,在矩形ABCD中,E为AD上的点,AE=AB,BE=DE,则tan∠BDE=﹣1 .【分析】用含有AB的代数式表示AD,再根据锐角三角函数的定义进行计算即可.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∵AB=AE,设AB=a,则AE=a,BE==a=ED,∴AD=AE+DE=(+1)a,在Rt△ABD中,tan∠BDE===﹣1,故答案为:﹣1.16.(3分)在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为,9或3 .【分析】题中60°的锐角,可能是∠A也可能是∠B;∠PCB=30°可以分为点P在在线段AB上和P在线段AB的延长线上两种情况;直角三角形中30°角所对的直角边等于斜边的一半,同时借助勾股定理求得AP的长度.【解答】解:当∠A=30°时,∵∠C=90°,∠A=30°,∴∠CBA=60°,BC=AB=×6=3,由勾股定理得,AC=3,①点P在线段AB上,∵∠PCB=30°,∠CBA=60°∴∠CPB=90°,∴∠CPA=90°,在Rt△ACP中,∠A=30°,∴PC=AC=×3=.∴在Rt△APC中,由勾股定理得AP=.②点P在线段AB的延长线上,∵∠PCB=30°,∴∠ACP=90°+30°=120°,∵∠A=30°,∴∠CPA=30°.∵∠PCB=30°,∴∠PCB=∠CPA,∴BP=BC=3,∴AP=AB+BP=6+3=9.当∠ABC=30°时,∵∠C=90°,∠ABC=30°,∴∠A=60°,AC=AB=×6=3,由勾股定理得,BC=3,①点P在线段AB上,∵∠PCB=30°,∴∠ACP=60°,∴△ACP是等边三角形∴AP=AC=3.②点P在线段AB的延长线上,∵∠PCB=30°,∠ABC=30°,∴CP∥AP这与CP与AP交于点P矛盾,舍去.综上所得,AP的长为,9或3.故答案为:,9或3.17.(3分)如图,⊙O是△ABC的外接圆,AC为直径,若AB=2,BC=3,点P从B点出发,在△ABC内运动且始终保持∠CBP=∠BAP,当C,P两点距离最小时,动点P的运动路径长为π.【分析】如图,取AB的中点J,首先证明∠APB=90°,推出点P在以AB为直径的⊙J上运动,当J,P,C共线时,PC的值最小,解直角三角形求出∠CJB=60°可得结论.【解答】解:如图,取AB的中点J,∵AC是直径,∴∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠BAP=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙J上运动,当J,P,C共线时,PC的值最小,在Rt△CBJ中,BJ=,BC=3,∴tan∠CJB==,∴∠BJC=60°,∴当C,P两点距离最小时,动点P的运动路径长==π.故答案为:π.【点评】本题考查轨迹,解直角三角形,弧长公式等知识,解题的关键是正确判断出点P的运动轨迹,属于中考常考题型.三、解答题(本题包括9道小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.(8.00分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.19.(8.00分)先化简,再求值:(﹣1)÷,其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===,当m=+1时,原式=.20.(8.00分)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.【分析】(1)作∠A'B'C=∠ABC,即可得到△A'B′C′;(2)依据D是AB的中点,D'是A'B'的中点,即可得到=,根据△ABC∽△A'B'C',即可得到=,∠A'=∠A,进而得出△A'C'D'∽△ACD,可得==k.【解答】解:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A,[来源:学科网ZXXK]∴△A'C'D'∽△ACD,∴==k.21.(8.00分)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求∠BDF的大小;(2)求CG的长.【分析】(1)由旋转的性质得,AD=AB=10,∠ABD=45°,再由平移的性质即可得出结论;(2)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE,即可得出结论.【解答】解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB=10,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴,∵AB=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.22.(10.00分)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.【分析】(1)根据概率公式计算可得;(2)分别根据平均数的定义及其意义解答可得.【解答】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;(2)①甲公司各揽件员的日平均件数为=39件;②甲公司揽件员的日平均工资为70+39×2=148元,乙公司揽件员的日平均工资为=[40+]×4+×6=159.4元,因为159.4>148,所以仅从工资收入的角度考虑,小明应到乙公司应聘.23.(10.00分)如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,利用矩形的面积公式得到x(100﹣2x)=450,解方程得x1=5,x2=45,然后计算100﹣2x后与20进行大小比较即可得到AD的长;(2)设AD=xm,利用矩形面积得到S=x(100﹣x),配方得到S=﹣(x﹣50)2+1250,讨论:当a≥50时,根据二次函数的性质得S的最大值为1250;当0<a<50时,则当0<x≤a时,根据二次函数的性质得S的最大值为50a﹣a2.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,根据题意得x(100﹣2x)=450,解得x1=5,x2=45,当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10,答:AD的长为10m;(2)设AD=xm,∴S=x(100﹣x)=﹣(x﹣50)2+1250,当a≥50时,则x=50时,S的最大值为1250;当0<a<50时,则当0<x≤a时,S随x的增大而增大,当x=a时,S的最大值为50a﹣a2,综上所述,当a≥50时,S的最大值为1250;当0<a<50时,S的最大值为50a﹣a2.24.(10分)如图,在Rt△AOB中,∠AOB=90°,以O为圆心,OB的长为半径的圆交边AB 于点D,点C在边OA上且CD=AC,延长CD交OB的延长线于点E.(1)求证:CD是圆的切线;(2)已知sin∠OCD=,AB=4,求AC长度及阴影部分面积.【分析】(1)根据等腰三角形的性质,直角三角形的两锐角互余以及等量代换得出∠ODB+∠BDE=90°,即OD⊥EC,进而得出EC是切线;(2)根据直角三角形的边角关系可求出OD、CD、AC、OC,再根据相似三角形的性质可求出EC,根据S阴影部分=S△COE﹣S扇形进行计算即可.【解答】(1)证明:如图,连接OD,∵AC=CD,∴∠A=∠ADC=∠BDE,∵∠AOB=90°,∴∠A+∠ABO=90°,又∵OB=OD,∴∠OBD=∠ODB,∴∠ODB+∠BDE=90°,即OD⊥EC,∵OD是半径,∴EC是⊙O的切线;(2)解:在Rt△COD中,由于sin∠OCD=,设OD=4x,则OC=5x,∴CD==3x=AC,在Rt△AOB中,OB=OD=4x,OA=OC+AC=8x,AB=4,由勾股定理得,OB2+OA2=AB2,即:(4x)2+(8x)2=(4)2,解得x=1或x=﹣1(舍去),∴AC=3x=3,OC=5x=5,OB=OD=4x=4,∵∠ODC=∠EOC=90°,∠OCD=∠ECO,∴△COD∽△CEO,∴=,即=,∴EC=,∴S阴影部分=S△COE﹣S扇形=××4﹣=﹣4π=,答:AC=3,阴影部分的面积为.【点评】本题考查切线的判定,扇形面积的计算以及直角三角形的边角关系,掌握切线的判定方法,直角三角形的边角关系以及扇形、三角形面积的计算方法是正确解答的前提.25.(10分)已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G在AD上,F在AB上,求的值为多少;(2)将正方形AFEG绕A点逆时针方向旋转α(0°<α<90°),如图2,求的值为多少;(3)AB=8,AG=AD,将正方形AFEG绕A逆时针方向旋转α(0°<α<360°),当C,G,E三点共线时,请直接写出DG的长度.【分析】(1)由正方形性质知∠AGE=∠D=90°、∠DAC=45°,据此可得、GE∥CD,利用平行线分线段成比例定理可得;(2)连接AE,只需证△ADG∽△ACE即可得;(3)分两种情况画出图形,证明△ADG∽△ACE,根据相似三角形的判定和性质以及勾股定理即可得出答案.【解答】解:(1)∵四边形ABCD是正方形,四边形CEGF是正方形,∴∠AGE=∠D=90°,∠DAC=45°,∴,GE∥CD,∴,∴CE=DG,∴==2;(2)连接AE,由旋转性质知∠CAE=∠DAG=α,在Rt△AEG和Rt△ACD中,=cos45°=、=cos45°=,∴,∴△ADG∽△ACE,∴=,∴=;(3)①如图:由(2)知△ADG∽△ACE,∴,∴DG=CE,∵四边形ABCD是正方形,∴AD=BC=8,AC==16,∵AG=AD,∴AG=AD=8,∵四边形CEGF是矩形,∴∠AGE=90°,GE=AG=8,∵C,G,E三点共线.∴CG===8,∴CE=CG﹣EG=8﹣8,∴DG=CE=4﹣4;②如图:由(2)知△ADG∽△ACE,∴,∴DG=CE,∵四边形ABCD是正方形,∴AD=BC=8,AC==16,∵AG=AD,∴AG=AD=8,∵四边形CEGF是矩形,∴∠AGE=90°,GE=AG=8,∵C,G,E三点共线.∴∠AGC=90°∴CG===8,∴CE=CG+EG=8+8,∴DG=CE=4+4.综上,当C,G,E三点共线时,DG的长度为4﹣4或4+4.【点评】本题是四边形综合题,考查了正方形的判定与性质,直角三角形的性质,相似三角形的判定与性质,勾股定理,熟练掌握相似三角形的判定与性质是解题的关键.26.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于C点,直线BC 方程为y=x﹣3.(1)求抛物线的解析式;(2)点P为抛物线上一点,若S△PBC=S△ABC,请直接写出点P的坐标;(3)点Q是抛物线上一点,若∠ACQ=45°,求点Q的坐标.【分析】(1)求出B、C点坐标,并将其代入y=﹣x2+bx+c,即可求解;(2)过点P作PQ⊥x轴交BC于点Q,设P(t,﹣t2+4t﹣3),则Q(t,t﹣3),PQ=|﹣t2+3t|,由题意可求=×3×|﹣t2+3t|,求出t的值即可求解;(3)过点B作BE⊥BC交CQ于点E,过E点作EF⊥x轴交于F,由题意可得tan∠OCA=tan ∠BCE==,求出E(4,﹣1),用待定系数求出直线CE的解析式y=x﹣3,联立方程组,可求Q(,﹣).【解答】解:(1)在y=x﹣3中,令x=0,则y=﹣3,∴C(0,﹣3),令y=0,则x=3,∴B(3,0),将B、C两点代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+4x﹣3;(2)令y=0,则﹣x2+4x﹣3=0,解得x=1或x=3,∴A(1,0),∴AB=2,∴S△ABC=×2×3=3,∵S△PBC=S△ABC,∴S△PBC=,过点P作PQ⊥x轴交BC于点Q,设P(t,﹣t2+4t﹣3),则Q(t,t﹣3),∴PQ=|﹣t2+3t|,∴=×3×|﹣t2+3t|,解得t=或t=,∴P点坐标为(,)或(,)或(,)或(,);(3)过点B作BE⊥BC交CQ于点E,过E点作EF⊥x轴交于F,∵OB=OC,∴∠OCB=45°,∵∠ACQ=45°,∴∠BCQ=∠OCA,∵OA=1,∴tan∠OCA=,∴tan∠BCE==,∵BC=3,∴BE=,∵∠OBC=45°,∴∠EBF=45°,∴EF=BF=1,∴E(4,﹣1),设直线CE的解析式为y=kx+b,∴,解得,∴y=x﹣3,联立方程组,解得(舍)或,∴Q(,﹣).。
2024年浙江省杭州市拱墅区中考数学二模试卷+答案解析

2024年浙江省杭州市拱墅区中考数学二模试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列实数比较大小正确的是()A. B. C. D.2.某同学抛掷一枚硬币,连续抛掷10次,都是反面朝上,则抛掷第11次出现正面朝上的概率是()A. B. C. D.03.如图是一个三通水管,如图放置,则它的俯视图是()A.B.C.D.4.已知直线,将含有的直角三角板在这两条平行线中按如图所示的方式摆放,若,则()A.B.C.D.5.已知关于x的方程的根的判别式的值为5,则m的值为()A. B.3 C.1 D.6.《九章算术》是中国古代第一部数学专著,第一章“方田”中已讲述了平面几何图形面积的计算方法,比如扇形面积的计算,“今有宛田,下周三十步,径十六步,问为田几何?”大致意思为:现有一块扇形的田,弧长30步,其所在圆的直径是16步,则这块田的面积为()A.120平方步B.240平方步C.平方步D.平方步7.在同一平面直角坐标系中,一次函数与的图象如图所示,则()A.当时,B.当时,,C.D.关于x,y的方程组的解为8.如图,某数学实践小组测量操场的旗杆AB的高度,操作如下:在点D处放置测角仪,量得测角仪的高度CD为a;测得仰角;量得测角仪到旗杆的水平距离BD为则旗杆的高度可表示为()A.B.C.D.9.如图,BD是的角平分线,分别以点B、D为圆心,以大于的长为半径在BD两侧作圆弧,交于点E,点作直线EF,分别交AB,BC于点G,H,连结DG,设的面积为,四边形BGDH的面积为,若,则的值为()A.B.C.D.110.二次函数为实数,的图象对称轴为直线,且经过点若二次函数的图象经过点,则关于x的方程的解是() A., B., C., D.,二、填空题:本题共6小题,每小题3分,共18分。
11.计算:______.12.小凡家今年月份的用电量情况如图所示,则2月到3月之间月用电量的增长率为______.13.某书店分别用400元和500元两次购进同一种书,第二次数量比第一次多10本,且两次进价相同,则该书店第一次购进______本.14.如图,已知AD是的弦,且,以AD为一边作正方形若BC边与相切,切点为E,则的半径为______.15.已知,,且为正整数,则正整数a的值是______.16.如图,在边长为10的正方形ABCD内部不含边界有一点E,连结过点A作,且连结EF,将线段EF绕点E顺时针旋转,点F恰好落在点D上,则EC的长为______.三、解答题:本题共8小题,共72分。
2008年中考数学模拟考试(二)

2008年中考模拟试题数 学试题注意事项:1.本试卷满分130分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果.一、细心填一填(本大题共有14小题,16个空,每空2分,共32分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,相信你一定会填对的!)1.-3的相反数是__________,25的算术平方根是__________.2.2008年4月23日~4月25日,某某市锡山区组织初三调研测试,大约有3300名考生参加本次调研测试.这个数据用科学记数法可表示为________________名. 3.分解因式:x 3y -9xy =___________________.4.在函数y =22x -3中,自变量x 的取值X 围是________________;在函数y =x +2中,自变量x 的取值X 围是________________.5.十边形的外角和为__________°. 6.计算:1x +3+6x 2-9=______________.7.抛物线y =x 2-4x -5与x 轴的正半轴的交点坐标为______________.8.已知圆锥的底面半径是3cm ,母线长为6cm ,则这个圆锥的侧面积为____________cm 2.(结果保留π)9.如图,点D 在以AC 为直径的⊙O 上,若∠BDC =20°,则∠ACB =__________°. 10.若直线l 和⊙O 在同一平面内,且⊙O 的半径为5cm ,圆心O 到直线l 的距离为2cm ,则直线l 与⊙O 的位置关系为___________.11.给出下列四种图形:矩形、线段、等边三角形、正六边形.从对称性角度.....分析,其中与众不同的一种图形是___________.12.某学习小组10名学生在英语口语测试中成绩如下:10分的有8人,7分的有2人,则该学习小组10名学生英语口语测试的平均成绩为_________分.13.如图,正方体的每个面上都写有一个实数,已知相对的两个面上的两数之和相等,若15、9、-4的对面的数分别是x 、y 、z ,则2x -3y +z 的值为_________.14.给出如下一列数:2,43,67,813,1021,…,则第n 个数为___________(用含n 的代数式表示).二、精心选一选(本大题共有6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.只要你掌握概念,认真思考,相信你一定会选对的!) 15.下列各式中,是最简二次根式的是( )A .8aB .12aC .ab 2D .a216.若方程x 2-3x -2=0的两实根为x 1、x 2,则(x 1+2)(x 2+2)的值为 ( ) A .-4B .6C .8D .1217.已知△ABC 的三边长分别为3cm 、4cm 、5cm ,D 、E 、F 分别为△ABC各边的中点,则(第13题)第20题△DEF 的周长为... ( )A .3cmB .6cmC .12cmD .24cm18.给出以下四个命题:①一组对边平行的四边形是梯形;②一条对角线平分一个内角的平行四边形是菱形;③对角线互相垂直的矩形是正方形;④一组对边平行,另一组对边相等的四边形是平行四边形.其中真命题有( )A .1个B .2个C .3个D . 4个 19.下列调查方式合适的是( )A .为了了解滨湖区人民对电影《某某》的感受,小华到滨湖中学随机采访了8名初三学生B .为了了解全校学生用于做数学作业的时间,小民同学在网上通过QQ 向3位好友做了调查C .为了了解全国青少年儿童在阳光体育运动启动后的睡眠时间,统计人员采用了普查的方式D .为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式20.现有3×3的方格,每个小方格内均有数目不同的点图,要求方格内每一行、每一列以及每一条对角线上的三个点图的点数之和....均相等. 图中给出了部分点图,则P 处所对应的点图是 ( )三、认真答一答(本大题共有8小题,共61分.解答需写出必要的文字说明、演算步骤或证明过程.只要你积极思考,细心运算,你一定会解答正确的!) 21.(本小题满分8分)(1)计算:(-2)2-(2-3)0+2·tan45°; (2)解不等式:x6-1>x -23.A .B .C . D22.(本小题满分7分)如图,已知E 、F 分别为矩形ABCD 的边BA 、DC 的延长线上的点,且AE =12AB ,CF =12CD ,连结EF 分别交AD 、BC 于点G 、H .请你找出图中与DG 相等的线段,并加以证明.23.(本小题满分7分)如图,在Rt △ABC 中,已知∠ABC =90°,BC =8,以AB 为直径作⊙O ,连结OC ,过点C 作⊙O 的切线CD ,D 为切点,若sin ∠OCD =35,求直径AB 的长.24.(本小题满分8分)一枚质地均匀的正六面体骰子,六个面分别标有1、2、3、4、5、6,连续投掷两次.HGFE DC BA(1)用列表法或画树状图法表示出朝上的面上的数字所有可能出现的结果;(2)记两次朝上的面上的数字分别为m 、n ,若把m 、n 分别作为点P 的横坐标和纵坐标,求点P (m ,n )在双曲线y =12x上的概率.25.(本小题满分7分)某班某天音乐课上学习了《感恩的心》这一首歌,该班班长由此歌名产生了一个想法,于是就“每年过生日时,你是否会用语言或其他方式向母亲道一声‘谢谢’”这个问题对该校初三年级30名同学进行了调查.调查结果如下:否 否 否 有时 否 是 否 否 有时 否 否 有时 否 是 否 否 否 有时 否 否 否否有时否否是否否否有时(1)在这次抽样调查中,回答“否”的频数为__________,频率为_________;(2)请你选择适当的统计图描述这组数据;(3)通过对这组数据的分析,你有何感想?(用一、两句话表示即可)26.(本小题满分6分)某校把一块沿河的三角形废地(如图)开辟为生物园,已知∠ACB =90°,∠CAB =54°,BC =60米.(1)现学校准备从点C 处向河岸AB 修一条小路CD ,使得CD 将生物园分割成面积相等的两部分.请你用直尺和圆规在图中作出小路CD (保留作图痕迹);(2)为便于浇灌,学校在点C 处建了一个蓄水池,利用管道从河中取水.已知每铺设1米管道费用为50元,求铺设管道的最低费用(精确到1元).27.(本小题满分8分)某某市一水果销售公司,需将一批大浮杨梅运往某地,有汽车、火车这两种运输工具可供选择,且两者行驶的路程相等.主要参考数据如下:CBA若这批大浮杨梅在运输过程中(含装卸时间)的损耗为120元/时,那么你认为采用哪种运输工具比较好(即运输所需费用与损耗之和较少)?28.(本小题满分10分)如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3∶2.(1)求这条抛物线对应的函数关系式;(2)连结BD,试判断BD与AD的位置关系,并说明理由;(3)连结BC交直线AD于点M,在直线AD上,是否存在这样的点N(不与点M重合),使得以A、B、N为顶点的三角形与△ABM相似?若存在,请求出点N的坐标;若不存在,请说明理由.四、实践与探索(本大题共有2小题,满19分.只要你开动脑筋,大胆实践,勇于探索,你一定会成功!) 29.(本小题满分8分)对于如图①、②、③、④所示的四个平面图,我们规定:如图③,它的顶点为A 、B 、C 、D 、E 共5个,边为AE 、EC 、DE 、EB 、AB 、BC 、CD 、DA 共8条,区域为AED 、ABE 、BEC 、CED 共4个. (1)按此规定,将图①、②、④的顶点数X 、边数Y 、区域数Z 填入下面的表格:(2)观察上表,请你归纳顶点数X 、边数Y 、区域数Z 之间的数量关系:_____________________________.(不必证明)(3)若有一个平面图满足(2)中归纳所得的数量关系,它共有9个区域,且每一个顶点出发都恰好有3条边,则这个平面图共有多少条边?(要有计算过程)① ② ③ ④DCBA (备用图)30.(本小题满分11分)如图,已知正方形ABCD 的边长为4cm ,动点P 从点B 出发,以2cm/s 的速度、沿B →C →D 方向,向点D 运动;动点Q 从点A 出发,以1cm/s 的速度、沿A →B 方向,向点B 运动.若P 、Q 两点同时出发,运动时间为t 秒.(1)连结PD 、PQ 、DQ ,设△PQD 的面积为S ,试求S 与t 之间的函数关系式; (2)当点P 在BC 上运动时,是否存在这样的t ,使得△PQD 是以PD 为一腰的等腰三角形?若存在,请求出符合条件的t 的值;若不存在,请说明理由;(3)以点P 为圆心,作⊙P ,使得⊙P 与对角线BD 相切.问:当点P 在CD 上运动时,是否存在这样的t ,使得⊙P 恰好经过正方形ABCD 的某一边的中点?若存在,请写出符合条件的t 案);若不存在,请说明理由.参考答案一、细心填一填(本大题共有14小题,16空,每空2分,共32分) ×103 3.xy (x +3)(x -3) 4.x ≠32;x ≥-2 5.3606.1x -3 7.(5,0)(多写一个答案扣1分) 8.18π 9.70 10.相交 13.1 14.2n n 2-n +1(写成2nn (n -1)+1也可,不扣分)二、精心选一选(本大题共有6小题,每小题3分,共18分) 15.A 16.C 17.B 18.B 19.D 20.A 三、认真答一答(本大题共有8小题,共61分)21.解:(1)(-2)2-(2-3)0+2·tan45°=4-1+2……………………………………(3分)=5.…………………………………………(4分)(2)x6-1>x -23x -6>2(x -2) ………………………(1分) x -6>2x -4………………………(2分) -x >2 …………………………(3分) x <-2 …………………………(4分)22.证法1:BH =DG .……………………………………………………………………(1分)∵四边形ABCD 为矩形,∴AB =CD ,AB ∥CD ,∠B =∠D .………………………(2分) ∴∠E =∠F . ……………………………………………………………………………(3分) 又∵AE =12AB ,CF =12CD ,∴AE =CF . ………………………………………(4分)∴AE +AB =CF +CD ,即BE =DF . ……………………………………………(5分) ∴△EBH ≌△FDG .(ASA ) ……………………………………………………(6分) ∴BH =DG .………………………………………………………………………(7分) 证法2:BH =DG .………………………………………………………………(1分)∵四边形ABCD 为矩形,∴AB ∥CD ,AB =CD ,AD =BC ,∠BAD =∠BCD =90°.……………………………………………………………………………(2分)∴∠E =∠F ,∠EAG =∠FCH =90°.……………………………………(3分)又∵AE =12AB ,CF =12CD ,∴AE =CF . …………………………………………(4分) ∴△EAG ≌∠FCH . …………………………………………………………………(5分) ∴AG =CH .…………………………………………………………………………(6分) 又∵AD =BC ,∴AD -AG =BC -CH ,即DG =BH . …………………………(7分)23.∵∠ABC =90°,AB 为⊙O 的直径,∴CB 为⊙O 的切线,B 为切点.…………(1分)又∵CD 为⊙O 的切线,D 为切点,∴∠OCD =∠OCB .…………………………(2分)又∵sin ∠OCD =35,∴sin ∠OCB =35,即OB OC =35.……………………………(3分) 设OB =3k ,OC =5k ,则在Rt △OBC 中,由OB 2+BC 2=OC 2得(3k )2+82=(5k )2.…………(5分)解得k =2. ……………………………………………………………………(6分)∴直径AB =2OB =2·3k =6k =12.……………………………………………(7分)24.(1)列表或画树状图正确,得4分.(2)在上面的36种可能性中,符合mn =12的共有4种. …………(6分)∴点P (m ,n )在双曲线y =12x 上的概率为436=19.……………………(8分) 25.(1)21,0.7 ……………………………………………各1分,共2分(2)画扇形统计图,图画正确得3分(若画成条形统计图,则得2分)(3)只要大致意思正确,即得2分26.(1)用尺规作AB 的垂直平分线交AB 于点D ,……………………………(1分)连结CD .………………………………(2分)(2)作高CE . ………………………………………………………(3分)由∠CAB =54°得∠ABC =36°. 在Rt △BCE 中,CE BC=sin ∠CBE .………………(4分) ∴CE =BC ·sin ∠CBE =60·sin36°≈35.27(米).………………………(5分)∴铺设管道的最低费用=50·CE ≈1763(元)(得到结果为1764元不扣分)……(6分)27.设到达目的地的路程为x 千米. …………………………………(1分)则选择汽车作为运输工具所需费用y 1=(x 80+1)×120+10xx +600 …………………………………………………………………………(3分)选择火车作为运输工具所需费用y 2=(x 120+3)×120+8x +1440(4分) =9x +1800 (5分)①若y 1=y 2x +600=9x +1200,解得x =480.即路程为480千米时,两种工具都可;………………………………………(6分) ②若y 1<y 2x +600<9x +1200,解得x <480.即路程少于480千米时,选用汽车;………………………………………(7分)③若y 1>y 2x +600>9x +1200,解得x >480.即路程多于480千米时,选用火车. ……………………………………(8分)28.(1)根据△ABE 与△ABC 的面积之比为3∶2及E (2,6),可得C (0,4)……(1分)∴D (0,2). 由D (0,2)、E (2,6)可得直线AD 所对应的函数关系式为y =2x +2. (2分)当y =0时,2x +2=0,解得x =-1. ∴A (-1,0).………………………(3分) 由A (-1,0)、C (0,4)、E (2,6)求得抛物线对应的函数关系式为y =-x 2+3x +4.…………………………………………………………(4分)(2)BD ⊥AD .…………………………………………………………(5分)求得B (4,0)…(6分) 通过相似或勾股定理逆定理证得∠BDA =90°,即BD ⊥AD .…………………………………………………………(7分)(3)法1:求得M (23,103),AM =535.…………………………………(8分) 由△ANB ∽△ABM ,得AN AB =AB AM ,即AB 2=AM ·AN ,∴52=535·AN ,解得AN =3 5. …………………………………………………………………… (9分)从而求得N (2,6).……………………………………………………(10分)法2:由OB =OC =4及∠BOC =90°得∠ABC =45°.………………………(8分) 由BD ⊥AD 及BD =DE =25得∠AEB =45°.……………………………(9分) ∴△AEB ∽△ABM ,即点E 符合条件,∴N (2,6).………………………(10分)四、实践与探索(本大题共有2小题,共19分)29.(1)填表正确3分.(注:每一行填对得1分,共3分)(2)X +Z -Y =1.………………………………………………(5分)(3)设这个平面图有n 个顶点,则由题意得n +9-3n 2=1.……………………………………(7分) 解得n =16,∴3n 2=24,即这个平面图共有24条边.………(8分) 30.(1)当0≤t ≤2时,即点P 在BC 上时,S =S 正方形ABCD -S △ADP -S △BPQ -S △PCD =16-12·4·t -12·2 t ·(4-t )-12·(4-2 t )·4 …………………………………………………(1分)=t 2-2 t +8. ………………………(2分)(2)当2<t ≤4时,即点P 在CD 上时,DP =8-2 t .………………………………………………(3分)S =12·(8-2 t )·4=16-4 t .………………………………(4分) (2)①若PD =QD ,则Rt △DCP ≌Rt △DAQ (HL ).∴CP =AQ .………(5分)即t =4-2 t ,解得t =43.…………………………………………………(6分)②若PD =PQ ,则PD 2=PQ 2,即42+(4-2t )2=(4-t )2+(2t )2.………………(7分) 解得t =-4±42,其中t =-4-42<0不合题意,舍去,∴t =-4+4 2. …(8分)∴t =43或t =-4+42时,△PQD 是以PD 为一腰的等腰三角形. (若有多余答案未舍去,扣1分)(3)当P 在CD 上运动时,若⊙P 经过BC 的中点E ,设⊙P 切BD 于M .则CP =2t -4,PM 2=PE 2=(2t -4)2+22. 而在Rt △PMD 中,由于∠PDM =45°,所以DP =2PM ,即DP 2=2PM 2.∴(8-2t )2=2[(2t -4)2+22]. …………………………………………(9分)解得t =±6,负值舍去,∴t = 6. ………………………………(10分)另外,当t =2+2时,⊙P 经过CD 的中点.………………………………(11分)∴当点P 在CD 上运动时,若t =6或2+2,则⊙P 恰好经过正方形ABCD 的某一边的中点.(若有多余答案未舍去,扣1分)。
2008年中考数学模拟试卷(三)

2008年中考数学模拟试卷(三)(总分150分,时间120分钟)本试卷分试卷I (选择题)和试卷II (非选择题)两部分.试卷I (选择题,共30分)一、选择题(每小题3分,共30分) 1,sin45°的值是( ) A.12D.1 2,如图1所示,两温度计读数分别为我国某地今年2月份某天的最低气温与最高气温,那么这天的最高气温比最低气温高( )A. 5℃B. 7℃C. 12℃D. -12℃3,小明设计了一个关于实数运算的程序:输出的数比该数的平方小1,小刚按此程序输入)A.10B.11C.12D.134,国家实行一系列“三农”优惠政策后,农民收入大幅度增加,如图2是我省2001年至2006年农村居民人均年收入统计图,则这6年中农村居民人均年收入的中位数是( )A.5132B.6196C.5802D.56645,小明把如图3所示的扑克牌放在一张桌子上, 请一位同学避开他任意将其中一张牌倒过来, 然后小明很快辨认了被倒过来的那张扑克牌是( )A.方块5B.梅花6C.红桃7D.黑桃8 6,如图4农村常搭建横截面为半圆形的全封闭塑料薄膜蔬菜大棚.如果不考虑塑料薄膜埋在土里的部分,那么搭建一个这样的蔬菜大棚需用塑料薄膜的面积是( )A.64πm 2B.72πm 2C.78πm 2D.80πm 2图1 2001年至2006年浙江省农村居民人均收入统计图图2颠倒前 颠倒后 图3 图47判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)一个解x 的范围是( ) A.3<x <3.23 B.3.23<x <3.24 C.3.24<x <3.25 D.3.25<x <3.26 8,剪纸是中国的民间艺术.剪纸方法很多,如图5是一种剪纸方法的图示(先将纸折叠,然后再剪,展开后即得到图案): 如图6所示的四副图案,不能用上述方法剪出的是( ) 9,在一个V 字形支架上摆放了两种口径不同的试管,如图7,是它的轴截面,已知⊙O 1的半径是1,⊙O 2的半径是3,则图中阴影部分的面积是( )A.π438-B.π61134-C.π234-D.π31138-10,抛物线y =ax 2+bx +c 的图象大致如图所示,有下列说法:①a >0,b <0,c <0;②函数图象可以通过抛物线y =ax 2向下平移,再向左平移得到;③直线y =ax +b 必过第一、二、三象限;④直线y =ax +c 与此抛物线有两个交点,其中正确的有( )个A.1B.2C.3D.4试卷II (非选择题,共120分)二、填空题(每小题3分,共24分)11,根据国家统计局5月23日发布的公告显示,2006年一季度GDP 值为43390亿元,其中第一、第二、第三产业所占比例如图9所示,根据图中数据可知,今年一季度第一产业A B C D 图6图8 图5图7的GDP 值约为________亿元(结果精确到0.01).12,如图10,有两棵树,一棵高10m ,另一棵高4m ,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行 m.13,a ,b ,c ,d 为实数,先规定一种新的运算:a b c d =ad -bc ,那么2(1)x 45=18时,x =______.14,如图11,O 为矩形ABCD 的中心,将直角三角板的直角顶点与O 点重合,转动三角板使两直角边始终与BC 、AB 相交,交点分别为M 、N ,如果AB =4,AD =6,OM =x ,ON =y ,则y •与x 的关系是___.15,假定有一排蜂房,形状如图12,一只蜜峰在左下角,由于受了点伤,只能爬行,不能飞,而且始终向右方(包括右上、右下)爬行,从一间蜂房爬到右边相邻的蜂房中去.例如,蜜蜂爬到1号蜂房的爬法有:蜜蜂→1号;蜜蜂→0号→1号共有2种不同的爬法,若蜜蜂从最初位置爬到4号蜂房共有n 种不同爬法,则n 等于___.16,等腰△ABC 的底边BC =8cm ,腰长AB =5cm ,一动点P 在底边上从点B 开始向点C 以0.25cm/秒的速度运动,当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为 秒.17,如图13,从卫生纸的包装纸上得到以下资料:两层300格,每格11.4cm×11cm ,图甲.用尺量出整卷卫生纸的半径(R )与纸筒内芯的半径(r ),分别为5.8cm 和2.3cm ,图乙.那么该两层卫生纸的厚度为 cm.(π取3.14,结果精确到0.001cm )18,按如图14所示的规律摆放三角形:则第(4)堆三角形的个数为_______;第(n )堆三角形的个数为_______.图10 图11图9图12 (3)(2)(1)图14 甲 图13 乙三、解答题(每题6分,共24分)19,解不等式组3(21)42132 1.2x x x x ⎧--⎪⎪⎨+⎪>-⎪⎩≤,把解集表示在数轴上,并求出不等式组的整数解.20,如图15,小丽在观察某建筑物AB .(1)请你根据小亮在阳光下的投影,画出建筑物AB 在阳光下的投影.(2)已知小丽的身高为1.65m ,在同一时刻测得小丽和建筑物AB 的投影长分别为1.2m和8m ,求建筑物AB 的高.21,小强和小新都喜爱如图16所示的三幅手机彩屏图片,假定他俩各为自己的手机从中随机选取一幅图片,试用树状图或列表法求小强和小新都选中小鸟图片的概率.22,如图17,在Rt △ABC 中,∠C =90°,∠A =60°,AB =12cm ,若点P 从B 点出发以2cm/秒的速度向A 点运动,点Q 从A 点出发以1cm/秒的速度向C 点运动,设P 、Q 分别从B 、A 同时出发,运动时间为t 秒.解答下列问题: (1)用含t 的代数式表示线段AP ,AQ 的长;(2)当t 为何值时△APQ 是以PQ为底的等腰三角形?(3)当t 为何值时PQ ∥BC ?四、解答题(共72分)23,如图18,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连结BE 、DG . (1)观察猜想BE 与DG 之间的大小关系,并证明你的结论.(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程;若不存在,请说明理由.图15A CB P Q 图17图18 卡通人物 花 小鸟 图1624,美丽的东昌湖赋于江北水城以灵性,周边景点密布.如图19,A ,B 为湖滨的两个景点,C 为湖心一个景点.景点B 在景点C 的正东,从景点A 看,景点B 在北偏东75°方向,景点C 在北偏东30°方向.一游客自景点A 驾船以每分钟20米的速度行驶了10分钟到达景点C ,之后又以同样的速度驶向景点B ,该游客从景点C 到景点B 需用多长时间(精确到1分钟)?25,已知反.比例函数y =kx的图象经过点P (2,2),函数y =ax +b 的图象与直线y =-x 平行,并且经过反比例函数图象上一点Q (1,m ). (1)求出点Q 的坐标;(2)函数y =ax 2+bx +25k k有最大值还是最小值?这个值是多少? 26,已知:三角形ABC 中,∠A =90°,AB =AC ,D 为BC 的中点.(1)如图20,E ,F 分别是AB ,AC 上的点,且BE =AF ,求证:△DEF 为等腰直角三角形.(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE =AF ,其他条件不变,那么,△DEF 是否仍为等腰直角三角形?证明你的结论. 27,已知甲、乙两辆汽车同时..、同方..向从同一地点....A 出发行驶. (1)若甲车的速度是乙车的2倍,甲车走了90千米后立即返回与乙车相遇,相遇时乙车走了1小时.求甲、乙两车的速度.(2)假设甲、乙每辆车最多只能带200升汽油,每升汽油可以行驶10千米,途中不能再加油,但两车可以互相借用对方的油,若两车都必须沿原路返回到出发点A ,请你设计一种方案使甲车尽可能地远离出发点A ,并求出甲车一共行驶了多少千米?.28,如图21,已知⊙O 的弦AB 垂直于直径CD ,垂足为F ,点E 在AB 上,且EA =EC . (1)求证:AC 2=AE ·AB ;(2)延长EC 到点P ,连结PB ,若PB =PE ,试判断PB 与⊙O 的位置关系,并说明理由.29,如图22,在等腰梯形ABCD 中,AB =DC =5,AD =4,BC =10. 点E 在下底边BC图20图21上,点F 在腰AB 上.(1)若EF 平分等腰梯形ABCD 的周长,设BE 长为x ,试用含x 的代数式表示△BEF 的面积;(2)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时分成1∶2的两部分?若存在,求出此时BE 的长;若不存在,请说明理由. 参考答案:一、1,B ;2,C ;3,B ;4,D ;5,A ;6,A ;7,C ;8,C ;9,D ;10,C .二、11,3241.23;12,10;13,根据题意,得10-4(1-x )=18.解得x =3;14,y=32x ;15,8;16,7或25;17,0.026;18,14;3n +2. 三、19,由第一个不等式,得x ≥-54,由第二个不等式,得x <3.所以原不等式组的解集为-54≤x <3.数轴表示略.不等式组的整数解是-1、0、1、2.20,(1)如图.(2)如图,因为DE ,AF 都垂直于地面,且光线DF ∥AC ,所以Rt △DEF ∽Rt △ABC .所以DE EF AB BC =.所以1.65 1.28AB =.所以AB =11(m ).即建筑物AB 的高为11m .21,表或树图略.P (两人都选小鸟)=19. 22,(1)由已知条件易知AC =6cm ,BP =2t ,AP =12-2t ,AQ =t ,(2)由AP =AQ ,即12-2t =t ,得t =4,即当t =4秒时△PCQ 是等腰三角形.(3)当AQ ∶AC =AP ∶AB 时PQ ∥BD ,即t ∶6=(12-2t )∶12,解得t =3.即当t =3秒时,PQ ∥BD .四、23,(1)BE =DG .证明:因为四边形ABCD 和四边形ECGF 都是正方形,所以BC =DC ,EC =GC ,∠BCE =∠DCG =90°.所以△BCE ≌△DCG .所以BE =DG .(2)存在,它们是Rt △BCE 和Rt △DCG .将Rt △BCE 绕点C 顺时针旋转90°,可与Rt △DCG 完全重合.24,根据题意,得AC =20×10=200.过点A 作AD 垂直于直线BC ,垂足为D .在Rt △ADC 中,AD =AC ×cos ∠CAD =200×cos30°=DC =AC ×sin ∠CAD =200×sin30°=100.在Rt △ADB 中,DB =AD ×tan ∠BAD =100×tan75°.所以CB =DB -DC =tan75°-100.所以20CB=-5≈27.即该游客自景点C 驶向景点B 约需27分钟.图2225,(1)因为点P (2,2)在反比例函数y =kx的图像上,所以k =4,所以反比例函数的解析式为y =4x, 又因为点Q (1,m )在反比例函数的图像上,所以m =4,所以Q 点的坐标为(1,4),(1)因为函数y =ax +b 与y =-x 的图像平行,所以a =-1,将Q 点坐标代入y =-x +b 中,得b =5.所以y =ax 2+bx +25k k -=-x 2+5x -214=-252x ⎛⎫- ⎪⎝⎭+1,所以所求函数有最大值,当x =52时,最大值为1. 26,证明:①连结AD .因为AB =AC ,∠BAC =90°,D 为BC 的中点,所以AD ⊥BC ,BD =AD ,所以∠B =∠DAC =45°.又BE =AF ,所以△BDE ≌△ADF ,所以ED =FD ,∠BDE =∠ADF ,所以∠EDF =∠EDA +∠ADF =∠EDA +∠BDE =∠BDA =90°,所以△DEF 为等腰直角三角形,②若E ,F 分别是AB ,CA 延长线上的点,如图所示.连结AD . 因为AB =AC ,∠BAC =90°,D 为BC 的中点,所以AD =BD ,AD ⊥BC ,所以∠DAC =∠ABD =45°, 所以∠DAF =∠DBE =135°,又AF =BE ,所以△DAF ≌△DBE ,所以FD =ED ,∠FDA =∠EDB ,所以∠EDF =∠EDB +∠FDB =∠FDA +∠FDB =∠ADB =90°,所以△DEF 仍为等腰直角三角形.27,(1)设甲,乙两车速度分别是x 千米/时和y 千米/时, 根据题意,得2,1190 2.x y x y =⎧⎨⨯+⨯=⨯⎩解之,得120,60.x y =⎧⎨=⎩即甲、乙两车速度分别是120千米/时、60千米/时.(2)方案一:设甲汽车尽可能地远离出发点A 行驶了x 千米,乙汽车行驶了y 千米,则200102,20010.x y x y +⨯⨯⎧⎨-⨯⎩≤≤所以2x ≤200×10×3,即x ≤3000.即甲、乙一起行驶到离A 点500千米处,然后甲向乙借油50升,乙不再前进,甲再前进1000千米返回到乙停止处,再向乙借油50升,最后一同返回到A 点,此时,甲车行驶了共3000千米.方案二(画图法):如图此时,甲车行驶了500×2+1000×2=3000(千米).方案三:先把乙车的油均分4份,每份50升.当甲乙一同前往,用了50升时,甲向乙借油50升,乙停止不动,甲继续前行,当用了100升油后返回,到乙停处又用了100升油,此时甲没有油了,再向乙借油50升,一同返回到A 点.此时,甲车行驶了50×10×2+100×10×2=3000(千米).28,(1)连结BC .因为AB ⊥CD ,CD 为⊙O 的直径,所以BC =AC ,所以∠1=∠2,又因为AE =CE ,所以∠1=∠3,所以△AEC ∽△ACB .所以ACAEAB AC =,即AC 2=AB ·AE .(2)PB 与⊙O 相切.连结OB ,因为PB =PE ,所以∠PBE =∠PEB ,因为∠1=∠2=∠3,所以∠PEB =∠1+∠3=2∠1,而∠PBE =∠2+∠PBC ,所以∠OBC =∠OCB ,而Rt △BCF 中,∠OCB =90°-∠2=90°-∠1,所以∠OBC =90°-∠1,所以∠OBP =∠OBC +∠PBC =∠1+(90°-∠1)=90°,所以PB ⊥OB ,即PB 为⊙O 的切线.29,(1)由已知条件得:梯形周长为12,高4,面积为28.过点F 作FG ⊥BC 于G 过点A 作AK ⊥BC 于K 则可得:FG =125x -×4,所以S △BEF =12BE ·FG =-25x 2+245x (7≤x ≤10).(2)存在.由(1)得-25x 2+245x =14,得x 1=7,x 2=5(不合舍去),所以存在线段EF 将等腰梯形ABCD 的周长与面积同时平分,此时BE =7.(3)不存在.假设存在,显然是S △BEF ∶S AFECD =1∶2,(BE +BF )∶(AF +AD +DC )=1∶2 ,则有-25x 2+245x =285,整理,得3x 2-24x +70=0,此时求根公式有被开方式为576-840<0,所以不存在这样的实数x .即不存在线段EF 将等腰梯形ABCD 的周长和面积,同时分成1∶2的两部分.D。
2008年安徽省中考数学试卷含答案

2008年安徽省中考数学试卷注意事项:本卷共八大题,计23小题,满分150分,考试时间120分钟 一、选择题(本题共10 小题,每小题4 分,满分40分)1.-3的绝对值是…………………………………………………………………………………………【 】A.3B.-3C.13D. 13-2. 下列多项式中,能用公式法分解因式的是…………………………………………………………【 】A.x 2-xyB. x 2+xyC. x 2-y 2D. x 2+y 23. 2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学计数法可表示为………………………………………………【 】A.0.135×106B.1.35×106C.0.135×107D.1.35×1074.如图,在⊙O 中,∠ABC=50°,则∠AOC 等于……………………………………………………【 】 A.50° B.80° C.90° D. 100°5. 分式方程112x x =+的解是…………………………………………………………………………【 】A. x=1B. x=-1C. x=2D. x=-26.如图是某几何体的三视图及相关数据,则判断正确的是…………………………………………【 】 A. a >c B. b >c C. 4a 2+b 2=c 2 D. a 2+b 2=c 2第6第92003-2007年粮食产品及其增长速度 比上年增长粮食产量0.72.93.19.0-5.85015049800484024694743070%42000400002520151050-5-10第4题图OACB7.函数kyx=的图象经过点(1,-2),则k的值为…………………………………………………【】A. 12B.12- C. 2 D. -28. 某火车站的显示屏,每隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏上正好显示火车班次信息的概率是……………………………………………………………【】A.16B.15C.14D.139. 如图是我国2003~2007年粮食产量及其增长速度的统计图,下列说法不正确...的是…………【】A.这5 年中,我国粮食产量先增后减B.后4年中,我国粮食产量逐年增加C.这5 年中,我国粮食产量年增长率最大D.这5 年中,我国粮食产量年增长率最小10.如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN等于…………………【】A.65B.95C.125D.165二、填空题(本题共 4 小题,每小题 5 分,满分20 分)11. 化简()24-=_________12.如图,已知a∥b,∠1=70°,∠2=40°,则∠3= __________。
2008中考数学模拟试卷(四)

2008年中考数学模拟试卷(四)(总分150分,时间120分钟)本试卷分试卷I (选择题)和试卷II (非选择题)两部分.试卷I (选择题,共30分)一、选择题(每小题3分,共30分)1,计算(-3)2,结果正确的是( )A.-9B.9C.-6D.62,一个盒子中装有标号为1,2,3,4的四张卡片,采用有放回的方式取出两张卡片,下列事件中,是必然事件的是( )A.和为奇数B.和为偶数C.和大于5D.和不超过83,已知α为等边三角形的一个内角,则cosα等于( ) A.21 B.22 C.23 D.33 4,如图1,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( )A.点AB.点BC.点CD.点D5,在等腰梯形ABCD 中,AB ∥DC ,AD =BC =5,DC =7,AB =13,点P 从点A 出发,以3个单位/s 的速度沿AD →DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.在运动期间,当四边形PQBC 为平行四边形时,运动时间为( )A.3sB.4sC.5sD.6s6,为了弘扬雷锋精神,某中学准备在校园内建造一座高2m 的雷锋人体雕像,向全体师生征集设计方案.小兵同学查阅了有关资料,了解到黄金分割数常用于人体雕像的设计中。
如图是小兵同学根据黄金分割数设计的雷锋人体雕像的方案,其中雷锋人体雕像下部的设计高度(精确到0.01m)是( )A.0.62mB.0.76mC.1.24mD.1.62m7,如图4,在正方形铁皮上(图①)剪下一个圆形和扇形,使之恰好围成(图②)所示的一个圆锥模型,该圆的半径为r ,扇形的半径为R ,则圆的半径与扇形的半径之间的关系为( )A.R =2rB. R =94 rC. R =3rD.R =4r8,如图5所示,观察硝酸钾和氯化铵在水里的溶解度,下列叙述不正确的是( )A.硝酸钾的溶解度比氯化铵的溶解度大B.约26℃时二者的溶解度相等图1 A B Q 图2 图3C.温度为10℃时氯化铵的溶解度大D.温度为40℃时,硝酸钾的溶解度大.9,如图6,请根据图中给出的信息,可得正确的方程是() A.π×282⎛⎫ ⎪⎝⎭x =π×262⎛⎫ ⎪⎝⎭×(x +5) B.π×282⎛⎫ ⎪⎝⎭x =π×262⎛⎫ ⎪⎝⎭×(x -5) C.π×82×x =π×62×(x +5) D.π×82×x =π×62×510,如图7,△ABC 中,∠C =90°,AC =8cm ,AB =10cm ,点P 由点C 出发以每秒2 cm 的速度沿线CA 向点A 运动(不运动至A 点),⊙O 的圆心在BP 上,且⊙O 分别与AB 、AC 相切,当点P 运动2秒钟时,⊙O 的半径是( ) A.712cm B.512cm C.35cm D.2cm试卷II (非选择题,共120分)二、填空题(每小题3分,共24分)11,不等式:2x +6<0的解集是_________.12,抛物线y =x 2+4x -3的顶点坐标是 __.13,一个小正方体的6个面上的数字分别为1、2、3、4、5、6,抛出小正方体,小正图5 图78㎝老乌鸦,我喝不到大量筒中的水!x ㎝ 小乌鸦,你飞到装有相同水量的小量筒,就可以喝到水了!图 6图4② ①方体落地后,面朝上的数字为偶数的概率是_______.14,已知⊙O 的半径为1,点P 到圆心O 的距离为2,过点P 引⊙O 的切线,那么切线长是________.15,如图8,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字,若左图轮子上方的箭头指着的数字为a ,右图轮子上方的箭头指着的数字为b ,数对(a ,b )所有可能的个数为n ,其中a +b 恰为偶数的不同数对的参数为m ,则m n等于_______. 16,在五环图案内,分别填写五个数a ,b ,c ,d ,e ,如图9,其中a ,b ,c 是三个连续偶数(a <b ),d ,e 是两个连续奇数(d <e ),且满足a +b +c =d +e ,例如:如图10.请你在0到20之间选择另一组符合条件的数填入如图11.17,如图12,观察表一,寻找规律,表二、表三、表四分别从表一中截取一部分,其中a 、b 、c 的值分别为___.18,某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则│x -y │的值为___.三、解答题(每题6分,共24分)19,已知:a =2,求(1+11 a )·(a 2-1)值. 20,按规定尺寸作出如图13所示图形的三视图.21,如图14,CD ,EF 表示高度不同的两座建筑物,已知CD 高15米,小明站在A 处,视线越过CD ,能看到它后面的建筑物的顶端E ,此时小明的视角∠F AE =45°,为了能看到建筑物EF 上点M 的位置,小明延直线F A 由点A 移动到点N 的位置,此时小明的视角∠FNM=30°,求AN 之间的距离.NM F图14图10 图11图9 图8 图12 图1322,在“3.15”消费者权益日的活动中,对甲、乙两家商场售后服务的满意度进行了抽查. 如图15反映了被抽查用户对两家商场售后服务的满意程度(以下称:用户满意度),分为很不满意、不满意、较满意、很满意四个等级,并依次记为1分、2分、3分、4分.(1)请问:甲商场的用户满意度分数的众数为 ;乙商场的用户满意度分数的众数为 .(2)分别求出甲、乙两商场的用户满意度分数的平均值(计算结果精确到0.01).(3,并简要说明理由.四、解答题(共72分)23,暑假期间,小亮到邢台寒山风景区——景区主峰寒山垴(为邢台市太行山段最高峰,位于内邱县境内)旅游,导游提醒大家上山要多带一件衣服,并介绍山区气温会随着海拔高度的增加而下降,沿途小亮利用随身带的登山表(具有测定当前的位置的海拔高度和气温等(1.(2)观察(1)中所画出的图像,猜想y 与x 之间函数关系,求出所猜想的函数关系表达式.(3)如果小亮到达山顶时,只告诉你山顶的气温为20.2℃,你能计算寒山垴海拔高度大约是少米?24,在不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其很不满意 较满意图15y (°C)图16中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为12. (1)试求袋中蓝球的个数.(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.25,如图17,给出五个条件:①AE 平分∠BAD ;②BE 平分∠ABC ;③E 是CD 的中点,④AE ⊥EB ;⑤AB =AD +BC .(1)请你以其中三个作为命题的条件,写出一个能推出AD ∥BC 的正确命题,并加以说明;(2)请你以其中三个作为命题的条件,写出一个不一定能推出AD ∥BC 的正确命题,并举例说明.26,如图18,等腰三角形ABC 中,AC =BC =10,AB =12.以BC 为直径作⊙O 交AB 于点D ,交AC 于点G ,DF ⊥AC ,垂足为F ,交CB 的延长线于点E .(1)求证:直线EF 是⊙O 的切线;(2)求sin ∠E 的值.27,如图19,E 、F 、M 、N 是正方形ABCD 四条边AB 、BC 、CD 、DA 上可以移动的四个点,每组对边上的两个点,可以连接成一条线段.(1)如图20,如果EF ∥BC ,MN ∥CD ,那么EF MN (位置),EF MN (大小)(2)如图21,如果E 与A ,F 与C ,M 与B ,N 与D 重合,那么EF MN (位置),EF MN (大小).(3)当点E 、F 、M 、N 不再处于正方形ABCD 四条边AB 、BC 、CD 、DA 特殊的位置时,猜想线段EF 、MN 满足什么位置关系时,才会有EF =MN ,画出相应的图形,并证明你的猜想.28,某污水处理公司为学校建一座三级污水处理池,平面图形为矩形,面积为200平方米(平面图如图22所示的ABCD ).已知池的外围墙建造单价为每米400元.中间两条隔墙建造单价每米300元,池底建造的单价为每平方米80元(池墙的厚度不考虑)(1)如果矩形水池恰好被隔墙分成三个正方形,试计算此项工程的总造价(精确到100元)(2)如果矩形水池的形状不受(1)中长、宽的限制,问预算45600元总造价,能否F D 图20(N ) (F ) (E ) 图21 A B C D E 图17图18E D 图19完成此项工程?试通过计算说明理由.(3)请给出此项工程的最低造价(多出部分只要不超过100元就有效).29,已知抛物线C 1:y =-x 2+2mx +n (m ,n 为常数,且m ≠0,n >0)的顶点为A ,与y 轴交于点C ,抛物线C 2与抛物线C 1关于y 轴对称,其顶点为B ,连结AC 、BC 、AB .(1)写出抛物线C 2的解析式;(2)当m =1时,判定△ABC 的形状,并说明理由;(3)抛物线C 1是否存在点P ,使得四边形ABCP 为菱形?如果存在,请求出m 的值;如果不存在,请说明理由.参考答案:一、1,B ;2,D ;3,A ;4,B ;5,A ;6,C ;7,D ;8,A ;9,A ;10,A .提示:PC =2×2=4cm 设⊙O 与AC 、AB 分别切于D 、E ,连OD 、OE .过O 作OF ⊥BC 于F ,连OA 、OC .设⊙O 的半径为r ,则OD =OE =r .显然OF ∥AC . 所以OF BF CP BC =.即646OF r -=.所以1223r OF -=,因为⊙O 与AC 、AB 分别切于D 、E ,所以OD ⊥AC ,因为S △OAB +S △OBC +S △OAC =S △ABC AB====10cm ,所以111221110688622322r r r -⨯+⨯⨯+⨯=⨯⨯,解得r =127,因此选A . 二、11,x <-3;12,(-2,-7);13,12;14,15,52;16,如图.等等.提示:因为a ,b ,c 是三个连续偶数(a <b ),所以不妨设a =2n -2,b =2n ,c =2n +2,又d ,e 是两个连续奇数(d <e ),所以不妨d =2m -1,e =2m +1.因为a +b +c =d +e ,所以2n -2+2n +2n +2=2m -1+2m +1,即3n =2m .由于m 、n 在0到20之间,所以答案不惟一.如,当n =4,m =6,所以a =6,b =8,c =10,d =11,e =13;17,18、30、28;18,4.提示:由题意得x +y =20,(x -10)2+(y -10)2=8.不必直接求出x ,y ,只要求│x -y │,设x =10+t ,y =10-t ,│x -y │=2│t │=4.三、19,原式=1-a a (a +1)(a -1)=a (a +1)=a 2+a .当a =2时,原式=a 2+a =22+2=6.20,如图:8 10 11 136主视图 左视图 俯视图A D 隔 隔 墙 墙BC 图2221,在Rt△ADC中,∠DAC=45°,CD=15cm,所以AD=CD=15cm,在Rt△NDC中,∠DNC=30°,CD=15cm,所以DN=,所以AN=DN-DA=15=)151cm.答:所求AN之间的距离为)151cm.22,(1)3;3.(2)甲商场抽查用户数为:500+1000+2000+1000=4500(户)乙商场抽查用户数为:100+900+2200+1300=4500(户).所以甲商场满意度分数的平均值=14500(500×1+1000×2+2000×3+1000×4)≈2.78(分),乙商场满意度分数的平均值=14500(100×1+900×2+2200×3+1300×4)≈3.04(分).答:甲、乙两商场用户满意度分数的平均值分别为2.78分、3.04分.(3)因为乙商场用户满意度分数的平均值较高(或较满意和很满意的人数较多),所以乙商场的用户满意度较高.四、23,(1)图略.(2)y=-0.006x+31.(3)1800米.24,(1)设蓝球个数为x个.则由题意得221x++=12,解得x=1,即蓝球有1个.(2)数状图或列表略.两次摸到都是白球的概率=212=16.25,(1)①、②、⑤⇒AD∥BC.证明:在AB上取点M,使AM=AD,连结EM,可证△AEM≌△AED,△BEM≌△BCE,所以∠D=∠AME,∠C=∠BME,故∠D+∠C=∠AME+∠BME=180°,所以AD∥BC. (2)①、②、③⇒AD∥BC为假命题反例:△ABM 中,E是内心,过E作DC⊥EM,显然有,AE平分∠BAM,BE平分∠ABM,ED=EC,但AD不平分于BC.26,(1)连结OD、CD.证OD∥AC.(2)连结BG.利用勾股定理求得CD=8,利用面积关系求得BG=485,再由勾股定理求得CG=145,所以sin∠E=sin∠CBG=725.27,(1)EF⊥MN,EF=MN;(2)EF⊥MN,EF=MN;(3)猜想:当EF⊥MN时,才会有EF=MN,如图,连接EF,作EF⊥MN.证明猜想:过点N作NG⊥BC,过点F作FH⊥AB,又EF⊥MN,在Rt△MNG和Rt△EFH中,∠MGN=∠EHF=90°,FH=NG,所以Rt△MNG≌ Rt△EFH,所以EF=MN.28,(1)设AB=x,则AD=3x,依题意3x2=200,x≈8.165.设总造价W元. W=8x×400+2x×300+200×80=3800x+16000=47000(元).(2)设AB=x,则AD=200x.所以(2x+200x×2)×400+2x×300+80×200=45600.整理,得7x2-148x+800=0.此时求根公式中的被开方式=-496<0,所以此方程无实数解,即预算45600元不能完成此项工程.(3)估算:造价45800元. (2x+400x)×400+600x+16000=45800.整理,得7x2-149x+800=0.此时求根公式中的被开方式=-199<0,仍不够.造价46000元,同法可得7x2-150x+800=0.此时求根公式中的被开方式=100>0,够了.造价45900元,可得求根公式中的被开方式=-49.75<0,不够.最低造价为46000元.29,(1)y=-x2-2mx+n.(2)当m=1时,△ABC为等腰直角三角形.理由如下:因为点A与点B关于y轴对称,点C又在y轴上,AC=BC,过点A作抛物线C的对称轴交x 轴于D.过点C作CE⊥AD于E.当m=1时,顶点A的坐标为A(1,1+n),CE=1,又点C 的坐标为(0,n),AE=1+n-n=1,所以AE=CE,∠ECA=45°,∠ACy=45°,由对称性知∠BCy =45°,∠ACB =90°,所以△ABC 为等腰直角三角形.(3)假设抛物线C ,上存在点P ,使得四边形ABCP 为菱形,则PC =AB =BC ,由(2)知,AC =BC ,AB =BC =AC ,从而△ABC 为等边三角形,所以∠ACy =∠BCy =30°.又四边形ABCP 为菱形,且点P 在C 1上,点P 与点C 关于AD 对称,PC 与AD 的交点也为E ,∠ACE=90°-30°=60°,点A 、C 的坐标分别为A (m ,m 2+n ),C (0,n ),AE 2=m 2+n -n =m 2,CE =│m │,在Rt •△ACE 中,tan60°=2||AE m CE m │m │所以m抛物线C 上存在点P ,使得四边形ABCP 为菱形.此时m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学一模答题卷第 页(共4页)
1
20年中考模拟(一)
数学答题卷
题号 选择 填空 17 18 19 20 21 22 23 24 总分
分值 30 24 6 6 6 8 8 10 10 12 120
得分
阅卷
签名
一、选择题 (每小题3分)
题号 1 2 3 4 5 6 7 8 9 10
答案
二、填空题(每小题4分)
11. ; 12. ; ;
13. ; 14. ;
15. ; ; 16. ; ; .
三、解答题 (本题有8个小题,共66分.解答应写出文字说明,证明过程或推演步骤.如果觉得有些题目
有点困难,那么把自己能写出的解答写出一部分也可以)
17.(本小题满分6分)
18.(本小题满分6分)
数学一模答题卷第 页(共4页)
2
19.(本小题满分6分)
20.(本小题满分8分)
(1)
(2)
(3)
21.(本小题满分8分)
数学一模答题卷第 页(共4页)
3
22.(本小题满分10分)
23.(本小题满分10分)
数学一模答题卷第 页(共4页)
4
24.(本小题满分12分)