高二第一学期期中考试数学试卷.doc

合集下载

广东省深圳市深圳中学2023-2024学年高二上学期期中数学试题

广东省深圳市深圳中学2023-2024学年高二上学期期中数学试题

深圳中学2023-2024学年度第一学期期中考试试题年级:高二科目:数学注意事项:答案写在答题卡指定的位置上,写在试题卷上无效。

选择题作答必须用2B 铅笔,修改时用橡皮擦干净。

一、单项选择题(每小题只有一个答案符合题意,共8小题,每小题5分,共40分)1.在等差数列{}n a 中,4820a a +=,712a =,则4a =( ) A .4B .5C .6D .82.在等比数列{}n a 中,若52a =,387a a a =,则{}n a 的公比q =( )A B .2C .D .43.已知两条直线1l :350x y +−=和2l :0x ay −=相互垂直,则a =( ) A .13B .13−C .3−D .34.已知椭圆C 的一个焦点为(1,0,且过点(,则椭圆C 的标准方程为()A .22123x y +=B .22143x y +=C .22132x y +=D .22134x y +=5.在等比数列{}n a 中,24334a a a =,且652a a =,则{}n a 的前6项和为( ) A .22B .24C .21D .276.已知F 是双曲线C :2213x y −=的一个焦点,点P 在C 的渐近线上,O 是坐标原点,2OF PF =,则△OPF 的面积为( )A .1B C D .127.已知椭圆C :22221x y a b+=(0a b >>)的左、右焦点分别为()1,0F c −、()2,0F c ,若椭圆C 上存在一点P ,使得12PF F ∆的内切圆的半径为2c,则椭圆C 的离心率的取值范围是( ) A .30,5B .40,5C .3,15D .4,158.已知双曲线C :22221x y a b−=(0a >,0b >),点B 的坐标为()0,b ,若C 上的任意一点P 都满足PB b ≥,则C 的离心率取值范围是( )A .B .+∞C .(D .)+∞二、多项选择题(共4小题,每小题均有多个选项符合题意,全对得5分,错选得0分,漏选得2分,共20分)9.已知等差数列{}n a 的前n 项和为n S ,51a =,则( ) A .222a a +=B .371a a =C .99S =D .1010S =10,已知圆M :22430x y x +−+=,则下列说法正确的是( ) A .点()4,0在随M 内 B .圆M 关于320x y +−=对称CD .直线0x −=与圆M 相切11.已知双曲线22221x y a b−=(0a >,0b >)的右焦点为F ,过点F 且斜率为k (0k ≠)的直线l 交双曲线于A 、B 两点,线段AB 的中垂线交x 轴于点D .若AB ≥( )A .23BCD 12.若数列{}n a 满足121a a ==,12n n n a a a −−=+(3n ≥),则称该数列为斐波那契数列.如图所示的“黄金螺旋线”是根据斐波那契数列画出来的曲线.图中的长方形由以斐波那契数为边长的正方形拼接而成,在每个正方形中作圆心角为90°的扇形,连接起来的曲线就是“黄金螺旋线”.记以n a 为边长的正方形中的扇形面积为n b ,数列{}n b 的前n 项和为n S .则下列说法正确的是( ):A .821a =B .2023a 是奇数C .24620222023a a a a a ++++=D .2023202320244s a a π=⋅三、填空题(共4小题,每空5分,共20分)13.数列{}n a 的通项公式n a =,若9n S =,则n = .14.已知直线l :y x =被圆C :()()22231x y r −+−=(0r >)截得的弦长为2,则r = . 15.已知椭圆C :22221x y a b+=(0a b >>)的左、右两焦点分别是1F 、2F ,其中122F F c =.椭圆C 上存在一点A ,满足2124AF AF c ⋅=,则椭圆的离心率的取值范围是 .16.已知A ,B 分别是椭圆E :22143x y +=的左、右顶点,C ,D 是椭圆上异于A ,B 的两点,若直线AC ,BD的斜率1k ,2k 满足122k k =,则直线CD 过定点,定点坐标为 .四、解答题(共6小题,17题10分,18-22题12分)17.在平面直角坐标系xOy 中,圆1C :()2214x y ++=与圆2C :()22310x y +−=相交于P ,Q 两点. (1)求线段PQ 的长;(2)记圆1C 与x 轴正半轴交于点M ,点N 在圆2C 上滑动,求2MNC ∆面积最大时的直线MN 的方程. 18.已知等差数列{}n a 的前n 项和为n S ,13a =,{}n b 为等比数列,且11b =,0n b >,2210b S +=,53253S b a =+,*n N ∈. (1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b ⋅的前n 项和n T .19.已知半径为3的圆的圆心在x 轴上,圆心的横坐标是整数,且与直线4370x y −+=相切. (1)求圆的方程;(2)设直线420ax y a −+−=与圆相交于A ,B 两点,求实数a 的取值范围;(3)在(2)的条件下,是否存在实数a ,使得弦AB 的垂直平分线l 过点()3,1P −?若存在,求出实数a 的值;若不存在,请说明理由.20.在平面直角坐标系xOy 中,圆1O :()2221x y ++=,圆2O :()2221x y −+=,点()1,0H ,一动圆M 与圆1O 内切、与圆2O 外切. (1)求动圆圆心M 的轨迹方程E ;(2)是否存在一条过定点的动直线l ,与(1)中的轨迹E 交于A 、B 两点,并且满足HA ⊥HB ?若存在,请找出定点;若不存在,请说明理由.21.已知等差数列{}n a 的前n 项和为n S ,且44a =,数列{}n b 的前n 项之积为n T ,113b =,且()n n S T =.(1)求n T ; (2令nn na cb =,求正整数n ,使得“11n n n c c c −+=+”与“n c 是1n c −,1n c +的等差中项”同时成立; (3)设27n n d a =+,()()112nn nn n d e d d +−+=,求数列{}n e 的前2n 项和2n Y .22.已知椭圆C :22221x y a b+=(0a b >>)的左、右焦点为1F 、2F,12F F =P 为椭圆C 上异于长轴端点的一个动点,O 为坐标原点,直线1PF ,PO ,2PF 分别与椭圆C 交于另外三点M ,Q ,N ,当P 为椭圆上顶点时,有112PF F M =.(1)求椭圆C 的标准方程; (2)求12POF POF PQMPQNs s s s ∆∆∆∆+的最大值。

高二上学期期中考试数学试题 Word版含答案 _1

高二上学期期中考试数学试题 Word版含答案 _1

界首中学2020〜2021学年度高二上期中考试数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写........的答案无效,在试题卷、草稿纸上作答无效.................... 4.本卷命题范围:北师大版必修4(30%),必修5(70%).一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在等差数列{}n a 中,23a =,59a =,则的公差d =( )A.1B.2C.3D.42.不等式()()120x x +->的解集为( )A.()(),21,-∞-⋃-+∞B.()(),12,-∞-⋃+∞C.()2,1--D.()1,2-3.在ABC △中,6AC =,4cos 5B =,4C π=,则AB 的长为( )A. B.D.54.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若2a =,c =45A =︒,则b 的长为( )1 11D.15.已知某扇形的弧长为32π,圆心角为2π,则该扇形的面积为( ) A.4πB.6πC.2πD.94π6.下列说法正确的是( ) A.若a b >,c ∈R ,则a cb c > B.若a b >,则22a b > C.若0a b <<,0c d <<,则ac bd <D.若a b <,则11a b>7.已知a ,b 为单位向量,且a ,b 的夹角为3π,则2a b -=( )A.1D.28.设x ,y 满足约束条件2390300x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =+的最大值是( )A.92-B.3C.4D.69.已知函数()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,则( ) A.()f x 的最小正周期为πB.()f x 的单调递増区间为(),26212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z C.()f x 的图象关于直线6x π=对称D.()f x 的图象关于点,024π⎛⎫⎪⎝⎭对称 10.已知等差数列{}n a 的前n 项和为n S ,若3614S S =,则612SS =( )A.18B.726C.14 D.1211.已知正实数a ,b 满足321a b +=,则61a b+的最小值为( ) A.32B.34C.36D.3812.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c,若不等式)22cos 40x A A x -++>的解集为{}x x c ≠且a =B =( )A.6πB.3πC.2πD.23π6323二、填空题:本题共4小题,每小题5分,共20分.13.已知向量4,a m m ⎛⎫= ⎪⎝⎭,(),4b m m =--,若//a b ,则m = .14.已知3a >,则43a a +-的最小值为 . 15.已知()3sin 23cos sin 1f x x x x =-⋅+,若()32f a =,则()f a -= .16.已知首项为2的正项数列{}n a 的前n 项和为n S ,且当2n ≥时,2122n n n S a S -=-,若12nn S m +≤恒成立,则实数m 的取值范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分) 已知02πα<<,且4sin 5α=. (1)求tan α的值;(2)求()()()23sin cos sin cos 2cos sin 3cos 2πααπααπααππα⎛⎫--- ⎪⎝⎭⎛⎫+-++ ⎪⎝⎭的值.18.(本小题满分12分) 在递增的等差数列{}n a 中,2410a a +=,159a a =.(1)求数列{}n a 的通项公式;(2)若11n n n b a a +=,求数列{}n b 的前n 项和n S . 19.(本小题满分12分) 在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且()222sin 2a b c C +-=. (1)求角C 的大小; (2)若4C π>,5c =,ABC △的面积为ABC △的周长.20.(本小题满分12分) 在ABC △中,角A ,B ,C 的对边分别为a ,b ,ca =.(1)求B ;(2)若ABC △的面积为()A C +,4b =,求a 和c .21.(本小题满分12分)已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象的相邻两条对称轴之间的距离为4π,且()23f x f π⎛⎫≤⎪⎝⎭恒成立. (1)求函数()f x 的解析式;(2)将函数()f x 图象上各点的横坐标缩短为原来的12,再向右平移3π个单位长度得到()g x 的图象,求()g x 图象的对称中心.22.(本小题满分12分)已知定义在R 上的函数()f x ,对任意实数1x ,2x 都有()()()12121f x x f x f x +=++,且()11f =. (1)若对任意正整数n ,有112n n a f ⎛⎫=+⎪⎝⎭,求{}n a 的通项公式; (2)若31n b n =+,求数列{}n n a b 前n 项和n S .界首中学2020〜2021学年度高二上期中考试•数学参考答案、提示及评分细则1.B 由题意得113,49a d a d +=⎧⎨+=⎩解得2d =.故选B (或利用n ma a d n m -=-求解).2.D 不等式可化为()()120x x +-<,所以不等式的解集为()1,2-,故选D.3.A ∵4cos 5B =,()0,B π∈,∴3sin 5B =,∴6352=,∴AB =故选A.4.C 由2222cos a b c bc A =+-,得24622b b =+-,即220b -+=,解得1b =.故选C.5.D 扇形的圆心角322l r r ππθ===,所以3r =,则扇形的面积113932224S lr ππ==⨯⨯=.故选D. 6.C 对于A ,当0c =时不成立;对于B ,当(),,0a b ∈-∞时不成立;对于C ,由条件可得0a b ->->,0c d ->->,所以()()()()a c b d -->--,即ac bd >;对于D ,当a ,b 异号时不成立.故选C.7.C ()2223a b a b -=-=.故选C.8.D 画出可行域(图略)知,当l :20x y +=平移到过点()0,3时,max 6z =.故选D. 9.B()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,()f x 的最小正周期为2π,()f x 的单调递增区间为(),26212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,()f x 的图象关于直线()124k x k ππ=+∈Z 对称,()f x 的图象关于点(),0244k k ππ⎛⎫-+∈ ⎪⎝⎭Z 对称.故选B. 10.C 由等差数列的性质知3S ,63S S -,96S S -,129S S -成等差数列,设3S k =,()640S k k =≠,则963339S S S k =-=,129633316S S S S k =-+=,所以61214S S =.故选C. 11.A由a >,b >且321a b +=,得()6161123321822032b a a b a b a b a b ⎛⎫+=++=+++≥+= ⎪⎝⎭,当且仅当123b a a b =,即2a b =时,取等号,此时1418a b ⎧=⎪⎪⎨⎪=⎪⎩.故选A.12.A因为不等式)22cos 40xA A x -++>的解集为{}x x c ≠,所以)24cos 160A A +-=,即216sin 166A π⎛⎫+= ⎪⎝⎭,所以3A π=,2c =.由正弦定理可以知道2sin sin3C π=,所以2C π=.又3A π=,所以6B π=.故选A.13.2 由4,a m m ⎛⎫= ⎪⎝⎭,(),4b m m =--,//a b ,得2440m m -+=,解得2m =. 14.7 因为3a >,所以30a ->,所以44333733a a a a +=+-+≥=--.当且仅当433a a =--,即5a =时等号成立. 15.12 令()3sin 23cos sin g x x x x =-⋅,易证()g x 为奇函数.()()312f a g a =+=,所以()12g a =,所以()()()1112f ag a g a -=-+=-+=. 16.3,4⎡⎫+∞⎪⎢⎣⎭由2n ≥时,2122n n n S a S -=-,21122n n n S a S ++=-,两式相减得221122n n n n a a a a ++=--,整理得()122n n a a n +-=≥,另由2n =时,222122S a S =-,因为12a =,且0n a >,所以24a =,212a a -=,故数列{}n a 是首项为2,公差为2的等差数列,2n a n =,2n S n n =+,21122n n n S n n+++=,由()221111322222n n n n n n n n n S S n n n n -+++-+--=-=,可知12n n S +⎧⎫⎨⎬⎩⎭中当2n =或3n =时为最大项,即最大项32343224S S ==,所以34m ≥. 17.解:(1)因为4sin 5α=,所以3cos 5α===±. 因为02πα<<,所以cos 0α>,则3cos 5α=. 故sin 4tan cos 3ααα==. (2)()()()23sin cos sin cos 2cos sin 3cos 2πααπααπααππα⎛⎫--- ⎪⎝⎭⎛⎫+-++ ⎪⎝⎭22sin cos sin sin sin cos αααααα+=- sin cos tan 1sin cos tan 1αααααα++==--4137413+==-. 18.解:(1)设公差为()0d d >,由题意,得()1112410,49,a d a a d +=⎧⎨+=⎩解得11,2a d =⎧⎨=⎩或19,2.a d =⎧⎨=-⎩(舍)所以()1121n a a n d n =+-=-,所以数列{}n a 的通项公式为()*21n a n n =-∈N .(2)由(1)知()()12121n b n n =-+,所以11122121n b n n ⎛⎫=- ⎪-+⎝⎭,所以1111111112323522121n S n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭111111123352121n n ⎛⎫=-+-++- ⎪-+⎝⎭11122121n n n ⎛⎫=-= ⎪++⎝⎭. 19.解:(1)因为()222sin a bcC +-=,且2222cos a b c ab C +-=, 所以2cos sin 2ab C C ab =, 所以sin 22C =.又0C π<<,所以23C π=或23π,所以6C π=或3π. (2)由(1)及4C π>,得3C π=.因为1sin 2ABC S ab C ==△8ab =. 又()22222cos 3c a b ab C a b ab =+-=+-, 所以()223252449a b c ab +=+=+=.所以7a b +=,所以12a b c ++=. 即ABC △的周长为12. 20.解(1sinA =,因为sin 0A ≠,所以sin cos B B =,所以sin cos 4B B B π⎛⎫+=+= ⎪⎝⎭sin 14B π⎛⎫+= ⎪⎝⎭,则42B ππ+=,所以4B π=.(2)ABC △的面积()1sin 82S ac B A C ===+=,ac = 由4b =,得22162cos a c ac B =+-,即2248a c +=,解得a =4c =或4a =,c =21解:(1)因为函数()f x 图象的相邻两条对称轴之间的距离为4π, 所以函数()f x 的最小正周期是8π.所以28ππω=,解得14ω=. 所以()12sin 4f x x ϕ⎛⎫=+⎪⎝⎭.因为()23f x f π⎛⎫≤ ⎪⎝⎭恒成立,所以2122sin 2343f ππϕ⎛⎫⎛⎫⎛⎫=⨯+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,得()262k k ππϕπ+=+∈Z ,解得()23k k πϕπ=+∈Z .由2πϕ<知,3πϕ=,所以()2sin 43x f x π⎛⎫=+ ⎪⎝⎭. (2)将()f x 的图象上各点的横坐标缩短为原来的12,再向右平移3π个单位长度后得到()2sin 26g x x π⎛⎫+ ⎝=⎪⎭的图象.由()26x k k ππ+=∈Z ,得()23x k k ππ=-+∈Z . 所以函数()g x 图象的对称中心为()2,03k k ππ⎛⎫-+∈ ⎪⎝⎭Z . 22.解:(1)令1212x x ==,则()111122f f ⎛⎫==+ ⎪⎝⎭,∴102f ⎛⎫= ⎪⎝⎭,11112a f ⎛⎫=+= ⎪⎝⎭. ∵1111111111112*********n n n n n n n a f f f f a +++++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+=++=+=+=⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,∴112n n a a +=, ∴{}n a 为以1为首项,12为公比的等比数列,∴()*112n n a n -=∈N . (2)∵1312n n n n a b -+=, ∴21471031S 1222n n n -+=++++①, 由①12⨯,得23147103122222n nn S +=++++②, 由①-②,得21133331422222n n n n S -+=++++-1131374317222n n nn n -++⎛⎫=+--=- ⎪⎝⎭, ∴137142n n n S -+=-.。

高二上学期期中考试数学试卷Word版含答案

高二上学期期中考试数学试卷Word版含答案

2019学年度第一学期期中质量调研高二数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“2R,0x x ∀∈≥”的否定为( )A .2R,0x x ∀∉≥ B .2R,0x x ∀∈< C .2R,0x x ∃∈≥ D .2R,0x x ∃∈< 2.已知函数()()40f x x x x=+<,则下列结论正确的是( ) A .()f x 有最小值4 B .()f x 有最大值4 C .()f x 有最小值-4 D .()f x 有最大值-43.已知数列{}n a 的首项11a =,且满足11133n n a a +=+,则此数列的第三项是( )A .1B .13 C . 23 D .594.已知,a b 为实数,M <,:N a b <,则M 是N 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件5.关于x 的不等式1026xx -≥+的解集是( )A .{}|1x x ≤B .{}|3x x >-C .{}|31x x -<≤D .{}|31x x x <-≥或 6.已知,a b 为非零实数,且0a b -≥,则下列结论一定成立的是( )A .22a b ≥B .22ab ba ≥C .2211ab ba ≥ D .b aa b≥ 7.已知数列{}n a ,其任意连续的四项之和为20,且1238,7,2a a a ===,则2020a =( )A .2B .3C .7D .8 8.“[]21,2,10x ax ∃∈+≤”为真命题的充分必要条件是( )A .1a ≤-B . 14a ≤-C .2a ≤-D .0a ≤9.已知实数12,,,x x m n 满足12,x x m n <<,且()()()()11220,0m x n x m x n x --<--<,则下列结论正确的是( )A .12m x x n <<<B .12m x n x <<<C .12x m x n <<<D .12x m n x <<<10.已知数列{}n a 、{}n b 均为等差数列,其前n 项和分别记为n A 、n B ,满足4123n n A n B n +=+,则57a b 的值为( ) A .2117 B .3729 C .5329 D .413111.设正实数,x y 满足21x y +=,则2xx y+的最小值为( ) A .4 B .6 C .7 D .812.已知数列{}n a 的通项2020220212nn na -=-,且存在正整数,T S 使得T n S a a a ≤≤对任意的*N n ∈恒成立,则T S +的值为( )A .15B .17C .19D .21二、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卷中的横线上.13.在各项均为正数的等比数列{}n a 中,若4681016a a a a =,则21115a a 的值为 .14.函数()()22111f x x x x =+>-的最小值为 . 15.已知数列{}n a 满足112a =,()()111n n n n n n a a a a +++-=,则该数列{}n a 的通项公式n a = .16.已知关于x 的不等式()22434x ax -≤的解集中的整数解恰好有三个,则实数a 的取值范围是 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知数列{}n a 是一个公差为)0(≠d d 的等差数列,前n 项和为n S ,2a 、4a 、5a 成等比数列,且515S =-.(1)求数列{}n a 的通项公式;(2)求数列n S n ⎧⎫⎨⎬⎩⎭的前10项和.18.(本小题满分10分)已知2:2350p x x --≤,()()2:32110q x mx m m -+-+≤.(其中实数2m >)(1)分别求出,p q 中关于x 的不等式的解集M 和N ; (2)若p 是q 的必要不充分条件,求实数m 的取值范围.19.(本小题满分12分)已知函数2()|3|9f x x a x =-+-+. (1)2a =时,解关于x 的不等式()0f x ≥;(2)若不等式()0f x ≤对任意R x ∈恒成立,求实数a 的取值范围.20.(本小题满分12分)已知数列{}n a 中,14a =,()()()2112322n n n n a n a n n ++⋅-+⋅=++⋅.(1)设1nn a b n =+,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S .21.(本小题满分12分)已知某工厂要设计一个部件(如图阴影部分所示),要求从圆形铁片上进行裁剪,部件由三个全等的矩形和一个等边三角形构成,设矩形的两边长分别为,AD y CD x ==(单位:cm ),且要求3y x >,部件的面积是392cm . (1)求y 关于x 的函数表达式,并求定义域;(2)为了节省材料,请问x 取何值时,所用到的圆形铁片面积最小,并求出最小值.22.(本小题满分14分)已知数列{}n a ,11a =,前n 项和为n S ,对任意的正整数n ,都有()21n n S n a =+恒成立.(1)求数列{}n a 的通项公式; (2)已知关于n 的不等式3434222 (21)n n a a a a a a n ---⋅<+对一切*3,N n n ≥∈恒成立,求实数a 的取值范围;(3)已知211n n c a ⎛⎫= ⎪+⎝⎭,数列{}nc 的前n 项和为n T ,试比较n T 与23的大小并证明.常州市“教学研究合作联盟” 2019学年度第一学期期中质量调研高二数学 参考答案一、选择题:1.D2.D3.D4.A5.C6.C7.B8.B9.A 10.B 11.B 12.D 二、填空题: 13.2 14.3 15.1n n + 16.9169,464⎡⎫⎪⎢⎣⎭三、解答题:17.(1)由2a 、4a 、5a 成等比数列得:()()()211134a d a d a d +=++,即215d a d =-,又Q 0d ≠,∴15a =-;…………………………………………………2分 而51545152S a d ⨯=+=-,∴1d =;…………………………………4分 ()116n a a n d n ∴=+-=-,{}n a ∴的通项公式为6n a n =-.…………………………………………5分(2)()2111122n n n n n S na d ⋅--=+=Q ,112n S n n -∴=,………………7分 令n n S c n =,则112n n c c +-=为常数, {}n c ∴是首项为5-,公差为12的等差数列,…………………………8分∴n S n ⎧⎫⎨⎬⎩⎭的前10项和为109155510222⨯-⨯+⨯=-.…………………10分18.(1)()()2235750x x x x --=-+≤,[]5,7M ∴=-;…………2分()()()()232112110x mx m m x m x m -+-+=---+≤⎡⎤⎡⎤⎣⎦⎣⎦,又2m >,211m m ∴->+, []1,21N m m ∴=+-.……………………………………………………5分(2)Q p 是q 的必要不充分条件,N M ∴Ø,即[][]1,215,7m m +--Ø,51721m m -≤+⎧∴⎨≥-⎩,且等号不同时取,…………………………………8分 解得64m -≤≤,又2m >,24m ∴<≤.………………………10分19.(1)2a =时,22390x x -+-+≥,3x ≥时,()()310x x -+≤,13x ∴-≤≤,3x ∴=; 3x <时,()()350x x -+≤,53x ∴-≤≤,53x ∴-≤<;综上所述,不等式的解集为[]5,3-. …………………………………6分 (如果解集中不包含3,扣1分)(2)()0f x ≤恒成立时,2930x a x ---≥恒成立,①3x =时,不等式恒成立,R a ∴∈;……………………………7分 ②3x >时,()()330x x a -+-≥恒成立,30x a ∴+-≥恒成立,6a ∴≤; …………………………………9分③3x <时,()()330x x a -++≥恒成立,30x a ∴++≤恒成立,6a ∴≤-;…………………………………11分综上所述,a 的取值范围是(],6-∞-. ………………………………12分20.(1)()()()2112322n n n n a n a n n ++⋅-+⋅=++⋅Q ,等式两边同时除以()()12n n ++得:1221n n n a an n +-=++,即12n n n b b +-=;………………………………2分 2n ∴≥时,有1212b b -=,2322b b -=...112n n n b b ---=.累加得111222212n n n b b ---==--,又1122ab ==, 2n ∴≥时,2n n b =.…………………………………………………5分又1n =时,12b =也满足上式,*N n ∴∈时,2n n b =.…………6分(2)由(1)可得()12nn a n =+⋅,()123223242...12n n S n ∴=⋅+⋅+⋅+++⋅,()23412223242...12n n S n +∴=⋅+⋅+⋅+++⋅,……………8分()12312222...212n n n S n +∴-=⋅++++-+⋅,…………………10分()11122212212nn n n n ++-=+-+⋅=-⋅-,12n n S n +∴=⋅.…………………………………………………………12分21.(1)234S xy x =⋅+=Q ,2y ∴=,…………3分由y x >得0x <<∴函数的定义域为{|0x x <<.……………………………5分(2)设圆形铁片半径为R ,则面积2S R π=,过圆心O 作CD 的垂线,垂足为E ,交AB 于点F ,连结OD ,则,2x DE OF ==, 22222224x x R OD y ⎛⎫⎛⎛⎫∴==+=+ ⎪ ⎝⎭⎝,221313483x x =++…………………………………………………8分 20x >Q ,由基本不等式得:2222131313483666R OD x x +∴==++≥=,当且仅当221313483x x=,即(2x =∈时,取“=”.∴(2cm ).………………………11分答:当2x =(2cm ). …………………………………………………………………………12分22.(1)2(1)n n S n a =+Q ,2n ∴≥时,()1121n n S n a --=-,12(1)n n n a n a na -∴=+-,即 1(1)(2)n n n a na n --=≥,………2分又110a =≠,0n a ∴≠,1(2)(1)n n a nn a n -∴=≥-, 3212123,,...,121n n a a a na a a n -∴===-, 累乘得2n ≥时,123 (121)n a nn a n =⋅=-,…………………………4分 1n =时,11a =也满足上式,n a n ∴=. …………………………5分(或构造常数列1(2)(1)n n a an n n -=≥-) (2)设()3434222...n na a a f n a a a ---=⋅ 则()()31434122221...n n n n a a a a f n f n a a a a ++⎡----+-=⋅⎢⎣ ()()343411222...1n n n n a a a a a a n ⎡-+---=⋅⎢+⎢⎥⎣⎦3434222...0n n a a a a a a ---=⋅<⎢⎥⎣⎦,()f n ∴在*3,N n n ≥∈上单调递减, …………………………8分()3a f ∴>=a ∴>.…………………………………10分 (3)()22211111111121222n n c a n n n n n n n ⎛⎫⎛⎫⎛⎫===<=- ⎪ ⎪ ⎪++++⋅++⎝⎭⎝⎭⎝⎭, 123...n n T c c c c ∴=++++2311111111111......4422435572n c c c n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=++++<+-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1111112111242231232123n n n n ⎛⎫⎛⎫=++--=-+< ⎪ ⎪++++⎝⎭⎝⎭. 23n T ∴<.…………………………………………………………14分。

高二上学期期中考试数学试题 Word版含答案

高二上学期期中考试数学试题 Word版含答案

高二数学第一学期期中考试本试卷满分150分,考试时间120分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一:选择题(本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是最符合题意的。

)1.若1a b >>,则下列结论不一定成立的是( )A .11a b< B > C .b a a b > D .l o g l o g ba ab >2.已知数列1,,,,…,,…,则3是它的( )A .第22项B .第23项C .第24项D .第28项3.已知129,,,1a a --成等差数列,1239,,,,1b b b --成等比数列,则b 2(a 2-a 1)= ( )A.8B.-8C.±8D.984.已知等差数列}{n a 的前n 项和为n S ,满足95S S =,且01>a ,则n S 中最大的是 ( )A .S 6B .S 7C .S 8D .S 95.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( )A.B. 3C.D.926.设0a >,0b >5a 与5b 的等比中项,则11a b+的最小值为 ( )A .8B .4C .1D .417.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,可求得该女子第3天所织布的尺数为( )A .B .C .D .8.若关于x 的不等式10ax ->的解集是(1)+∞,,则关于x 的不等式(1)(2)0ax x -+≥的解集是( )A .[)2,+-∞B . []2,1- C. (,2)(1,+)-∞-⋃∞ D .(][),21,+-∞-⋃∞ 9.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件)0(921>+=+a aa PF PF 则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段10.已知方程220(0,,0)ax by ab ax by c ab a b c +=++=≠≠>和其中,它们所表示的曲线可能是 ( )A B C D11. 已知2212221(0,0)x y F F a b a b-=>>、分别是双曲线的左、右焦点,以坐标原点O为圆心,1OF 为半径的圆与双曲线在第一象限的交点为P ,则当△PF 1F 2的面积为2a 时,双曲线的离心率为( )A.B. C. D.212.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心,|F M |为半径的圆和抛物线的准线相交,则y 0的取值范围是( ) A .(0,2) B .[0,2] C .(2,+∞) D .[2,+∞)第II 卷(非选择题)(共90分)二.填空题(本题共4个小题,每小题5分,共20分,请将正确答案写在答题纸指定位置上。

高二上学期期中考试数学试卷Word版含答案

高二上学期期中考试数学试卷Word版含答案

数 学 试 题 (2019.11)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、考试号、考试科目填涂在答题卡的相应位置.2. 每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3. 第Ⅱ卷要用钢笔或圆珠笔写在给定答题纸的相应位置,答卷前请将答题纸密封线内的学校、班级、姓名、考试号填写清楚.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“32,10x R x x ∀∈-+≤”的否定是A .32000,10x R x x ∃∈-+>B .32000,10x R x x ∃∈-+≥ C . 不存在32000,10x R x x ∈-+≤ D .32,10x R x x ∀∈-+>2.若实数0<<b a ,则下列不等式中正确的是 A.ba 11< B. ab > C.2>+abb a D. 2b ab <3.在等差数列{}n a 中,1352,10a a a =+=,则7a = A. 5B. 8C. 10D. 144.已知等比数列{}n a 中, 13a =,且1234,2,a a a 成等差数列,则5a = A. 24 B. 48 C. 96 D. 48-5.以双曲线112422=-y x 的焦点为顶点,顶点为焦点的椭圆方程是 A .141622=+y x B .181622=+y x C .141222=+y x D .1121622=+y x 6.已知点(2,1)是直线l 被椭圆141222=+y x 所截得的线段的中点,则直线l 的方程是 A .0732=-+y x B .0132=--y x C .01134=-+y x D .0534=--y x 7.等比数列{}n a 满足3,46574=⋅=+a a a a ,则=+101a a A .328-B . 31-C . 31D .3288.不等式03522<--x x 的一个必要不充分条件是 A. 213<<-x B. 61<<-x C. 021<<-x D. 321<<-x 9.设数列{}n a 满足,11=a 且)(11++∈+=-N n n a a n n ,则数列⎭⎬⎫⎩⎨⎧n a 1前10项和为 A.1120 B. 922 C. 1110 D. 911 10.关于x 的不等式042≥+-ax x 在区间]2,1[上有解,则实数a 的取值范围是 A . )4,(-∞B . )5,(-∞C . ]5,(-∞D .]4,(-∞11.已知直线l 过双曲线:C ()222210,0x y a b a b-=>>的左焦点1F ,分别交C 的左右两支于A ,B 两点,线段AB 的中垂线过C 的右焦点2F ,32π=∠ABF ,则双曲线C 的离心率是A .B .C .7D .312.已知直线AB 过抛物线:C x y 22=的焦点F ,交抛物线于B A ,两点,若点A 的纵坐标取值范围是]2,1[,则点B 的纵坐标取值范围是 A. ]1,2[-- B. ]21,41[--C. ]2,4[--D. ]21,1[--第Ⅱ卷(非选择题,共90分)二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在题中横线上).13.双曲线19422=-x y 的渐近线方程是 ▲ . 14.已知y x ,是两个正实数,且满足xy y x =+2,则y x 2+的最小值是 ▲ . 15. 古代埃及数学中发现有一个独特现象:除23用一个单独的符号表示以外,其它分数都要写成若干个单分数和的形式.例如2115315=+,可这样理解:假定有两个面包,要平均分给5个人,如果每人12,不够,每人 13,余13,再将这13分成5份,每人得115,这样每人分得11315+.形如),3(122+∈≥-N n n n 的分数的分解:211211211,,531574289545=+=+=+,按此规律,=-122n ▲ ),3(+∈≥N n n . 16.已知点S 为椭圆C :2214x y +=上位于x 轴上方的动点,椭圆C 的左、右顶点分别为B A ,,直线,AS BS 与直线6:=x l 分别交于,M N 两点,则线段MN 的长度的最小值为 ▲ . 三、解答题:本大题共6小题,满分70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知等差数列{}n a 的各项为正数,其公差为1,15342-=a a a . (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设)(,22+-∈=N n b n a n ,求数列{}n b 前10项和10S .18.(本小题满分12分)已知函数2()32f x ax x =-+,)0(≠a 若不等式()0f x >的解集为),()1,(+∞-∞b .(Ⅰ)求a ,b 的值;(Ⅱ)解关于x 的不等式04)(2>++-c x c a b x )(R c ∈.19. (本小题满分12分)某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p (万元)和宿舍与工厂的距离x (km )的关系为:)90(3≤≤+=x x kp ,若距离为1km 时,宿舍建造费用为125万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需8万元,铺设路面每千米成本为5万元,设()f x 为建造宿舍与修路费用之和. (Ⅰ)求()f x 的表达式,并写出其定义域;(Ⅱ)宿舍应建在离工厂多远处,可使总费用()f x 最小,并求最小值.20. (本小题满分12分)设数列{}n a 的前n 项和为n S ,已知11a =,11213n n nS a +⎛⎫=- ⎪⎝⎭).(,+∈N n (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n n n a a b 23log ⋅=,求数列{}n b 的前n 项和n T .21.(本小题满分12分)设F 为抛物线x y C 2:2=的焦点,A,B 是抛物线C 上的两个动点,O 为坐标原点.(Ⅰ)若直线AB 经过焦点F ,若|AB |=25,求直线AB 的方程; (Ⅱ)若OA OB ⊥,求OA OB ⋅的最小值.22. (本小题满分12分)已知椭圆C 的中心在坐标原点,离心率等于12,它的一个长轴端点恰好是抛物线x y 162=的焦点.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知(2,)P m 、(2,)Q m -(0m >)是椭圆上的两点,,A B 是椭圆上位于直线PQ 两侧的动点,且直线AB 的斜率为12. ①求四边形APBQ 的面积的最大值; ②求证:APQ BPQ ∠=∠.参考评分标准 (2019.11)说明:(1)此评分标准仅供参考;(2)学生解法若与此评分标准中的解法不同,请酌情给分. 一、选择题:本大题共12小题,每小题5分,共60分二、填空题:本大题共4小题,每小题5 分,共20分 13. x y 32±= 14.8 15. nn n -+2211 16.24 三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)解:(Ⅰ)由24351a a a ⋅=-得:111(1)(3)5(2)1a a a ++=+-,即21160a a --=∴112(3a a =-=舍)或 ∴3(1)2n a n n =+-=+ ………………………………5分(Ⅱ)∵2nn b =, ………………………………6分∴12101210(222)(1319)b b b ++⋅⋅⋅+=++⋅⋅⋅++++⋅⋅⋅+ 102(12)10(119)122-+=+- =2046 …………………………10分18.(本小题满分12分)解:(Ⅰ) 不等式0232>+-x ax 的解集为),()1,(+∞-∞b ,∴1和b 是一元二次方程0232=+-x ax 的根.………………………………2分则有⎪⎩⎪⎨⎧⨯=+=--bab a 1213,解得⎩⎨⎧==21b a (6)分(Ⅱ)由(Ⅰ)知,04)(2>++-c x c a b x即为04)22(2>++-c x c x0)2)(2(>--∴c x x………………………………9分①当22<c 即1<c 时,不等式的解集为),2()2,(+∞-∞ c ; ………………………………10分②当22=c 即1=c 时,不等式的解集为{}2≠x x ; ………………………………11分③当22>c 即1>c 时,不等式的解集为),2()2,(+∞-∞c .………………………………12分20. (本小题满分12分)解:(Ⅰ)根据题意,距离为1km 时费用为125万元,即当x =1时,p =12550031125=∴+=∴k k (2)分90,583500)(≤≤+++=∴x x x x f………………………………6分(Ⅱ)937250027)3(53500583500)(=-≥-+++=+++=x x x x x f……………10分当且仅当)3(53500+=+x x 即7=x 时取“=” ………………………………11分答:宿舍距离工厂7km 时,总费用最小为93万元.………………………………12分21. (本小题满分12分)解:(Ⅰ)根据题意,数列{}n a 满足11213n n nS a +⎛⎫=- ⎪⎝⎭,①则有111213n n n S a --⎛⎫=- ⎪⎝⎭,2n ≥,② (1)分①﹣②可得()1111303n n n a a +-⎛⎫--= ⎪⎝⎭,2n ≥,变形可得13n n a a +=,2n ≥, ………………………………4分又由11a =,11212213a S a ⎛⎫- ⎪⎝⎭==,解得23a =,所以213a a =, (5)分则数列{}n a 是首项为1,公比为3的等比数列,则13n n a -=. ………………………………6分(Ⅱ)由(Ⅰ)的结论,13n n a -=,则11231233)12(3log 3log ---⋅-=⋅=⋅=n n n n n n n a a b ,……7分则12103)12(353331-⨯-++⨯+⨯+⨯=n n n T ③n n n T 3)12(3533313321⨯-++⨯+⨯+⨯=∴ ④由③-④得:nn nnn n n n n T 3)22(23)12(3133213)12()3333(2121321⨯-+-=⨯----⨯+=⨯--++++⨯+=-- 13)1(+⨯-=∴n n n T . ………………12分21.(本小题满分12分)解:(Ⅰ)由题意,得1(,0)2F ,则直线AB 的方程为)21(-=x k y ,)0(≠k …………………………2分由⎪⎩⎪⎨⎧=-=x y x k y 2)21(2 消去y,得04)2(2222=++-k x k x k . ……………………………3分 设点11(,)A x y ,22(,)B x y ,则0∆>,且22212k k x x +=+, …………………………… 4分所以251212221=++=++=k k x x AB . 解得:2±=k …………………………… 5分所以,直线AB 的方程为1212+-=-=x y x y 或. …………………………… 6分(Ⅱ)解:因为,A B 是抛物线C 上的两点,所以设2(,)2t A t ,2(,)2s B s ,由OA OB ⊥,得2()04st st OA OB ⋅=+=, …………………………… 8分所以4st =-,即4s t =-.则点B 的坐标为284(,)B t t-. …………………………… 10分所以||||8OA OB ⋅==, …………………………… 11分当且仅当2t =±时,等号成立.所以||||OA OB ⋅的最小值为8. …………………………… 12分22.(本小题满分12分)解:(Ⅰ)由题意设椭圆C 的方程为)0(,12222>>=+b a by a x ,因为抛物线x y 162=的焦点坐标为)0,4(,则4=a ……………………………1分由222,21c b a a c +==,得122=b , ……………………………2分∴椭圆C 的方程为1121622=+y x . ……………………………3分 (Ⅱ)①当2=x 时,解得3=m ,6=∴PQ ……………………………4分设),(),,(2211y x B y x A ,直线AB 的方程为t x y +=21, 代入1121622=+y x ,得01222=-++t tx x ……………………………5分由0>∆,解得44<<-t , ……………………………6分由韦达定理得12,22121-=⋅-=+t x x t x x .2222122121348)12(44)(t t t x x x x x x -=--=⋅-+=-∴, ……………………7分由此可得:四边形APBQ 的面积2213483621t x x S -=-⨯⨯=, ∴当0=t 时,312max =S . ……………………………8分②23,232211--=--=x y k x y k BP AP ……………………………9分)2()2()2(3)2(3(23232112212211-⋅--⋅-+-⋅-=--+--=+∴x x x y x y x y x y k k BP AP )() 0124))(4(12124))(4(12)(2)(3)2(3)2(3(22121212121121221=+---+-=+-+-+=++-+-+=-⋅-+-⋅-t t t t t x x t x x y y x x y x y x x y x y )()BP AP BP AP k k k k -==+∴,即0 ……………………………11分∠=∠.……………………………∴APQ BPQ12分。

高二上学期期中考试数学试卷Word版含答案

高二上学期期中考试数学试卷Word版含答案

高二数学一、选择题(本大题共12小题,每小题5分,共60分)1.对命题“0x R ∃∈,200240x x -+>”的否定正确的是( ) A.0x R ∃∈, 200240x x -+> B.x R ∀∈, 2240x x -+≤ C.x R ∀∈, 2240x x -+>D.x R ∀∈, 2240x x -+≥2. 已知命题p 及命题q ,则命题“p ∧q ”为假是命题“p ∨q ”为假的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知ABC △的三个内角满足sin sin sin 511:13A B C =:::,则ABC △是 A .等腰三角形 B .锐角三角形 C .直角三角形D .钝角三角形4.ABC △的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( )A.2,4,120a b A ===︒B.3,2,45a b A ===︒C. 6,60b c C ===︒D.4,3,30b c C ===︒5.设等差数列|{}n a 的前n 项和为n S ,若2372a a a =,540S =,则7a =( ) A.13B.15C.20D.226.等比数列{}n a 的前n 项和为n S ,若418a a =,则51S S =( ) A.32B.31C.16D.157.已知数列{}n a 前n 项和2n S n =-,则数列{}n a 是( ) A.递增数列B.递减数列C.常数列D.摆动数列8.若数列{n a }满足111n na a +=-,且12a =,则2010a = ( )A .-1B .12C .2D .329.若关于x 的不等式2210x ax ++>在[)0,∞上恒成立,则实数a 的取值范围是( ) A.()1,+∞B.[)1,+∞C.()1,-+∞D.[)1,-+∞10.已知a b >,且1ab =,则22a b a b+-的最小值是( )A .3B.2+C .2D.11.设x ,y 满足24020330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则21y z x =+的范围()A.19,27⎡⎤⎢⎥⎣⎦B.118,27⎡⎤⎢⎥⎣⎦C.161,5⎡⎤⎢⎥⎣⎦D.81,5⎡⎤⎢⎥⎣⎦12.如图,在ABC ∆中,AD 为BC 边上的高,2AE ED =,3BAC π∠=,3AB =,2AC =,则AE CE ⋅uu u r uur的值为( )A.67- B.23-C.-2D.23二.填空题(本大题共4小题,每题5分,共20分)13.在△ABC 中,A =45°,c =2,则AC 边上的高等于_________________.14.数列{}n a 中,若1111n n na a a n +==+,,则n a = ______ . 15.给出下列结论:①若p q ∨为真命题,则p 、q 均为真命题;②已知,p q 为两个命题,若p q ∨“”为假命题,则()()“”p q ⌝⌝∧为真命题;③若命题命题则命题是假命题;④“若0,xy =则0x =且0y =”的逆否命题为真命题. 其中正确的结论有____.16.在数列{}n a 中,11a =,()211nn n a a ++-=,记n S 是数列{}n a 的前n 项和,则60S =三.解答题(本大题共6小题,共70分)17.(本大题10分)在ABC ∆中,内角A 、B 、C 的对边分别是a ,b ,c,且222b c a +-=.(Ⅰ)求A ;(Ⅱ)若a =1b =,求ABC ∆的面积.18.(本大题12分)已知等比数列{}n a 的公比2q =,且2341a a a ,,+成等差数列.(1)求1a 及n a ;(2)设n n b a n +=,求数列{}n b 的前5项和5S .19.(本大题12分)已知m R ∈,命题p :对任意[]0,1x ∈,不等式22log (1)23x m m+-≥-恒成立;命题q :存在[]1,1x ∈-,使得112xm ⎛⎫≤- ⎪⎝⎭成立.(Ⅰ)若p 为真命题,求m 的取值范围;(Ⅱ)若p 且q 为假,p 或q 为真,求m 的取值范围.20.(本大题12分)在公差为d 的等差数列{}n a 中,16a d =,1a N ∈,d N ∈,且1a d >. (1)求{}n a 的通项公式;(2)若1a ,4a ,13a 成等比数列,求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S .21.(本大题12分)在ABC ∆ 中,角A B C ,, 所对的边分别为a b c ,, .已知cos (2)cos ,b C a c B b =-=(1)若2c =,求ABC ∆的周长;(2)若ABC ∆为锐角三角形,求a c - 的取值范围.22.(本大题12分)在数列{}n a ,{}n b 中,已知1111,2n n a a a +==,且()*1212(1)(41),6n b b nb n n n n N ++⋯+=+-∈.(Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n n a b 的前n 项和n T .高二数学答案一.选择题1.B 【解析】因为特称命题的否定是全称命题,所以,命题“存在2000,240x R x x ∈-+>”的否定是:2,240x R x x ∀∈-+≤”,故选B.2..B 【解析】若命题“p ∧q ”为假命题,则p 为假命题,q 为假命题;p 为真命题,q 为假命题;p 为假命题,q 为真命题。

高二上学期期中考试数学试卷 Word版含解析

高二上学期期中考试数学试卷 Word版含解析

一、单选题1.已知集合A={Z|},B={-2,-1),那么A B等于A.{-2,-1,0,1} B.{-2,-1,0}C.{-2,-1} D.{-1}2.已知数列{)的通项公式为,则下列各数中不是数列中的项的是A.2 B.40 C.56 D.903.等差数列的前项和,若,则A.8 B.10 C.12 D.144.若a>b>c且a+b+c=0,则下列不等式一定成立的是A.ac>bc B.ab>bc C.ab<bc D.ac<bc5.若1,a,b成等差数列,3,a+2,b+5,成等比数列,则等差数列的公差为A.3 B.3或-1 C.-3 D.3或-36.设函数,若,则的取值范围为A.(-1,1)B.(-1,+)C.(-,9)D.(-,-1)(9,+)7.数列{}中,“(n∈N*)”是“数列{}为等比数列”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.当x>1时,若不等式恒成立,则实数a的取值范围是A.(-,2] B.[2,+)C.(-,3] D.[3,+)9.不等式121xx-≤+的解集为A.1,12⎛⎤-⎥⎝⎦B.1,12⎡⎤-⎢⎥⎣⎦C.[)1,1,2⎛⎫-∞-⋃+∞⎪⎝⎭D.[)1,1,2⎛⎤-∞-⋃+∞⎥⎝⎦10.等差数列{}的公差d>0,前n项和为,则对n>2时有A.B.C.D.的大小不确定11.下列不等式:①;②;③≥2,其中恒成立的个数是A.0个B.1个C.2个D.3个二、解答题12.已知:等差数列{}的公差d≠0,=1,且a2、a3、a6成等比数列(I)求{}的通项公式;(II)设数列{}的前n项和为,求使>35成立的n的最小值.13.已知:关于x的不等式(mx-(m+1))(x-2)>0(m R)的解集为集合P(I)当m>0时,求集合P;(II)若{}P,求m的取值范围.14.已知:等比数列{}中,公比为q,且a1=2,a4=54,等差数列{}中,公差为d,b1=2,b1+b2+b3+b4=a1+ a2+ a3.(I)求数列{}的通项公式;(II)求数列{}的前n项和的公式;(III)设,,其中n=1,2,…,试比较与的大小,并证明你的结论.15.已知:函数,当x∈(-3,2)时,>0,当x∈(-,-3)(2,+)时,<0(I)求a,b的值;(II)若不等式的解集为R,求实数c的取值范围.16.对于数列A:a1,a2,a3,…,定义A的“差数列” A:,…(I)若数列A:a1,a2,a3,…的通项公式,写出A的前3项;(II)试给出一个数列A:a1,a2,a3,…,使得A是等差数列;(III)若数列A:a1,a2,a3,…的差数列的差数列(A)的所有项都等于1,且==0,求的值.三、填空题17.命题“R,”的否定为_______18.等差数列{}中,=_______19.若不等式的解集中的整数有且仅有1,2,3,则的取值范围是20.数列{}是公比为2的等比数列,其前n项和为。

江西省南昌市江西师范大学附属中学2024-2025学年高二上学期期中考试数学试题

江西省南昌市江西师范大学附属中学2024-2025学年高二上学期期中考试数学试题

江西省南昌市江西师范大学附属中学2024-2025学年高二上学期期中考试数学试题一、单选题1.已知直线3(2)20x a y ---=与直线80x ay ++=互相垂直,则a =()A .1B .3-C .1-或3D .3-或12.已知椭圆22:1x C y m+=,则“2m =”是“椭圆C ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.如图,空间四边形OABC 中,,,OA a OB b OC c === ,点M 在OA 上,且满足2OM MA =,点N 为BC 的中点,则MN =()A .121232a b c-+ B .211322a b c -++C .111222a b c+- D .221332a b c+- 4.点1F ,2F 为椭圆C 的两个焦点,若椭圆C 上存在点P ,使得1290F PF ∠=,则椭圆C 方程可以是()A .221259x y +=B .2212516x y +=C .22169x y +=D .221169x y +=5.若21x -=22x y +的最小值为()A .1B .2C .4D .146.若实数,x y 满足22(2)1x y -+=,则下列结论错误的是()A .24x y +≤B .()122x y -≤C .y x ≤D .25x y -≤7.已知12,F F 分别是双曲线22:1412x yE -=的左、右焦点,M 是E 的左支上一点,过2F 作12F MF ∠角平分线的垂线,垂足为,N O 为坐标原点,则||ON =()A .4B .2C .3D .18.从椭圆2222:1(0)x y C a b a b+=>>外一点0,0向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P 关于椭圆C 的极线,其方程为00221x x y ya b +=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.关于曲线22:1E mx ny +=,下列说法正确的是()A .若曲线E 表示两条直线,则0,0m n =>或0,0n m =>B .若曲线E 表示圆,则0m n =>C .若曲线E 表示焦点在x 轴上的椭圆,则0m n >>D .若曲线E 表示双曲线,则0mn <10.已知圆22:4O x y +=,则()A .圆O 与直线10mx y m +--=必有两个交点B .圆O 上存在4个点到直线:0l x y -+=的距离都等于1C .若圆O 与圆22680x y x y m +--+=恰有三条公切线,则16m =D .已知动点P 在直线40x y +-=上,过点P 向圆O 引两条切线,A ,B 为切点,则||||OP AB 的最小值为811.如图,曲线C 是一条“双纽线”,其C 上的点满足:到点()12,0F -与到点()22,0F 的距离之积为4,则下列结论正确的是()A .点()D 在曲线C 上B .点(),1(0)M x x >在C 上,则1MF =C .点Q 在椭圆22162x y+=上,若12FQ F Q ⊥,则Q C ∈D .过2F 作x 轴的垂线交C 于,A B 两点,则2AB <三、填空题12.设12,F F 是双曲线C :2213y x -=的两个焦点,O 为坐标原点,点P 在C 上且120PF PF ⋅= ,则12PF F 面积为.13.已知,A B 为椭圆()222210x y a b a b+=>>上的左右顶点,设点P 为椭圆上异于,A B 的任意一点,直线,PA PB 的斜率分别为12,k k ,若椭圆离心率为2,则12k k ⋅为.14.如图,在棱长为3的正方体1111ABCD A B C D -中,P 在正方形11CC D D 及其内部上运动,若tan 2tan PAD PBC ∠∠=,则点P 的轨迹的长度为.四、解答题15.已知圆22:4O x y +=.(1)若线段AB 端点B 的坐标是(4,2),端点A 在圆O 上运动,求线段AB 的中点D 的轨迹方程;(2)若,EF GH 为圆22:4O x y +=的两条相互垂直的弦,垂足为M ,求四边形EGFH 的面积S 的最大值.16.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,PC PD ⊥,二面角A CD P --为直二面角.(1)求证:PB PD ⊥;(2)当PC PD =时,求直线PC 与平面PAB 所成角的正弦值.17.给定椭圆C :()222210+=>>x y a b a b,称圆心在原点O C 的“准圆”.已知椭圆C 的一个焦点为)F ,其短轴的一个端点到点F(1)求椭圆C 和其“准圆”的方程;(2)若点A ,B 是椭圆C 的“准圆”与x 轴的两交点,P 是椭圆C 上的一个动点,求AP BP ⋅的取值范围.18.已知O 为坐标原点,圆O :221x y +=,直线l :y x m =+(01m ≤<),如图,直线l 与圆O 相交于A (A 在x 轴的上方),B 两点,圆O 与x 轴交于,M N 两点(M 在N 的左侧),将平面xOy 沿x 轴折叠,使y 轴正半轴和x 轴所确定的半平面(平面AMN )与y 轴负半轴和x 轴所确定的半平面(平面BMN )互相垂直,再以O 为坐标原点,折叠后原y 轴负半轴,原x 轴正半轴,原y 轴正半轴所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系.(1)若0m =.(ⅰ)求三棱锥A BMN -的体积;(ⅱ)求二面角A BN M --的余弦值.(2)是否存在m ,使得AB 折叠后的长度与折叠前的长度之比为6?若存在,求m 的值;若不存在,请说明理由.19.“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长,某些折纸活动蕴含丰富的数学知识,例如:用一张圆形纸片,按如下步骤折纸(如图):步骤1:设圆心是E ,在圆内异于圆心处取一定点,记为F ;步骤2:把纸片折叠,使圆周正好通过点F (即折叠后图中的点A 与点F 重合);步骤3:把纸片展开,并留下一道折痕,记折痕与AE 的交点为P ;步骤4:不停重复步骤2和3,就能得到越来越多的折痕.现取半径为4的圆形纸片,设点F 到圆心E 的距离为按上述方法折纸.以线段EF 的中点为原点,线段EF 所在直线为x 轴建立平面直角坐标系xOy ,记动点P 的轨迹为曲线C .(1)求C 的方程;(2)设轨迹C 与x 轴从左到右的交点为点A ,B ,点P 为轨迹C 上异于A ,B ,的动点,设PB 交直线4x =于点T ,连结AT 交轨迹C 于点Q .直线AP 、AQ 的斜率分别为AP k 、AQ k .(i )求证:AP AQ k k ⋅为定值;(ii)证明直线PQ经过x轴上的定点,并求出该定点的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二第一学期期中考试数学试卷(考试时间90分钟,满分100分)命题:吴世星 审核:李家齐一、填空题(共12小题,每题3分,共36分)1、 设(3,4)AB =,点A 的坐标为(1,0)-,则点B 的坐标为__________.2、 设(2,3),(1,1)a b =-=-,0c 是与a b -同向的单位向量,则0c 的坐标是__________.3、 若等差数列{}n a 的公差2d =,1510a =-,则它首项1a =__________.4、 若等比数列{}n a 中,1111,1024a a ==,则它的公比q =__________.5、 计算:22342lim (21)n n n n →∞+-+=__________.6、 已知向量(4,5),(8,)AB AC k ==,若,,A B C 三点共线,则k =__________.7、 2,3,4a b a b ==+=,则a 与b 的夹角是__________.8、 已知O 为平行四边形ABCD 内一点,设,,OA a OB b OC c ===,则OD =__________. 9、 在1-与9之间插入两个数,得到数列1,,,9x y -,其中前三个数成等差数列,后三个数成等比数列,则其中的一组数列是 __________.10、已知无穷等比数列{}n a 各项的和是2,则首项1a 的取值范围是__________. 11、对n 个向量12,,n a a a ,如果存在不全为零的实数12,n k k k 使得11220n n k a k a k a +++=,则称12,,n a a a 线性相关.若已知1(1,1)a =,2(3,2)a =-,3(3,7)a =-是线性相关的,则123::k k k =__________________.12、若数列{}n a 是等差数列,则数列12nn a a a b n+++=()n N *∈也为等差数列;类比上述性质,相应地,若数列{}n c 是等比数列,且0n c >,则有n d =____________()n N *∈也是等比数列. 二、选择题(共4小题,每题3分,共12分) 13、下列各式中错误..的是…………………………………………………………………( ) A.22a a = B.AB BA = C.00a ⋅= D.()m n a mn a ⋅=⋅ (,)m n R ∈14、已知(3,1),(6,0),(4,2)A B C ,D 为线段BC 的中点,则向量AC 与AD 的夹角是( )A.45B.60C. 90D.13515、已知等差数列{}n a 中,24112,2a a a +==,则5a 的值是………………………( ) A. 7 B. 8 C. 15 D. 1016、在△ABC 中,有命题①若0AB AC ⋅>,则△ABC 为锐角三角形②0AB BC CA ++=③()()0AB AC AB AC +⋅-=,则△ABC 为等腰三角形 ④AB AC BC -=.上述命题正确的是…………………………………………………………………………………………( ) A.①② B. ①④ C. ②③ D. ②③④二、解答题(共6小题,第17题6分,第18、19、题8分,第21题10分,第22题12分,共52分) 17 已知(0,1),(5,1),(7,2)A B D --,且AB ∥DC ,BC AB ⊥,求点C 的坐标.18 已知一个等差数列的前10项的和是110,前20项的和是20.求此等差数列的前n 项和n S ,并求出当n 为何值时,n S 最大,最大值是多少?19设数列{}n a 的首项112a =,且121n n n a a a +=+(n N *∈).(1)求234,,a a a ;(2)根据上述结果猜想数列{}n a 的通项公式,并用数学归纳法加以证明.一次人才招聘会上,有甲、乙两家公司分别公布它们的工资标准:甲公司:第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元; 乙公司:第一年月工资数为元,以后每年月工资在上一年的月工资基础上递增5%. 设某人年初同时被甲、乙公司录取,试问:(1) 若该人打算连续工作n 年,则在第n 年的月工资收入分别是多少元?(2) 若该人打算连续工作,且只考虑工资收入的总量,该人应该选择哪家公司?为什么?(精确到1元)21、已知i ,j 分别是与x 轴,y 轴正方向相同的单位向量,16OB ai j =- ()a R ∈,对任意正整数n ,11632n n n B B i j -+= +⋅. (1)若123OB B B ⊥,求a 的值; (2)求向量n OB .22、我们在下面的表格中填写数值:先将第1行的所有空格填上1;再把一个首项为1,公比为q 的数列{}n a 依次填入第一列的空格内;然后按照“任意一格的数是它上面一格的数与它左边一格(2)试用n 、q 表示第二列的各数之和;(3)设第3列的数依次为123,,,...,n c c c c ,若123,,c c c 成等比数列,试求q 的值;能否找到q 的值,使得数列123,,,...,n c c c c 的前m 项123,,,...,m c c c c (3)m ≥成为等比数列?若能找到,m 的值有多少个?若不能找到,说明理由.上海南汇中学第一学期高二期中考试数学答案及评分标准(考试时间90分钟,满分100分)命题:吴世星 审核:李家齐三、填空题(共12小题,每题3分,共36分) 10、 设(3,4)AB =,点A 的坐标为(1,0)-,则点B 的坐标为___(2,4)___.11、 设(2,3),(1,1)a b =-=-,0c 是与a b -同向的单位向量,则0c 的坐标是_34(,)55-___. 12、 若等差数列{}n a 的公差2d =,1510a =-,则它首项1a =___38-_______. 13、若等比数列{}n a 中,1111,1024a a ==,则它的公比q =____2______.14、计算:22342lim (21)n n n n →∞+-+=____34______. 15、 已知向量(4,5),(8,)AB AC k ==,若,,A B C 三点共线,则k =___10_____.16、 2,3,4a b a b ==+=,则a 与b 的夹角是____1arccos 4______.17、 已知O 为平行四边形ABCD 内一点,设,,OA a OB b OC c ===,则OD =_a b c -+__. 18、在1-与9之间插入两个数,得到数列1,,,9x y -,其中前三个数成等差数列,后三个数成等比数列,则其中的一组数列是 ___1,1,3,9-或(131,,,942-)_____. 19、 已知无穷等比数列{}n a 各项的和是2,则首项1a 的取值范围是__(0,2)(2,4)__.20、对n 个向量12,,n a a a ,如果存在不全为零的实数12,n k k k 使得11220n n k a k a k a +++=,则称12,,n a a a 线性相关.若已知1(1,1)a =,2(3,2)a =-,3(3,7)a =-是线性相关的,则123::k k k =___3:2:1-_________.12、若数列{}n a 是等差数列,则数列12nn a a a b n+++=()n N *∈也为等差数列;类比上述性质,相应地,若数列{}n c 是等比数列,且0n c >,则有n d ()n N *∈也是等比数列.二、选择题(共4小题,每题3分,共12分) 13、下列各式中错误..的是…………………………………………………………………( C )A.22a a = B.AB BA = C.00a ⋅= D.()m n a mn a ⋅=⋅ (,)m n R ∈14、已知(3,1),(6,0),(4,2)A B C ,D 为线段BC 的中点,则向量AC 与AD 的夹角是( A ) A.45 B.60 C. 90 D.13515、已知等差数列{}n a 中,24112,2a a a +==,则5a 的值是………………………( D ) A. 7 B. 8 C. 15 D. 1016、在△ABC 中,有命题①若0AB AC ⋅>,则△ABC 为锐角三角形②0AB BC CA ++=③()()0AB AC AB AC +⋅-=,则△ABC 为等腰三角形 ④AB AC BC -=.上述命题正确的是…………………………………………………………………………………………( C ) A.①② B. ①④ C. ②③ D. ②③④四、解答题(共6小题,第17题6分,第18、19、题8分,第21题10分,第22题12分,共52分) 17 已知(0,1),(5,1),(7,2)A B D --,且AB ∥DC ,BC AB ⊥,求点C 的坐标. 解:设点C 的坐标是(,)x y ,则(5,2)AB =-,(5,1)BC x y =+-,(7,2)DC x y =--……………………2分 由AB ∥DC 2(7)5(2)x y ⇒-=--BC AB ⊥5(5)2(1)0x y ⇒-++-=…………………………………………2分3,6x y ⇒=-=,所以(3,6)C -………………………………………………2分18 已知一个等差数列的前10项的和是110,前20项的和是20.求此等差数列的前n 项和n S ,并求出当n 为何值时,n S 最大,最大值是多少?解:设等差数列的首项为1a ,公差为d ……………………………………1分 则 10120110451102019020S a d S a d =+=⎧⎨=+=⎩……………………………………………2分 所以120a =,2d =-所以221n S n n =-+…………………………………………………………2分又222144121()24n S n n n =-+=--+,n N *∈ 所以当10n =或11n =时n S 最大,1011110S S ==……………………3分 19设数列{}n a 的首项112a =,且121n n n a a a +=+(n N *∈).(1)求234,,a a a ;(2)根据上述结果猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 解:(1)234248,,359a a a ===………………………………………………2分 (2)猜想11221n n n a --=+,(n N *∈)……………………………………2分证明:①当1n =时,左边1a =,右边111121212--==+,猜测成立; ②假设当n k =(k N *∈)时有11221k k k a --=+成立则当1n k =+时,左边11112222212121121k kk k k kk k a a ----⋅+====++++右边.故猜测也成立. 由①②可得对一切n N *∈,数列{}n a 的通项公式为11221n n n a --=+ (n N *∈)…………4分一次人才招聘会上,有甲、乙两家公司分别公布它们的工资标准:甲公司:第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元; 乙公司:第一年月工资数为元,以后每年月工资在上一年的月工资基础上递增5%. 设某人年初同时被甲、乙公司录取,试问:(3) 若该人打算连续工作n 年,则在第n 年的月工资收入分别是多少元?(4) 若该人打算连续工作,且只考虑工资收入的总量,该人应该选择哪家公司?为什么?(精确到1元) 解:(1)设在甲公司第n 年的工资收入为n a 元,在乙公司第n 年的工资收入为n b 元则2301270n a n =+,120001.05n n b -=⋅………………………………4分(2)设工作在甲公司的总收入为S 甲,在甲公司的总收入为S 乙 (10150045230)12304200S =⋅+⋅⨯=甲2000(1 1.05)123018691 1.05n S -=⨯≈-乙 由于S S >乙甲,所以该人应该选择甲公司.…………………………4分21、已知i ,j 分别是与x 轴,y 轴正方向相同的单位向量,16OB ai j =- ()a R ∈,对任意正整数n ,11632n n n B B i j -+= +⋅. (1)若123OB B B ⊥,求a 的值; (2)求向量n OB .解:(1)依题可知2366B B i j =+由123OB B B ⊥知6360a -=,所以6a =;…………………………4分 (2)1121n n n OB OB B B B B -=+++…………………………………………2分2(,6)(6,3)(6,32)(6,32)n a -=-++⋅++⋅1(66,329)n n a -=+-⋅-所以1(66,329)n n OB n a -=+-⋅-.……………………………………4分22、我们在下面的表格中填写数值:先将第1行的所有空格填上1;再把一个首项为1,公比为q 的数列{}n a 依次填入第一列的空格内;然后按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写其他空格.)按照填写规则,请在上述表格内填写第二行的空格以及第二列的空格;(2)试用n 、q 表示第二列的各数之和;(3)设第3列的数依次为123,,,...,n c c c c ,若123,,c c c 成等比数列,试求q 的值;能否找到q 的值,使得数列123,,,...,n c c c c 的前m 项123,,,...,m c c c c (3)m ≥成为等比数列?若能找到,m 的值有多少个?若不能找到,说明理由. 解:(1)如表……………………………………………………………………3分 (2)211(1)(1)(1)n S q q q q q -=++++++++++当1q ≠时,11n q q S n q+-=--;……………………………………2分当1q =时,(1)2n n S +=…………………………………………2分 所以综上可知1(1)1211n n n q S q q n q q ++⎧ = ⎪⎪=⎨-⎪- ≠ ⎪-⎩……………………1分 (5) 可知21231,2,32c c q c q q ==+=++由221312c c c q =⇒=-,则123391,,24c c c === 若3m ≥时,123,,,...,m c c c c 为等比数列,那么123,,c c c 一定是等比数列 由上可知此时12q =-,又 234432c q q q =+++ 得知4238c = 而432338924c c =≠,所以对于任意的4m ≥,123,,,...,m c c c c 一定不是等比数列综上所述,当且仅当3m =且12q =-时,数列123,,,...,m c c c c 是等比数列.………4分。

相关文档
最新文档