AD DA转换器
ad转换器和da转换器

电流输出型DA转换原理
总电流
•转换电流
分支电流
……
•I01转换电流与“逻辑开关”为1的各支路电流的总和成正比 ,即与D0~D7口输入的二进制数成正比。
•DAC0832
•反馈电 阻 •外接放大器
转换电压
•即,转换电压正比于待转换的二进制数和参考电压
DAC的性能指标: 1、分辨率 通常将DAC能够转换的二进制的位数称为分辨率。 位数越多分辨率也越高,一般为8位、10位、12位、16位等
•参考程序如下:
INIT1: SETB IT1
;选择外部中断1为跳沿触发方式
SETB EA
;总中断允许
SETB EX1 ;允许外部中断1中断
MOV DPTR,#7FF8H ;端口地址送DPTR
MOV A,#00H
MOVX @DPTR,A;启动ADC0809对IN0通道转换
………
;完成其他的工作
•电路分析
➢ 由P2.0形成高8位地址(0xfe),与WR信号合成START/ALE正脉冲启动 ADC,与RD信号合成OE正脉冲输出转换数据;
➢ 启动IN0~IN7通道AD转换的命令的地址为:0xfef8,……,0xfeff。
➢ 读取AD结果的命令的地址为:任何高8位为0xfe的地址均可。
•电路分析
DAC2第1级地址: 1111 1101 …(0xfdff) DAC1和2第二级地址:1110 1111 …(0xefff)
例3参考程序
•语句DAOUT = num的作用只是启动DAC寄存器,传输什么数据都没关 系。
例3 运行效果 (多路D/A同步输出 )
•11.2 AT89S51与ADC的接口
第8章DA与AD转换电路

10 28
7
Di
i0
2i
当输入的数字量在全0和全1之间变化时,输出模拟电压的 变化范围为0~9.96V。
8.3 A/D转换器
一、A/D转换器的基本原理
四个步骤:采样、保持、量化、编码。
模拟电子开关S在采样脉冲CPS的控制下重复接通、断开 的过程。S接通时,ui(t)对C充电,为采样过程;S断开时,C
I0
VREF 8R
I1
VREF 4R
I2
VREF 2R
I3
VREF R
i I0d0 I1d1 I2d2 I3d3
VREF 8R
d0
VREF 4R
d1
VREF 2R
d2
VREF R
d3
VREF 23 R
(d3
23
d2
22
d1
21
d0
20)
uo
RFiF
R i 2
VREF 24
(d3 23
可推得n位倒T形权电流D/A转换器的输出电压
vO
VREF R1
Rf 2n
n1
Di
2i
i0
❖ 该电路特点为,基准电流仅与基准电压VREF和电 阻R1有关,而与BJT、R、2R电阻无关。这样,电 路降低了对BJT参数及R、2R取值的要求,对于集
成化十分有利。
❖ 由于在这种权电流D/A转换器中采用了高速电子 开关,电路还具有较高的转换速度。采用这种权 电流型D/A转换电路生产的单片集成D/A转换器有 AD1408、DAC0806、DAC0808等。这些器件都采用 双极型工艺制作,工作速度较高。
三、D/A转换器的主要技术指标
1.转换精度 D/A转换器的转换精度通常用分辨率和转换误差来描述。 (1)分辨率——D/A转换器模拟输出电压可能被分离的等级数。 N位D/A转换器的分辨率可表示为 1
第九章 DA、AD转换器及其与CPU的接口

第九章 D/A、A/D转换器
9.3 A/D转换器芯片
1、采样过程:将时间上连续变化的模拟量转变为时间上断续变化的模拟量。 采样频率f0大于等于输入信号最高频率fm的2倍。 2、保持过程:将采样得到的模拟量的值保持下来。为保证采样精确度,要求 在A/D转换期间,保持输入模拟量的信号不变。 3、量化过程:以一定的量化单位,把离散的模拟信号转化为离散的阶跃量的
二、D/A的主要技术指标
第九章 D/A、A/D转换器
分辨率:
• 是指最小输出电压( 对应的输入二进制数为1 )与最大
输出电压(对应的输入二进制数的所有位全为1)之比。
分辨率=1/(2n-1) 例如十位数模转换器的分辨率为: 2110-1≈0.001
• 可用输入数字量的位数来表示,如8位、10位等。
二、应用举例
第九章 D/A、A/D转换器
例1 对模拟通道IN0进行A/D转换,采样一个点。
采用查询方式的程序如下:
OUT 50H,AL ;选通IN0,
;启动A/D转换
NOP;避开刚开始的EOC状态
W:IN AL,40H ;输入EOC标志
TEST AL,01H
JZ W
;未结束,返回等待
IN AL,48H ;结束,
第九章 D/A、A/D转换器
9.3.1 A/D工作原理
原理:类似天平称重量时的尝试法,逐步用砝码的 累积重量去逼近被称物。
逐次变换
寄存…器SAR …
时序及控制逻辑
Vi
+
┇
D/A
VC
比较器
-
} ┇
数字量输出
9.3.2 A/D的技术指标
分辨率 量化误差 转换速度 精度
9.3.3 ADC0809 一、原理框图
第10章 AD与DA转换器接口

2. DAC0832 的引脚定义 DI0~DI7: 数字量输入。 ILE: 输入锁存允许。
CS : 片选。
WR1 : 写信号1 WR 2 : 写信号2 XFER 2 : 传递控制
控制第一级缓
冲器的锁存
控制第二级缓
冲器的锁存
VREF:基准电压。
AGND:模拟信号地。
VCC:工作电源。 DGND:数字信号地。 IOUT1:
DI0-3:低4位数字量输入数据线 DI4-11:高8位数字量输入数据线 /CS=0,/WR1=0时,B1//B2=0,打开低4位锁存器 /CS=0,/WR1=0时,B1//B2=1,打开高8位锁存器 /XFER=0,/WR2=0时,打开12未DAC寄存器 Vref 参考电压输入 Iout1、Iout2模拟电流输出 AGNG、DGNA模拟数字信号地线 Rfb 反馈电阻输入
DAC1210与系统总线的连接
3. DAC1210 软件设计
若220H221H选择/CS,地址为222H223H选择/XFER, 则地址为220H时选择4位输入寄存器,为221H时选择8位 输入寄存器,为222H时选择12位DAC寄存器。待转换的 数据已经放在DATAH和DATAL两个存储单元中,则可用 下面的程序完成一次转换。 MOV DX,220H ;低4位寄存器地址 MOV AL,DATAL ;低4位数据 OUT DX,AL ;输出低4位 INC DX ;高8位寄存器地址 MOV AL,DATAH ;高8位数据 OUT DX,AL ;输出高8位数据 MOV DX,222H ;DAC寄存器 OUT DX,AL ;启动12位数据转换
D/A 转换器能够转换的二进制数的位数。
例如8位D/A,转换后电压满度为5V,
则其能分辨的最小电压=5v/2820mv
AD与DA转换器接口

24
1. ADC的主要参数
衡量一个ADC的性能的主要参数有: 1. 分辨率:指ADC能够转换成二 进制数的位数。 2. 转换时间:指从启动转换开始 到转换结束,得到稳定的数字输出量为 止的时间。 其它参数与DAC类似。
23
ADC按分辨率可分为:4位、6位、8位、10位、 12位、14度可分为: 超高速(转换时间≤330ns) 次高速(转换时间330ns~3.3us) 高速(转换时间<20us) 中速(转换时间20us ~330us ) 低速(转换时间>330us ) ADC按转换原理可分为 并行A/D、逐次逼近A/D、双积分A/D。
15
二、并行8位D/A转换芯片AD558及其接口
1、 AD558的内部结构框图
16
17
2、AD558与PC机的连接图
18
三、串行8位D/A转换器TLC5620
第一级缓冲 第二级缓冲
19
数据写入方式 (LDAC更新DAC输出)
数据写入方式 (LOAD更新DAC输出)
20
TLC5620 REFA REFB REFC DATA REFD CLK DACA LOAD DACB LDAC DACC DACD
13
MOV DX,300H MOV AL,0H L1:OUT DX,AL INC AL JNZ L1 MOV AL,0FFH L2:OUT DX,AL DEC AL JNZ L2 JMP L1
;8255A的A口 ;生成三角波
14
思考题: 1.编写完整的程序。 2.编写生成矩形波、三角波、梯形波、 正弦波以及锯齿波等程序
5
2、D/A转换器的连接特性 表示一个D/A 转换器连接特性的几个方面: 1. 数据缓冲能力。 2. 输入的数据宽度(分辨率)。 3. 输入码制。一般对单极性输出的DAC只能 接收二进制码或BCD码,而双极性输出的DAC只能 接收偏移二进制码或补码。 4. 输出模拟量的类型。有电流和电压两种类型 5. 输出模拟量的极性。有单极性和双极性两种
AD和DA转换器的分类及其主要技术指标

AD和DA转换器的分类及其主要技术指标AD和DA转换器(Analog-to-Digital and Digital-to-Analog converters)是电子设备中常用的模数转换器和数模转换器。
AD转换器将连续的模拟信号转换成对应的离散数字信号,而DA转换器则将离散的数字信号转换成相应的连续模拟信号。
本篇文章将介绍AD和DA转换器的分类以及它们的主要技术指标。
一、AD转换器分类AD转换器主要分为以下几个类型:1.逐次逼近型AD转换器(Successive Approximation ADC)逐次逼近型AD转换器是一种常见且常用的AD转换器。
它采用逐渐逼近的方法逐位进行转换。
其基本原理是将模拟输入信号与一个参考电压进行比较,不断调整比较电压的大小,确保比较结果与模拟输入信号的差别小于一个允许误差。
逐次逼近型AD转换器的转换速度相对较快,精度较高。
2.模数积分型AD转换器(Sigma-Delta ADC)模数积分型AD转换器是一种利用高速和低精度的ADC与一个可编程数字滤波器相结合的技术。
它通过对输入信号进行高速取样并进行每个采样周期的累积和平均,降低了后续操作所需的带宽。
模数积分型AD转换器具有较高的分辨率和较好的线性度,适用于高精度应用。
3.并行型AD转换器(Parallel ADC)并行型AD转换器是一种通过多个比较器并行操作的AD转换器。
它的转换速度较快,但其实现成本相对较高。
并行型AD转换器适用于高速数据采集和信号处理。
4.逐渐逼近型AD转换器(Ramp ADC)逐渐逼近型AD转换器是一种通过线性递增电压与输入信号进行比较的转换器。
它利用逐渐逼近的方法寻找与输入信号最接近的电压值,然后以此电压值对应的时间来估计输入信号的值。
逐渐逼近型AD转换器转换速度较慢,但精度较高。
5.其他类型AD转换器除了上述几种常见的AD转换器类型外,还有其他一些特殊的AD转换器类型,如比例调制型AD转换器、索耳转换器等。
第七章 AD 与 DA转换器

中北大学电子信息工程系
第七章 A/D 与 D/A转换器(A/D and D/A converter)
数 字 电 子 技 术
输入数字量位数越多,分辨率越高。所以,在实 际应用中,常用字量的位数表示D/A转换器的分辨率。 此外,也可用D/A转换器的最小输出电压与最大输出电 压之比来表示分辨率,N位D/A转换器的分辨率可表示 为 1/(2n-1)。 例如,n=10的D/A转换器的分辨率为 1/1023=0.000987 若Um=5V,则ULSB=5* 0.000987 =5mV。 分辨率还可以直接用输入数字量的位数来表示。
依次类推,这种方法产生的最大量化误差为 /2。
中北大学电子信息工程系
第七章 A/D 与 D/A转换器(A/D and D/A converter)
数 字 电 子 技 术 A/D转换器
中北大学电子信息工程系
第七章 A/D 与 D/A转换器(A/D and D/A converter)
数 字 电 子 技 术
2.转换速度 (1)建立时间(tset )——当输入的数字量发生 变化时,输出电压变化到相应稳定电压值所需时 间。最短可达0.1μS。 (2)转换速率(SR)——在大信号工作状态下 模拟电压的变化率。 3. 温度系数——在输入不变的情况下,输出模 拟电压随温度变化产生的变化量。一般用满刻 度输出条件下温度每升高1℃,输出电压变化的 百分数作为温度系数。
中北大学电子信息工程系
第七章 A/D 与 D/A转换器(A/D and D/A converter)
2.集成D/A转换器
数 字 电 子 技 术 以国产5G7520为例,n=10。采用倒T型电阻译码网 络和CMOS模拟电子开关。反馈电阻RF=10K已集成在片 内,求和运算放大器A,基准电源(-10V—+10V)及模 拟开关的电源(+5V—+15V)均需外接。
模电24(AD和DA转换器)全解

——输出模拟电压与输入数字量成正比。 VREF · Rf 比例系数K为 - n 2 ·R
10
例:集成D/A转换器 10位CMOS电流开关型D/A转换器 AD7533D/A转换器
D0 AD7520 D1 D2 D7 D8 D9 10K R RF IOUT1 IOUT2
– +
O
2R
2R
2R
2R
2R
N位模拟 开关
解码网络
求和电路
模 拟 量 输 出
N位数字量控制N位模拟开关的状态。 N位模拟开关状态控制解码网络是否把相应位的权 对应的模拟量→求和电路。
5
3、分类:
倒T型电阻网络型;
(1)按解码网络:
T型电阻网络型;
权电流型;
CMOS开关型
(2)按电子开关形式: • T型电阻网络
I +VREF
I 2
(2) 倒T形电阻网络中R和2R电阻比值的精度要高;
(3) 每个模拟开关的开关电压降要相等 为实现电流从高位到低位按2的整数倍递减,模拟开关 的导通电阻也相应地按2的整数倍递增。 为进一步提高D/A转换器的精度,可采用权电流型D/A转换器。
13
权电流型D/A 1. 分析:
Di =1, Si接通反相输入端 Di =0, Si接通同相输入端
各支路电流始终不变,即不需要电流建立时间。
(2)各支路电流直接流入运放的输入端,不存在传输时间差,
因而提高了转换速度,并减少了动态过程中输出电压的尖峰脉冲。
∴此种D/A转换器是目前速度最高,应用最多的一种。 问题: S开关导通压降若不完全相同,将影响转换精度。
12
关于D/A转换器精度的讨论
为提高D/A转换器的精度,对电路参数的要求: VREF Rf n 1 i O n ( Di 2 ) 2 R i0 (1) 基准电压稳定性好;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RS232/RS485信号转模拟信号 隔离D/A转换器产品特点: 典型应用:●标准模拟信号输出●低成本、小体积模块化设计●智能楼宇控制、安防工程等应用系统● RS-485/232接口,隔离转换成标准模拟信号输出● RS-232/485总线工业自动化控制系统●模拟信号输出精度优于 0.2%●工业现场控制信号隔离及长线传输●可以程控校准模块输出精度●设备运行调试与控制●信号输出 / 通讯接口之间隔离耐压3000VDC●传感器信号的远程传输及信号还原●宽电源供电范围:8 ~ 50VDC●工业现场执行器数据给定●可靠性高,编程方便,易于安装和布线●医疗、工控产品开发●用户可编程设置模块地址、波特率等● 4-20mA信号输出●可设置成主机来读取ISO 4021产品数据实现远程采集●支持Modbus RTU 通讯协议产品概述:ISODA系列产品实现主机RS-485/232接口信号隔离转换成标准模拟信号,用以控制远程设备。
ISODA系列产品可应用在RS-232/RS-485总线工业自动化控制系统,4-20mA,0-5V,0-10V等标准信号输出,用来控制工业现场的执行设备,控制设备以及显示仪表等等。
产品包括电源隔离,信号隔离、线性化,D/A转换和RS-485串行通信。
每个串口最多可接256只 ISODA系列模块,通讯方式采用ASCII码通讯协议或MODBUS RTU通讯协议,其指令集兼容于ADAM模块,波特率可由代码设置,能与其他厂家的控制模块挂在同一RS-485总线上,便于计算机编程。
ISODA系列产品是基于单片机的智能监测和控制系统,所有的用户设定的校准值,地址,波特率,数据格式,校验和状态等配置信息都储存在非易失性存储器EEPROM里。
ISODA系列产品按工业标准设计、制造,信号输出 / 通讯接口之间隔离,可承受3000VDC隔离电压,抗干扰能力强,可靠性高。
工作温度范围- 45℃~+80℃。
图1 ISODA 产品原理框图ISODA功能简介:ISODA 信号隔离D/A转换模块,可以用来输出一路电压或电流信号,也可以用来输出两路可以共地的电流或电压信号。
1、模拟信号输出12位输出精度,产品出厂前所有信号输出范围已全部校准。
在使用时,用户也可以很方便的自行编程校准。
具体电流或电压输出量程请看产品选型,输出两路信号时两路输出选型必须相同。
2、通讯协议通讯接口:1路标准的RS-485通讯接口或1路标准的RS-232通讯接口,订货选型时注明。
通讯协议:支持两种协议,命令集定义的字符协议和MODBUS RTU通讯协议。
可通过编程设定使用那种通讯协议,能实现与多种品牌的PLC、RTU或计算机监控系统进行网络通讯。
数据格式:10位。
1位起始位,8位数据位,1位停止位。
通讯地址(0~255)和波特率(300、600、1200、2400、4800、9600、19200、38400bps)均可设定;通讯网络最长距离可达1200米,通过双绞屏蔽电缆连接。
通讯接口高抗干扰设计,±15KV ESD保护,通信响应时间小于100mS。
3、抗干扰可根据需要设置校验和。
模块内部有瞬态抑制二极管,可以有效抑制各种浪涌脉冲,保护模块,内部的数字滤波,也可以很好的抑制来自电网的工频干扰。
产品选型:ISODA O□ - □输出电压或电流信号值 通讯接口O1:4-20mA 485:输出为RS-485接口O2:0-20mA 232:输出为RS-232接口O4:0-5V232/485:输出为一路RS-232或RS-485接口(按键选择) O5:0-10VO6:1-5VO7:0-±5VO8:用户自定义O9:0-±20mAO10:0-±10V备注:当通讯接口选型为232/485时,默认为RS-485输出,用户可以通过产品内部的按键开关选择是RS-485输出,还是RS-232输出。
打开产品底盖,取出线路板,在内部线路板上可看到两个按钮开关,其中都没有按下时是RS-485输出,两个开关都按下则是RS-232输出。
选型举例1:型号:ISODA O1-485 表示4-20mA信号输出,输出为RS-485接口选型举例2:型号:ISODA O4-232 表示0-5V信号输出,输出为RS-232接口选型举例3:型号:ISODA O7-232/485 表示0-±5V信号输出,输出为RS-232或RS-485接口(按键选择)ISODA通用参数:(typical @ +25℃,Vs为24VDC)输出类型:电流输出 / 电压输出精度: 0.2%输出失调:电流输出 ±0.5 uA/℃,电压输出 ±0.1 mV/℃温度漂移:±20 ppm/℃ (±30 ppm/℃, 最大)输出带载能力:电流输出350Ω (4-20mA/0-20mA/0-±20mA电流输出)电压输出 10mA(0-5V/0-10V/0-±5V电压输出)通讯:协议 RS-485 或 RS-232 标准字符协议和 MODBUS RTU通讯协议波特率(300、600、1200、2400、4800、9600、19200、38400bps)可软件选择地址(0~255)可软件选择通讯响应时间:100 ms 最大工作电源:+8 ~ 50 VDC宽供电范围,内部有防反接和过压保护电路功率消耗:小于1.5W工作温度:- 45 ~ +80℃工作湿度: 10 ~ 90% (无凝露)存储温度:- 45 ~ +80℃存储湿度: 10 ~ 95% (无凝露)隔离耐压:通讯接口 / 输出之间: 3KVDC,1分钟,漏电流 1mA其中通讯接口和电源共地。
耐冲击电压: 3KV AC, 1.2/50us(峰值)外形尺寸: 83 mm x 37 mm x 51mm引脚定义:引脚 名 称 描 述输出通道0正端 1 OUT0+输出通道0负端 2 GND1 输出通道1正端 3 OUT1+ 输出通道1负端 4 GND1 电源正端 5 PW+ 6 GND 电源负端 电源负端7 GND表1 引脚定义 图2 ISODA 模块图片应用接线图:图3 ISODA 模块接线图初始化ISODA 模块:所有的ISODA 模块,如果使用 RS-485网络,必须分配一个独一无二的地址代码,地址代码取值为16进制数在00和FF 之间。
但是,所有全新的ISODA 模块都使用一个工厂的初始设置,如下所示:地址代码为01 波特率9600 bps 禁止校验和8 CONFIG初始状态设置 RS-485信号负端 9 DATA- 10 DATA+ RS-485信号正端 电源负端11 GND 设置为主机 12 HOS T由于新模块的地址代码都是一样的,他们的地址将会和其他模块矛盾,所以当你组建系统时,你必须重新配置每一个模拟量输出模块地址。
可以在接好ISODA模块电源线和RS485通讯线后,通过配置命令来修改ISODA模块的地址。
波特率,校验和状态,通讯协议也需要根据用户的要求而调整。
而在修改波特率,校验和状态,通讯协议之前,必须让模块先进入缺省状态,否则无法修改。
让模块进入缺省状态的方法:ISODA模块都有一个特殊的标为CONFIG的管脚。
将CONFIG管脚短路接到地线(GND管脚)后,再接通电源,此时模块进入缺省状态。
在这个状态时,模块的配置如下:地址代码为00波特率9600 bps禁止校验和这时,可以通过配置命令来修改ISODA模块的波特率,校验和状态等参数,通过设置模块的通讯协议命令来选择通讯协议。
在不确定某个模块的具体配置时,也可以通过安装配置跳线,使模块进入缺省状态,再对模块进行重新配置。
如果用户需要将模块设置为MODBUS RTU通讯协议,请看MODBUS通讯协议章节的有关说明。
ISODA命令集:命令由一系列字符组成,如首码、地址ID,变量、可选校验和字节和一个用以显示命令结束符(cr)。
主机除了带通配符地址“**”的同步的命令之外,一次只指挥一个ISODA模块。
命令格式:(Leading Code)(Addr)(Command)[data][checksum](cr)(Leading code)首码是命令中的第一个字母。
所有命令都需要一个命令首码,如%,$,#,@,...等。
1- 字符(Addr)模块的地址代码, 如果下面没有指定,取值范围从 00~FF (十六进制)。
2- 字符(Command)显示的是命令代码或变量值。
变量长度[data]一些输出命令需要的数据。
变量长度[checksum]括号中的Checksum(校验和)显示的是可选参数,只有在启用校验和时,才需要此选项。
2- 字符(cr) 识别用的一个控制代码符,(cr)作为回车结束符,它的值为0x0D。
1- 字符当启用校验和(checksum)时,就需要[Checksum]。
它占2-字符。
命令和应答都必须附加校验和特性。
校验和用来检查所有输入命令,来帮助你发现主机到模块命令错误和模块到主机响应的错误。
校验和字符放置在命令或响应字符之后,回车符之前。
计算方法:两个字符,十六进制数,为之前所发所有字符的ASCII码数值之和,然后与十六进制数0xFF相与所得。
应用举例:禁止校验和(checksum)用户命令$002(cr)模块应答!00020600 (cr)启用校验和(checksum)用户命令$002B6 (cr)模块应答!00020600 A9 (cr)‘$’ =0x24 ‘0’ =0x30 ‘2’ =0x32B6=(0x24+0x30+0x30+0x32) AND 0xFF‘!’ =0x21 ‘0’ =0x30 ‘2’ =0x32 ‘6’ =0x36A9=(0x21+0x30+0x30+0x30+0x32+0x30+0x36+0x30+0x30) AND 0xFF常用命令:1、设定通道N的模拟量输出值命令2、设定通道N的上电或复位后的模拟量输出值命令3、配置模拟量输出模块命令4、读配置状态5、偏移校准6、满刻度校准7、读模块名称8、通道N的模拟量输出值回读命令9、设置通讯协议命令命令的应答:应答信息取决于各种各样的命令。
应答也由几个字符组成,包括首代码,变量和结束标识符。
应答信号的首代码有两种,‘!’或‘>’表示有效的命令而‘?’ 则代表无效。
通过检查应答信息,可以监测命令是否有效注意:1、在一些情况下,许多命令用相同的命令语法。
要确保你用的地址在一个命令中是正确的,假如你用错误的地址,而这个地址代表着另一个模块,那么命令会在另一个模块生效,因此产生错误。
2、必须用大写字母输入命令。
1、设定通道N的模拟量输出值命令说明:以当前配置的数据格式,设定模拟量输出模块通道N模拟输出值。