2013年中考数学复习三角形

合集下载

2013中考真题-三角形

2013中考真题-三角形

2013中考真题—三角形一:填空题 1、(2013•郴州)如图,点D 、E 分别在线段AB ,AC 上, AE=AD ,不添加新的线段和字母,要使△ABE ≌△ACD , 需添加的一个条件是 (只写一个条件即可).2、(2013,娄底)如图,AB AC ,要使ABE ACD △≌△, 应添加的条件是_______________.(添加一个条件即可).3、(2013•乐山)如图7,在四边形ABCD 中,∠A=45º。

直线l 与边AB 、AD 分别相交于点M 、N ,则 ∠1+∠2= 。

4、(2013凉山州)已知实数x ,y 满足,则以x ,y 的值为两边长的等腰三角形的周长是 .5、(2013•沈阳)已知等边三角形ABC 的高为4,在这个三角形所在的平面内有一点P ,若点P 到AB 的距离是1,点P 到AC 的距离是2,则点P 到BC 的最小距离和最大距离分别是 _________6、、(2013鞍山)如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是 .7、(2013•漳州)如图,在Rt△ABC 中,∠ACB=90°,点D 是斜边AB 的中点,DE⊥AC,垂足为E ,若DE=2,CD=52,则BE 的长为 _。

8、(2013•玉林)如图,在直角坐标系中,O 是原点,已知A (4,3),P 是坐标轴上的一点,若以O ,A ,P 三点组成的三角形为等腰三角形,则满足条件的点P 共有 个,写出其中一个点P 的坐标是 . 9、(2013•绍兴)如图钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,则∠A 的度数是 .CAFB ED 10、(2013•玉林)如图,在直角坐标系中,O 是原点,已知A (4,3), P 是坐标轴上的一点,若以O ,A ,P 三点组成的三角形为等腰三角形, 则满足条件的点P 共有 个,写出其中一个点P 的坐标是 .三:选择题1、(2013•宿迁)在等腰ABC ∆中,90ACB ∠=,且1AC =.过点C作直线l ∥AB ,P 为直线l 上一点,且AP AB =.则点P 到BC 所在直线的距离是 A .1 B .1.12、2013•湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,3、(2013•内江)把一块直尺与一块三角板如图放置, 若∠1=40°,则∠2的度数为( )4、(2013•泸州)如图,在等腰直角ABC ∆中,90ACB O∠=, O 是斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且90DOE O ∠=,DE 交OC 于点P.则下列结论:(1)图形中全等的三角形只有两对;(2)ABC ∆的面积等于四边形CDOE 面积的2倍; (3)CD CE +=;(4)222AD BE OP OC +=⋅.其中正确的结论有A.1个B.2个C.3个D.4个5、(2013•眉山)如图,∠BAC=∠DAF=90°,AB =AC ,AD =AF ,点D 、E 为BC 边上的两点,且∠DAE =45°,连接EF 、BF , 则下列结论:①△AED ≌△AEF ②△ABE ∽△ACD ③BE +DC >DE④BE 2+DC 2=DE 2,其中正确的有( )个 A .1 B .2 C .3 D .4 6、(2013• 淄博)如图,△ABC 的周长为26,点D ,E 都在边BC 上,∠ABC 的平分线垂直于AE ,垂足为Q ,∠ACB 的平分线垂直于AD ,垂足为P ,若BC =10,则PQ 的长为( )A BDEPQ (第12题)第12题图(A )32 (B )52 (C )3 (D )4 7、(2013•绥化)已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE .以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE 2=2(AD 2+AB 2),其中结论正确的个数是( )直线BD 翻折后,点A 落在点E 处,如果AD ⊥ED ,那么△ABE 的面积是( ) B .三:解答证明题: 1、(2013•铜仁)如图,△ABC 和△ADE 都是等腰三角形,且∠BAC=90°,∠DAE=90°,B ,C ,D 在同一条直线上. 求证:BD=CE.2、(2013,永州)如图,M 是△ABC 的边BC 的中点,AN平分∠BAC ,BN ⊥AN 于点N ,延长BN 交AC 于点D,已知AB=10,BC=15,MN=3 (1)求证:BN=DN (2)求△ABC 的周长.3、(2013凉山州)如图,△ABO 与△CDO 关于O 点中心对称,点E 、F 在线段AC 上,且AF=CE . 求证:FD=BE .4、(2013•内江)已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACD=∠DCE=90°,D 为AB 边上一点.求证:BD=AE .2013内江 2013沈阳5、(2013•沈阳)如图,ABC ∆中,AB=BC ,BE⊥AC 于点E ,AD⊥BC 于点D ,45BAD ∠=︒,AD 与BE 交于点F ,连接CE , (1)求证:BF=2AE(2)若CD =AD 的长。

山东省17市2013年中考数学试题分类解析汇编 专题09 三角形

山东省17市2013年中考数学试题分类解析汇编 专题09 三角形

山东17市2013年中考数学试题分类解析汇编专题09 三角形一、选择题1. (2013年山东东营3分)如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值【】A. 只有1个B. 可以有2个C. 可以有3个D. 有无数个2. (2013年山东莱芜3分)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y 关于x的函数图象大致为【】【答案】B。

【考点】动点问题的函数图象, 等边三角形的性质。

【分析】分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:3. (2013年山东聊城3分)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:AB的长为【】A.12米B. C. D.4. (2013年山东聊城3分)如图,D是△ABC的边BC上一点,已知AB=4,AD=2.∠DAC=∠B,若△ABD的面积为a,则△ACD的面积为【】A.a B.1a2C.1a3D.2a3【答案】C。

【考点】相似三角形的判定和性质。

【分析】∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA。

5. (2013年山东临沂3分)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是【】A.AB=AD B.AC平分∠BCD C.AB=BD D,△BEC≌△DEC6. (2013年山东青岛3分)如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′,A′、B′均在图中格点上,若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为【】A、mn2⎛⎫⎪⎝⎭, B、(m,n) C、nm2⎛⎫⎪⎝⎭, D、m n22⎛⎫⎪⎝⎭,7. (2013年山东日照3分)四个命题:①三角形的一条中线能将三角形分成面积相等的两部分;②有两边和其中一边的对角对应相等的两个三角形全等;③点P(1,2)关于原点的对称点坐标为(-1,-2);④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1<d<7其中正确的是【】A. ①②B.①③C.②③D.③④8. (2013年山东威海3分)如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是【】A. ∠C=2∠AB. BD平分∠ABCC. S△BCD=S△BODD. 点D为线段AC 的黄金分割点∴BD是∠ABC的角平分线,正确,故本选项错误。

2013年浙江中考数学第一轮复习课件 专题突破强化训练专题五三角形

2013年浙江中考数学第一轮复习课件 专题突破强化训练专题五三角形

A. 1∶ 2 B. 2∶ 3 C. 1∶ 3 D. 1∶4
DE 解析:∵ AD、BE 是△ABC 的两条中线,∴DE 是△ABC 的中位线.∴DE∥AB , = AB 1 .∴△EDC∽△ABC,∴S△EDC∶S△ABC=1∶4. 2
答案:D
2 3.如图,在▱ABCD 中,E 为 AD 的三等分点,AE= AD,连结 BE,交 AC 于点 F,AC 3 =12,则 AF 为( )
25 π, S2=2π, 8
1 1 1 1 AB2 2 2 2 解析:如图,在 Rt △ABC 中,AB =AC +BC ,∴ π·AB = π·AC + π·BC ,∴ π· = 8 8 8 2 4 1 AC2 1 BC2 25 9 π· + π· ,即 S1=S 2+S3.∴S 3= S1- S2= π-2π= π. 2 4 2 4 8 8
(2) △ABE≌△ CAD → ∠ ABE=∠CAD → ∠BFD=∠BAC=60°
【解析】(1)证明:∵△ABC 是等边三角形, ∴∠BAC=∠C= 60° ,AB=AC.在△ABE 和△CAD 中, ∵AB=AC,∠BAE=∠C,AE=CD . ∴△ABE≌△CAD. (2)∵△ABE≌△CAD, ∴∠ABE=∠CAD. ∵∠BFD=∠ABE+∠BAD, ∴∠BFD=∠CAD+∠BAD=∠BAC=60° .
12.如图所示,直线 a 经过正方形 ABCD 的顶点 A,分别过正方形的顶点 B、D 作 BF ⊥a 于点 F,DE⊥a 于点 E,若 DE=8,BF= 5,则 EF 的长为________.
解析:可证△ABF≌△DAE,可得 AF=DE=8,AE=BF=5.∴EF=8+5=13.
答案:13
13 . 如图 ,已 知 AC = BD ,要 使△ ABC ≌ △ DCB , 则只 需添 加 一个 适当 的 条件是 ________.(填一个即可 )

2013年中考数学第四单元三角形

2013年中考数学第四单元三角形

图15-16
第15讲┃ 几何初步、相交线与平行线
解:如图,过点C作CP∥AB,则∠BCP=∠ABC,∠ECP=∠CED,
∴∠ABC+∠CED=∠BCP+∠ECP=∠BCE=140° . 又∵BF,EF分别平分∠ABC,∠CED, 1 1 ∴∠ABF= ∠ABC,∠DEF= ∠DEC, 2 2 1 ∴∠ABF+∠DEF= (∠ABC+∠DEC)=70° . 2 过点F作FM∥DE,则∠BFM=∠ABF,∠MFE=∠DEF, ∴∠BFE=∠BFM+∠MFE=∠ABF+∠DEF=70° .
第16讲┃ 三角形与全等三角形
7.如图16-4,一个直角三角形纸片,剪去直角后,得到一个四边 270 形,则∠1+∠2=________度.
图16-4
[解析] 如图,根据题意可知∠5=90° , ∴∠3+∠4=90° ,∴∠1+∠2=2∠5+∠3+∠4=2×90° +90° =270° .
错角相等,或结合三角形的外角性质求证即可.
第15讲┃ 几何初步、相交线与平行线
解:如图:
图15-15
第15讲┃ 几何初步、相交线与平行线
(1)∠APC=∠PAB+∠PCD; 证明:过点P作AB∥PF, ∵AB∥PF,∴AB∥CD∥PF, ∴∠APC=∠PAB+∠PCD(两直线平行,内错角相等). (2)∠APC+∠PAB+∠PCD=360°; (3)∠APC=∠PAB-∠PCD; (4)∵AB∥CD,∴∠POB=∠PCD. ∵∠POB是△AOP的外角, ∴∠APC+∠PAB=∠POB, ∴∠APC=∠POB-∠PAB, ∴∠APC=∠PCD-∠PAB.
[解析] 设第三边的长为x,则7-3<x<7+3,所以4<x<10.又x为 整数,所以x可取5,6,7,8,所以这个三角形的周长的最小值为15.

2013年中考数学第一轮总复习几何第3课三角形基础

2013年中考数学第一轮总复习几何第3课三角形基础

2013年梅州市中考数学第一轮总复习几何第(3)课三角形基础学校:___________________ 姓名:___________________一、学习目标1、掌握三角形的三边关系定理;2、掌握三角形的内角和定理和外角性质。

二、学习指导(用约10分钟时间复习知识点,之后用约10分钟完成思考题和达标题)三、复习(时间:约10分钟)1、三角形(1)三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.组成三角形的线段叫做三角形的边.相邻两边的公共端点叫做三角形的顶点.相邻两边组成的角叫做三角形的内角,简称三角形的角.三角形具有稳定性.(2)按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三角形即等边三角形).(3)三角形三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边.若三角形的两边长为a、b(a>b),则第三边长c满足a-b<c<a+b.(4)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.三角形内角和定理:三角形内角和是180°.(5)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.(6)三角形内外角平分线所夹角的常见结论:1/2如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,则∠BOC=90°+1/2∠A;如图2,O是∠ABC与外角∠ACD的平分线BO和CO的交点,则∠BOC=1/2∠A;如图3,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC=90°﹣1/2∠A。

2013年中考数学分类汇编之相似三角形

2013年中考数学分类汇编之相似三角形

2013年中考数学分类汇编之相似三角形一.选择题二.填空题三.解答题25.(2013温州)如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),B(0.8),点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴上的一动点,连接CD,DE,以CD,DE为边作▱CDEF.(1)当0<m<8时,求CE的长(用含m的代数式表示);(2)当m=3时,是否存在点D,使平行四边形CDEF的顶点F恰好落在y轴上?若存在,求出点D的坐标;若不存在,请说明理由;(3)点D在整个运动过程中,若存在唯一的位置,使得平行四边形CDEF为矩形,请求出所有满足条件的m的值.考点:相似形综合题;存在型;动点型;分类讨论.分析:(1)首先证明△BCE∽△BAO,根据相似三角形的对应边的比相等即可求得;(2)证明△EDA∽△BOA,根据相似三角形的对应边的比相等即可求得;(3)分m>0,m=0和m<0三种情况进行讨论,当m=0时,一定不成立,当m>0时,分0<m<8和m >8两种情况,利用三角函数的定义即可求解.当m<0时,分点E与点A重合和点E与点A不重合时,两种情况进行讨论.解答:解:(1)∵A(6,0),B(0,8).∴OA=6,OB=8.∴AB=10,∵∠CEB=∠AOB=90°,又∵∠OBA=∠EBC,∴△BCE∽△BAO,∴=,即=,∴CE=﹣m;(2)∵m=3,∴BC=8﹣m=5,CE=﹣m=3.∴BE=4,∴AE=AB﹣BE=6.∵点F落在y轴上(如图2).∴DE∥BO,∴△EDA∽△BOA,∴=即=.∴OD=,∴点D的坐标为(,0).(3)取CE的中点P,过P作PG⊥y轴于点G.则CP=CE=﹣m.(Ⅰ)当m>0时,①当0<m<8时,如图3.易证∠GCP=∠BAO,∴cos∠GCP=cos∠BAO=,∴CG=CP•cos∠GCP=(﹣m)=﹣m.∴OG=OC+OG=m+﹣m=m+.根据题意得,得:OG=CP,∴m+=﹣m,解得:m=;②当m≥8时,OG>CP,显然不存在满足条件的m的值.(Ⅱ)当m=0时,即点C与原点O重合(如图4).(Ⅲ)当m<0时,①当点E与点A重合时,(如图5),易证△COA∽△AOB,∴=,即=,解得:m=﹣.②当点E与点A不重合时,(如图6).OG=OC﹣OG=﹣m﹣(﹣m)=﹣m﹣.由题意得:OG=CP,∴﹣m﹣=﹣m.解得m=﹣.综上所述,m的值是或0或﹣或﹣.点评:本题是相似三角形的判定于性质以及三角函数的综合应用,正确进行分类是关键.24.(2013台州)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.(1)请用直尺和圆规画一个“好玩三角形”;(2)如图在Rt△ABC中,∠C=90°,tanA=,求证:△ABC是“好玩三角形”;(3))如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.①当β=45°时,若△APQ是“好玩三角形”,试求的值;②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.(4)(本小题为选做题,作对另加2分,但全卷满分不超过150分)依据(3)的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1)考点:相似形综合题;新定义;操作型;阅读型;分类讨论.分析:(1)先画一条线段AB,再确定AB的中点O,过点O作一条线段OC使OC=AB,连接AC、BC,则△ABC是所求作的三角形;(2)取AC的中点D,连接BD,设BC=x,根据条件可以求出AC=2x,由三角函数可以求出BD=2x,从而得出AC=BC,从而得出结论;(3)①当β=45°时,分情况讨论,P点在AB上时,△APQ是等腰直角三角形,不可能是“好玩三角形”,当P在BC上时,延长AB交QP的延长线于点F,可以求出分情况讨论,就可以求出,再分情况讨论就可以求出当AE=PQ时,的值,当AP=QM时,可以求出的值;②根据①求出的两个的值就可以求出tanβ的取值范围;(4)由(3)可以得出0<tanβ<,△APQ为“好玩三角形”的个数为2就是真命题.解答:解:(1)如图1,①作一条线段AB,②作线段AB的中点O,③作线段OC,使OC=AB,④连接AC、BC,∴△ABC是所求作的三角形.(2)如图2,取AC的中点D,连接BD∵∠C=90°,tanA=,∴∴设BC=x,则AC=2x,∵D是AC的中点,∴CD=AC=x∴BD===2x,∴AC=BD∴△ABC是“好玩三角形”;(3)①如图3,当β=45°,点P在AB上时,∴∠ABC=2β=90°,∴△APQ是等腰直角三角形,不可能是“好玩三角形”,当P在BC上时,连接AC交PQ于点E,延长AB交QP的延长线于点F,∵PC=CQ,∴∠CAB=∠ACP,∠AEF=∠CEP,∴△AEF∽△CEP,∴.∵PE=CE,∴.Ⅰ当底边PQ与它的中线AE相等时,即AE=PQ时,,∴,Ⅱ当腰AP与它的中线QM相等,即AP=QM时,作QN⊥AP于N,如图4∴MN=AN=MP.∴QN=MN,∴tan∠APQ=,∴tan∠APE===,∴=②由①可知,当AE=PQ和AP=QM时,有且只有一个△APQ能成为“好玩三角形”,∴<tanβ<2时,有且只有一个△APQ能成为“好玩三角形”.(4)由(3)可以知道0<tanβ<,则在P、Q的运动过程中,使得△APQ成为“好玩三角形”的个数为2.点评:本题是一道相似形综合运用的试题,考查了相似三角形的判定及性质的运用,勾股定理的运用,等腰直角三角形的性质的运用,等腰三角形的性质的运用,锐角三角形函数值的运用,解答时灵活运用三角函数值建立方程求解是解答的关键.24.(2013衢州)在平面直角坐标系x、y中,过原点O及点A(0,2)、C(6,0)作矩形OABC,∠AOC 的平分线交AB于点D.点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q 从点O出发,以每秒2个单位长度的速度沿x轴正方向移动.设移动时间为t秒.(1)当点P移动到点D时,求出此时t的值;(2)当t为何值时,△PQB为直角三角形;(3)已知过O、P、Q三点的抛物线解析式为y=﹣(x﹣t)2+t(t>0).问是否存在某一时刻t,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t的值;若不存在,请说明理由.考点:二次函数综合题;动点型;存在型;矩形的性质;相似形综合题;勾股定理;直角三角形的性质;平行四边形的判定与性质;分类讨论.分析:(1)首先根据矩形的性质求出DO的长,进而得出t的值;(2)要使△PQB为直角三角形,显然只有∠PQB=90°或∠PBQ=90°,进而利用勾股定理分别分析得出PB2=(6﹣t)2+(2﹣t)2,QB2=(6﹣2t)2+22,PQ2=(2t﹣t)2+t2=2t2,再分别就∠PQB=90°和∠PBQ=90°讨论,求出符合题意的t值即可;(3)存在这样的t值,若将△PQB绕某点旋转180°,三个对应顶点恰好都落在抛物线上,则旋转中心为PQ中点,此时四边形PBQB′为平行四边形,根据平行四边形的性质和对称性可求出t的值.解答:解:(1)∵四边形OABC是矩形,∴∠AOC=∠OAB=90°,∵OD平分∠AOC,∴∠AOD=∠DOQ=45°,∴在Rt△AOD中,∠ADO=45°,∴AO=AD=2,OD=2,∴t==2;(2)要使△PQB为直角三角形,显然只有∠PQB=90°或∠PBQ=90°.如图1,作PG⊥OC于点G,在Rt△POG中,∵∠POQ=45°,∴∠OPG=45°,∵OP=t,∴OG=PG=t,∴点P(t,t)又∵Q(2t,0),B(6,2),根据勾股定理可得:PB2=(6﹣t)2+(2﹣t)2,QB2=(6﹣2t)2+22,PQ2=(2t﹣t)2+t2=2t2,①若∠PQB=90°,则有PQ2+BQ2=PB2,即:2t2+[(6﹣2t)2+22]=(6﹣t)2+(2﹣t)2,整理得:4t2﹣8t=0,解得:t1=0(舍去),t2=2,∴t=2,②若∠PBQ=90°,则有PB2+QB2=PQ2,∴[(6﹣t)2+(2﹣t)2]+[(6﹣2t)2+22]=2t2,整理得:t2﹣10t+20=0,解得:t=5±.∴当t=2或t=5+或t=5﹣时,△PQB为直角三角形.解法2:①如图2,当∠PQB=90°时,易知∠OPQ=90°,∴BQ∥OD∴∠BQC=∠POQ=45°可得QC=BC=2,∴OQ=4,∴2t=4,∴t=2,②如图3,当∠PBQ=90°时,若点Q在OC上,作PN⊥x轴于点N,交AB于点M,则易证∠PBM=∠CBQ,∴△PMB∽△QCB∴=,∴CB•PM=QC•MB,∴2(t﹣2)=(2t﹣6)(t﹣6),化简得t2﹣10t+20=0,解得:t=5±,∴t=5﹣;③如图3,当∠PBQ=90°时,若点Q在OC的延长线上,作PN⊥x轴于点N,交AB延长线于点M,则易证∠BPM=∠MBQ=∠BQC,∴△PMB∽△QCB,∴=,∴CB•PM=QC•MB,∴2(t﹣2)=(2t﹣6)(t﹣6),化简得t2﹣10t+20=0,解得:t=5±,∴t=5+;(3)存在这样的t值,理由如下:将△PQB绕某点旋转180°,三个对应顶点恰好都落在抛物线上,则旋转中心为PQ中点,此时四边形PBQB′为平行四边形.∵PO=PQ,由P(t,t),Q(2t,0),知旋转中心坐标可表示为(t,t),∵点B坐标为(6,2),∴点B′的坐标为(3t﹣6,t﹣2),代入y=﹣(x﹣t)2+t,得:2t2﹣13t+18=0,解得:t1=,t2=2.点评:本题考查了相似形综合题,涉及了动点问题,勾股定理的运用,矩形的性质,直角三角形的性质以及平行四边形的判定和性质,解答本题关键是讨论点P的位置,由题意建立方程从而求出符合题意的t值,同时要数形结合进行思考,难度较大.24.(2013丽水)如图1,点A是x轴正半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点,连结AC,BC,CD,设点A的横坐标为t.(1)当t=2时,求CF的长;(2)①当t为何值时,点C落在线段BD上;②设△BCE的面积为S,求S与t之间的函数关系式;(3)如图2,当点C与点E重合时,将△CDF沿x轴左右平移得到△C′D′F′,再将A,B,C′,D′为顶点的四边形沿C′F′剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的点C′的坐标.考点:相似形综合题;分类讨论.分析:(1)由Rt△ACF∽Rt△BAO,得CF=OA=t,由此求出CF的值;(2)①由Rt△ACF∽Rt△BAO,可以求得AF的长度;若点C落在线段BD上,则有△DCF∽△DBO,根据相似比例式列方程求出t的值;②有两种情况,需要分类讨论:当0<t≤8时,如题图1所示;当t>8时,如答图1所示.(3)本问涉及图形的剪拼.在△CDF沿x轴左右平移的过程中,符合条件的剪拼方法有三种,需要分类讨论,分别如答图2﹣4所示.解答:解:(1)由题意,易证Rt△ACF∽Rt△BAO,∴.∵AB=2AM=2AC,∴CF=OA=t.当t=2时,CF=1.(2)①由(1)知,Rt△ACF∽Rt△BAO,∴,∴AF=OB=2,∴FD=AF=2,.∵点C落在线段BD上,∴△DCF∽△DBO,∴,即,解得t=﹣2或t=﹣﹣2(小于0,舍去)∴当t=﹣2时,点C落在线段BD上;②当0<t≤8时,如题图1所示:S=BE•CE=(t+2)•(4﹣t)=t2+t+4;当t>8时,如答图1所示:S=BE•CE=(t+2)•(t﹣4)=t2﹣t﹣4.(3)符合条件的点C的坐标为:(12,4),(8,4)或(2,4).理由如下:在△CDF沿x轴左右平移的过程中,符合条件的剪拼方法有三种:方法一:如答图2所示,当F′C′=AF′时,点F′的坐标为(12,0),根据△C′D′F′≌△AHF′,△BC′H为拼成的三角形,此时C′的坐标为(12,4);方法二:如答图3所示,当点F′与点A重合时,点F′的坐标为(8,0),根据△OC′A≌△BAC′,可知△OC′D′为拼成的三角形,此时C′的坐标为(8,4);方法三:当BC′=F′D′时,点F′的坐标为(2,0),根据△BC′H≌△D′F′H,可知△AF′C′为拼成的三角形,此时C′的坐标为(2,4).点评:本题考查了坐标平面内几何图形的多种性质,是一道难度较大的中考压轴题.涉及到的知识点包括相似三角形、全等三角形、点的坐标、几何变换(旋转、平移、对称)、图形的剪拼、解方程等,非常全面;分类讨论的思想贯穿第(2)②问和第(3)问,第(3)问还考查了几何图形的空间想象能力.本题涉及考点众多,内涵丰富,对考生的数学综合能力要求较高.25.(2013莆田)在Rt△ABC,∠C=90°,D为AB边上一点,点M、N分别在BC、AC边上,且DM⊥DN.作MF⊥AB于点F,NE⊥AB于点E.(1)特殊验证:如图1,若AC=BC,且D为AB中点,求证:DM=DN,AE=DF;(2)拓展探究:若AC≠BC.①如图2,若D为AB中点,(1)中的两个结论有一个仍成立,请指出并加以证明;②如图3,若BD=kAD,条件中“点M在BC边上”改为“点M在线段CB的延长线上”,其它条件不变,请探究AE与DF的数量关系并加以证明.考点:相似形综合题;探究型.分析:(1)如答图1,连接CD,证明△AND≌△CDM,可得DM=DN;证明△NED≌△DFM,可得DF=NE,从而得到AE=NE=DF;(2)①若D为AB中点,则分别证明△DEN∽△MFD,△AEN∽△MFB,由线段比例关系可以证明AE=DF 结论依然成立.证法二提供另外一种证明方法,可以参考;②若BD=kAD,证明思路与①类似;证法二提供另外一种证明方法,可以参考.解答:(1)证明:若AC=BC,则△ABC为等腰直角三角形,如答图1所示,连接OD,则CD⊥AB,又∵DM⊥DN,∴∠1=∠2.在△AND与△CDM中,∴△AND≌△CDM(ASA),∴DM=DN.∵∠4+∠1=90°,∠1+∠3=90°,∴∠4=∠3,∵∠1+∠3=90°,∠3+∠5=90°,∴∠1=∠5,在△NED与△DFM中,∴△NED≌△DFM(ASA),∴NE=DF.∵△ANE为等腰直角三角形,∴AE=NE,∴AE=DF.(2)①答:AE=DF.证法一:由(1)证明可知:△DEN∽△MFD,∴,即MF•EN=DE•DF.同理△AEN∽△MFB,∴,即MF•EN=AE•BF.∴DE•DF=AE•BF,∴(AD﹣AE)•DF=AE•(BD﹣DF),∴AD•DF=AE•BD,∴AE=DF.证法二:如答图2所示,过点D作DP⊥BC于点P,DQ⊥AC于点Q.∵D为AB中点,∴DQ=PC=PB.易证△DMF∽△NDE,∴,易证△DMP∽△DNQ,∴,∴;易证△AEN∽△DPB,∴,∴,∴AE=DF.②答:DF=kAE.证法一:由①同理可得:DE•DF=AE•BF,∴(AE﹣AD)•DF=AE•(DF﹣BD)∴AD•DF=AE•BD∵BD=kAD∴DF=kAE.证法二:如答图3,过点D作DP⊥BC于点P,DQ⊥AC于点Q.易证△AQD∽△DPB,得,即PB=kDQ.由①同理可得:,∴;又∵,∴,∴DF=kAE.点评:本题是几何探究与证明综合题,考查了相似三角形与全等三角形的判定与性质.题中三个结论之间逐级递进,体现了从特殊到一般的数学思想.26.(2013龙岩)如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.(1)求菱形ABCD的周长;(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P 有几个?并求出点P到线段OD的距离;若不存在,请说明理由.考点:相似形综合题;动点型;最值问题;存在型;分类讨论;二次函数的最值;分段函数.分析:(1)根据勾股定理及菱形的性质,求出菱形的周长;(2)在动点M、N运动过程中:①当0<t≤40时,如答图1所示,②当40<t≤50时,如答图2所示.分别求出S的关系式,然后利用二次函数的性质求出最大值;(3)如答图3所示,在Rt△PKD中,DK长可求出,则只有求出tan∠DPK即可.为此,在△ODM中,作辅助线,构造Rt△OND,作∠NOD平分线OG,则∠GOF=∠DPK.在Rt△OGF中,求出tan∠GOF的值,从而问题解决.解答中提供另外一种解法,请参考.解答:解:(1)在菱形ABCD中,∵AC⊥BD∴AD==50.∴菱形ABCD的周长为200.(2)过点M作MP⊥AD,垂足为点P.①当0<t≤40时,如答图1,∵sin∠OAD===,∴MP=AM•sin∠OAD=t.S=DN•MP=×t×t=t2;②当40<t≤50时,如答图2,MD=70﹣t,∵sin∠ADO===,∴MP=(70﹣t).∴S△DMN=DN•MP=×t×(70﹣t)=t2+28t=(t﹣35)2+490.∴S=当0<t≤40时,S随t的增大而增大,当t=40时,最大值为480.当40<t≤50时,S随t的增大而减小,当t=40时,最大值为480.综上所述,S的最大值为480.(3)存在2个点P,使得∠DPO=∠DON.方法一:如答图3所示,过点N作NF⊥OD于点F,则NF=ND•sin∠ODA=30×=24,DF=ND•cos∠ODA=30×=18.∴OF=12,∴tan∠NOD===2.作∠NOD的平分线交NF于点G,过点G作GH⊥ON于点H,则FG=GH.∴S△ONF=OF•NF=S△OGF+S△OGN=OF•FG+ON•GH=(OF+ON)•FG.∴FG===,∴tan∠GOF===.设OD中垂线与OD的交点为K,由对称性可知:∠DPK=∠DPO=∠DON=∠FOG∴tan∠DPK===,∴PK=.根据菱形的对称性可知,在线段OD的下方存在与点P关于OD轴对称的点P′.∴存在两个点P到OD的距离都是.方法二:答图4所示,作ON的垂直平分线,交OD的垂直平分线EF于点I,连结OI,IN.过点N作NG⊥OD,NH⊥EF,垂足分别为G,H.当t=30时,DN=OD=30,易知△DNG∽△DAO,∴,即.∴NG=24,DG=18.∵EF垂直平分OD,∴OE=ED=15,EG=NH=3.设OI=R,EI=x,则在Rt△OEI中,有R2=152+x2①在Rt△NIH中,有R2=32+(24﹣x)2②由①、②可得:∴PE=PI+IE=.根据对称性可得,在BD下方还存在一个点P′也满足条件.∴存在两个点P,到OD的距离都是.(注:只求出一个点P并计算正确的扣(1分).)点评:本题考查了相似三角形的判定与性质、菱形、等腰三角形、中垂线、勾股定理、解直角三角形、二次函数极值等知识点,涉及考点较多,有一定的难度.第(2)问中,动点M在线段AO和OD上运动时,是两种不同的情形,需要分类讨论;第(3)问中,满足条件的点有2个,注意不要漏解.23.(2013福州)如图,等腰梯形ABCD中,AD∥BC,∠B=45°,P是BC边上一点,△PAD的面积为,设AB=x,AD=y(1)求y与x的函数关系式;(2)若∠APD=45°,当y=1时,求PB•PC的值;(3)若∠APD=90°,求y的最小值.考点:相似形综合题;最值问题;等腰梯形的性质;相似三角形的判定与性质;直角三角形斜边上的中线.专题:综合题.分析:(1)如图1,过A作AE垂直于BC,在直角三角形ABE中,由∠B=45°,AB=x,利用锐角三角函数定义表示出AE,三角形PAD的面积以AD为底,AE为高,利用三角形面积公式表示出,根据已知的面积即可列出y与x的函数关系式;(2)根据∠APC=∠APD+∠CPD,以及∠APC为三角形ABP的外角,利用外角性质得到关系式,等量代换得到∠BAP=∠CPD,再由四边形ABCD为等腰梯形,得到一对底角相等及AB=CD,可得出三角形ABP 与三角形PDC相似,由相似得比例,将CD换为AB,由y的值求出x的值,即为AB的值,即可求出PB•PC 的值;(3)取AD的中点F,过P作PH垂直于AD,由直角三角形PF大于等于PH,当PF=PH时,PF最小,此时F与H重合,由三角形APD为直角三角形,利用直角三角形斜边上的中线等于斜边的一半得到PF等于AD的一半,表示出PF即为PH,三角形APD面积以AD为底,PH为高,利用三角形面积公式表示出三角形APD面积,由已知的面积求出y的值,即为最小值.解答:解:(1)如图1,过A作AE⊥BC于点E,在Rt△ABE中,∠B=45°,AB=x,∴AE=AB•sinB=x,∵S△APD=AD•AE=,∴•y•x=,则y=;(2)∵∠APC=∠APD+∠CPD=∠B+∠BAP,∠APD=∠B=45°,∴∠BAP=∠CPD,∵四边形ABCD为等腰梯形,∴∠B=∠C,AB=CD,∴△ABP∽△PCD,∴=,∴PB•PC=AB•DC=AB2,当y=1时,x=,即AB=,则PB•PC=()2=2;(3)如图2,取AD的中点F,连接PF,过P作PH⊥AD,可得PF≥PH,当PF=PH时,PF有最小值,∵∠APD=90°,∴PF=AD=y,∴PH=y,∵S△APD=•AD•PH=,∴•y•y=,即y2=2,∵y>0,∴y=,则y的最小值为.点评:此题考查了相似形综合题,涉及的知识有:等腰梯形的性质,相似三角形的判定与性质,直角三角形斜边上的中线性质,以及三角形的面积求法,熟练掌握相似三角形的判定与性质是解本题的关键.26.(2013重庆市)已知,在矩形ABCD中,E为BC边上一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF.如图1,现有一张硬质纸片△GMN,∠NGM=90°,NG=6,MG=8,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上.如图2,△GMN从图1的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时点P从A点出发,以每秒1个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE的交点,连接PQ.当点N到达终点B时,△GMN和点P同时停止运动.设运动时间为t秒,解答下列问题:(1)在整个运动过程中,当点G在线段AE上时,求t的值;(2)在整个运动过程中,是否存在点P,使△APQ是等腰三角形?若存在,求出t的值;若不存在,说明理由;(3)在整个运动过程中,设△GMN与△AEF重叠部分的面积为S.请直接写出S与t之间的函数关系式以及自变量t的取值范围.考点:相似形综合题;动点型;存在型;分段函数;分类讨论.分析:(1)如答图1所示,证明QEMG为平行四边形,则运动路程QG=EM=10,t值可求;(2)△APQ是等腰三角形,分为三种情形,需要分类讨论,避免漏解.如答图2、答图3、答图4所示;(3)整个运动过程分为四个阶段,每个阶段重叠图形的形状各不相同,如答图5﹣答图8所示,分别求出其面积的表达式.解答:解:(1)在Rt△GMN中,GN=6,GM=8,∴MN=10.由题意,易知点G的运动线路平行于BC.如答图1所示,过点G作BC的平行线,分别交AE、AF于点Q、R.∵∠AED=∠EGM=90°,∴AE∥GM.∴四边形QEMG为平行四边形,∴QG=EM=10.∴t==10秒.(2)存在符合条件的点P.在Rt△ABE中,AB=12,BE=16,由勾股定理得:AE=20.设∠AEB=θ,则sinθ=,cosθ=.∵NE=t,∴QE=NE•cosθ=t,AQ=AE﹣QE=20﹣t.△APQ是等腰三角形,有三种可能的情形:①AP=PQ.如答图2所示:过点P作PK⊥AE于点K,则AK=AP•cosθ=t.∵AQ=2AK,∴20﹣t=2×t,解得:t=;②AP=AQ.如答图3所示:有t=20﹣t,解得:t=;③AQ=PQ.如答图4所示:过点Q作QK⊥AP于点K,则AK=AQ•cosθ=(20﹣t)×=16﹣t.∵AP=2AK,∴t=2(16﹣t),解得:t=.综上所述,当t=,或秒时,存在点P,使△APQ是等腰三角形.(3)如答图1所示,点N到达点F的时间为t=7;由(1)知,点G到达点G的时间为t=10;QE=10×=8,AQ=20﹣8=12,∵GR∥BC,∴,即,∴QR=.∴点G到达点R的时间为t=10+=;点E到达终点B的时间为t=16.则在△GMN运动的过程中:①当0≤t<7时,如答图5所示:QE=NE•cosθ=t,QN=NE•sinθ=t,S=QE•QN=•t•t=t2;②当7≤t<10时,如答图6所示:设QN与AF交于点I,∵tan∠INF==,tan∠IFN==,∴∠INF=∠IFN,△INF为等腰三角形.底边NF上的高h=NF•tan∠INF=×(t﹣7)×=(t﹣7).S△INF=NF•h=×(t﹣7)×(t﹣7)=(t﹣7)2,∴S=S△QNE﹣S△INF=t2﹣(t﹣7)2=t2+t﹣;③当10≤t<时,如答图7所示:由②得:S△INF=(t﹣7)2,∴S=S△GMN﹣S△INF=24﹣(t﹣7)2=﹣t2+t+;④当<t≤16时,如答图8所示:FM=FE﹣ME=FE﹣(NE﹣MN)=17﹣t.设GM与AF交于点I,过点I作IK⊥MN于点K.∵tan∠IFK==,∴可设IK=4x,FK=3x,则FM=3x+17﹣t.∵tan∠IMF===,解得:x=(17﹣t).∴IK=4x=(17﹣t).∴S=FM•IK=(t﹣17)2.综上所述,S与t之间的函数关系式为:S=点评:本题是运动型综合题,难度较大,解题关键是清楚理解图形的运动过程.计算过程较为复杂,需要仔细认真;第(2)(3)问中,注意均需要分情况讨论,分别计算,避免漏解.25.(2013天津市)在平面直角坐标系中,已知点A(﹣2,0),点B(0,4),点E在OB上,且∠OAE=∠0BA.(Ⅰ)如图①,求点E的坐标;(Ⅱ)如图②,将△AEO沿x轴向右平移得到△A′E′O′,连接A′B、BE′.①设AA′=m,其中0<m<2,试用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).考点:相似形综合题;相似三角形的判定与性质;平移的性质;勾股定理;最值问题.分析:(Ⅰ)根据相似三角形△OAE∽△OBA的对应边成比例得到=,则易求OE=1,所以E(0,1);(Ⅱ)如图②,连接EE′.在Rt△A′BO中,勾股定理得到A′B2=(2﹣m)2+42=m2﹣4m+20,在Rt △BE′E中,利用勾股定理得到BE′2=E′E2+BE2=m2+9,则A′B2+BE′2=2m2﹣4m+29=2(m﹣1)2+27.所以由二次函数最值的求法知,当m=1即点E′的坐标是(1,1)时,A′B2+BE′2取得最小值.解答:解:(Ⅰ)如图①,∵点A(﹣2,0),点B(0,4),∴OA=2,OB=4.∵∠OAE=∠0BA,∠EOA=∠AOB=90°,∴△OAE∽△OBA,∴=,即=,解得,OE=1,∴点E的坐标为(0,1);(Ⅱ)①如图②,连接EE′.由题设知AA′=m(0<m<2),则A′O=2﹣m.在Rt△A′BO中,由A′B2=A′O2+BO2,得A′B2=(2﹣m)2+42=m2﹣4m+20.∵△A′E′O′是△AEO沿x轴向右平移得到的,∴EE′∥AA′,且EE′=AA′.∴∠BEE′=90°,EE′=m.又BE=OB﹣OE=3,∴在Rt△BE′E中,BE′2=E′E2+BE2=m2+9,∴A′B2+BE′2=2m2﹣4m+29=2(m﹣1)2+27.当m=1时,A′B2+BE′2可以取得最小值,此时,点E′的坐标是(1,1).②如图②,过点A作AB′⊥x,并使AB′=BE=3.易证△AB′A′≌△EBE′,∴B′A=BE′,∴A′B+BE′=A′B+B′A′.当点B、A′、B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,∴==,∴AA′=×2=,∴EE′=AA′=,∴点E′的坐标是(,1).点评:本题综合考查了相似三角形的判定与性质、平移的性质以及勾股定理等知识点.此题难度较大,需要学生对知识有一个系统的掌握.27.(2013内江)如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点,且DE∥BC,将△ADE 沿DE翻折,与梯形BCED重叠的部分记作图形L.(1)求△ABC的面积;(2)设AD=x,图形L的面积为y,求y关于x的函数解析式;(3)已知图形L的顶点均在⊙O上,当图形L的面积最大时,求⊙O的面积.考点:相似形综合题;最值问题;勾股定理;圆周角定理;等边三角形的性质.分析:(1)作AH⊥BC于H,根据勾股定理就可以求出AH,由三角形的面积公式就可以求出其值;(2)如图1,当0<x≤1.5时,由三角形的面积公式就可以表示出y与x之间的函数关系式,如图2,当1.5<x<3时,重叠部分的面积为梯形DMNE的面积,由梯形的面积公式就可以求出其关系式;(3)如图4,根据(2)的结论可以求出y的最大值从而求出x的值,作FO⊥DE于O,连接MO,ME,求得∠DME=90°,就可以求出⊙O的直径,由圆的面积公式就可以求出其值.解答:解:(1)如图3,作AH⊥BC于H,∴∠AHB=90°.∵△ABC是等边三角形,∴AB=BC=AC=3.∵∠AHB=90°,∴BH=BC=在Rt△ABC中,由勾股定理,得AH=.∴S△ABC==;(2)如图1,当0<x≤1.5时,y=S△ADE.作AG⊥DE于G,∴∠AGD=90°,∠DAG=30°,∴DG=x,AG=x,∴y==x2,∵a=>0,开口向上,在对称轴的右侧y随x的增大而增大,∴x=1.5时,y最大=,如图2,当1.5<x<3时,作MG⊥DE于G,∵AD=x,∴BD=DM=3﹣x,∴DG=(3﹣x),MF=MN=2x﹣3,∴MG=(3﹣x),∴y=,=﹣;(3),如图4,∵y=﹣;∴y=﹣(x2﹣4x)﹣,y=﹣(x﹣2)2+,∵a=﹣<0,开口向下,∴x=2时,y最大=,∵>,∴y最大时,x=2,∴DE=2,BD=DM=1.作FO⊥DE于O,连接MO,ME.∴DO=OE=1,∴DM=DO.∵∠MDO=60°,∴△MDO是等边三角形,∴∠DMO=∠DOM=60°,MO=DO=1.∴MO=OE,∠MOE=120°,∴∠OME=30°,∴∠DME=90°,∴DE是直径,S⊙O=π×12=π.点评:本题考查了等边三角形的面积公式的运用,梯形的面积公式的运用,勾股定理的运用,圆周角定理的运用,圆的面积公式的运用,等边三角形的性质的运用,二次函数的性质的运用,解答时灵活运用等边三角形的性质是关键.26.(2013绵阳)我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:;(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,试探究的最大值.考点:相似形综合题;三角形的重心;阅读型;最值问题.分析:(1)如答图1,作出中位线DE,证明△AOC∽△DOE,可以证明结论;(2)如答图2,作△ABC的中线CE,与AD交于点Q,则点Q为△ABC的重心.由(1)可知,=,而已知,故点O与点Q重合,即点O为△ABC的重心;(3)如答图3,利用图形的面积关系,以及相似线段间的比例关系,求出的表达式,这是一个二次函数,利用二次函数的性质求出其最大值.解答:(1)证明:如答图1所示,连接CO并延长,交AB于点E.∵点O是△ABC的重心,∴CE是中线,点E是AB的中点.∴DE是中位线,∴DE∥AC,且DE=AC.∵DE∥AC,∴△AOC∽△DOE,∵AD=AO+OD,∴.(2)答:点O是△ABC的重心.证明:如答图2,作△ABC的中线CE,与AD交于点Q,则点Q为△ABC的重心.由(1)可知,=,而,∴点Q与点O重合(是同一个点),∴点O是△ABC的重心.(3)解:如答图3所示,连接DG.设S△GOD=S,由(1)知,即OA=2OD,∴S△AOG=2S,S△AGD=S△GOD+S△AGO=3S.为简便起见,不妨设AG=1,BG=x,则S△BGD=3xS.∴S△ABD=S△AGD+S△BGD=3S+3xS=(3x+3)S,∴S△ABC=2S△ABD=(6x+6)S.设OH=k•OG,由S△AGO=2S,得S△AOH=2kS,∴S△AGH=S△AGO+S△AOH=(2k+2)S.∴S四边形BCHG=S△ABC﹣S△AGH=(6x+6)S﹣(2k+2)S=(6x﹣2k+4)S.∴==①如答图3,过点O作OF∥BC交AC于点F,过点G作GE∥BC交AC于点E,则OF∥GE.∵OF∥BC,∴OF=CD=BC;∵GE∥BC,∴,∴GE=;∴=,∴.∵OF∥GE,∴,∴=,∴k=,代入①式得:===﹣x2+x+1=﹣(x﹣)2+,∴当x=时,有最大值,最大值为.点评:本题是几何综合题,以三角形的重心为背景,考查了重心的概念、性质以及应用,考查了相似三角形、中位线、图形面积、二次函数最值等知识点.试题的难点在于第(3)问,如何求出的关系式是解题的关键;另外,第(3)问尚有多种不同的解法,同学们可以深入探究.26.(2013乐山)阅读下列材料:如图1,在梯形ABCD中,AD∥BC,点M,N分别在边AB,DC上,且MN∥AD,记AD=a,BC=b.若=,则有结论:MN=.请根据以上结论,解答下列问题:如图2,图3,BE,CF是△ABC的两条角平分线,过EF上一点P分别作△ABC三边的垂线段PP1,PP2,PP3,交BC于点P1,交AB于点P2,交AC于点P3.(1)若点P为线段EF的中点.求证:PP1=PP2+PP3;(2)若点P为线段EF上的任意位置时,试探究PP1,PP2,PP3的数量关系,并给出证明.考点:相似形综合题;阅读型;探究型.分析:(1)如答图1所示,作辅助线,由角平分线性质可知ER=ES,FM=FN;再由中位线性质得到FM=2PP3,ER=2PP2;最后,在梯形FMRE中,援引题设结论,列出关系式,化简得到:PP1=PP2+PP3;(2)如答图2所示,作辅助线,由角平分线性质可知ER=ES,FM=FN;再由相似三角形比例线段关系得到:ER=PP2;FM=PP3;最后,在梯形FMRE中,援引题设结论,列出关系式,化简得到:PP1=PP2+PP3.解答:(1)证明:如答图1所示,BE为角平分线,过点E作ER⊥BC于点R,ES⊥AB于点S,则有ER=ES;CF为角平分线,过点F作FM⊥BC于点M,FN⊥AC于点N,则有FM=FN.点P为中点,由中位线的性质可知:ES=2PP2,FN=2PP3.∴FM=2PP3,ER=2PP2.在梯形FMRE中,FM∥PP1∥ER,,根据题设结论可知:PP1====PP2+PP3.∴PP1=PP2+PP3.(2)探究结论:PP1=PP2+PP3.证明:如答图2所示,BE为角平分线,过点E作ER⊥BC于点R,ES⊥AB于点S,则有ER=ES;CF为角平分线,过点F作FM⊥BC于点M,FN⊥AC于点N,则有FM=FN.点P为EF上任意一点,不妨设,则,.∵PP2∥ES,∴=,∴ES=PP2;∵PP3∥FN,∴,∴FN=PP3.∴ER=PP2;FM=PP3.在梯形FMRE中,FM∥PP1∥ER,,根据题设结论可知:PP1====PP2+PP3.∴PP1=PP2+PP3.点评:本题是几何综合题,考查了相似三角形的判定与性质、角平分线的性质.本题两问之间体现了由特殊到一般的数学思想,解题思路类似,并且同学们可仔细领会.26.(2013山西省)数学活动﹣﹣﹣求重叠部分的面积.问题情境:数学活动课上,老师出示了一个问题:如图1,将两块全等的直角三角形纸片△ABC和△DEF 叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G.求重叠部分(△DCG)的面积.(1)独立思考:请回答老师提出的问题.(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,你能求出重叠部分(△DGH)的面积吗?请写出解答过程.(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题.“爱心”小组提出的问题是:如图3,将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN,求重叠部分(△DMN)的面积.任务:①请解决“爱心”小组提出的问题,直接写出△DMN的面积是.。

2013年中考数学特殊三角形

2013年中考数学特殊三角形

3.直角三角形:在△ABC中,∠C=90°. (1)性质:边与边的关系:(勾股定理)a2+b2= c2 ; (2)角与角的关系:∠A+∠B= 90° ; (3)边与角的关系: 若∠A=30°,则a=c,b=c; 若a=c,则∠A=30°; 若∠A=45°,则a=b=c; 若a=c,则∠A=45°; 斜边上的中线m=c=R.其中R为三角形外接圆的半径. (4)判定:有一个角是直角的三角形是直角三角形;如果三角形 的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三 角形;如果三角形一条边上的中线等于这条边的一半,那么 这个三角形是直角三角形.
探究提高 在线段的长无法直接求出时,可利用另一线段把这一 线段表示出来,然后利用勾股定理得到一个方程,最后得解, 这是利用勾股定理解决线段长的常用方法.
(2)(2011·鸡西)已知三角形相邻两边长分别为20 cm和 30 cm,第三边上的高为10 cm,则此三角形的面积 为__________cm2.
探究提高 在等腰三角形中,如果没有明确底边和腰,某一边可以是底, 也可以是腰.同样,某一角可以是底角也可以是顶角,必须仔细分类讨 论.
3.(2011·芜湖)如图,已知△ABC中,∠ABC=45°, F是高AD 和BE的交点,CD=4,则线段DF的长度为( )
A.2
B.4
C.3
D.4
答案 B 解析 在Rt△ABD中,∠ABD=45°,可得AD=BD,易证 △BDF≌△ADC,所以DF=CD=4.
中考复习——特殊三角形
基础知识 自主学习
要点梳理
1.等腰三角形: (1)性质: 两腰 相等,两底角 相等,底边上的高线、中线、 顶角的角平分线“三线合一”; (2)判定:有两边相等、两角相等或两线合一的三角形是等腰 三角形.

2013年中考数学专题复习第十七讲:三角形与全等三角形(含详细参考答案)

2013年中考数学专题复习第十七讲:三角形与全等三角形(含详细参考答案)

2013年中考数学专题复习第十七讲三角形与全等三角形【基础知识回顾】三角形的概念:1、由直线上的三条线段组成的图形叫三角形2、三角形的基本元素:三角形有条边个顶点个内角二、三角形的分类:按边可分为三角形和三角形,按角可分为三角形三角形三角形注意:等边三角形属于特殊的三角形,锐角三角形和钝角三角形有事称为三角形。

三、三角形的性质:1、三角形的内角和是三角形的任意一个外角和它不相得两个内角的和三角形的一个外角任意一个和它不相邻的内角2、三角形任意两边之和第三边,任意两边之差第三边3、三角形具有性注意:1、三角形的外角是指三角形一边和另一边的组成的角,三角形有个外角,三角形的外角和事,是其中各外角的和2、三角形三边关系定理是确定三条线段否构成三角形和判断限度间不等关系的主要依据。

四、三角形中的主要线段:1、角平分线:三角形的三条角平分线都在三角形部且交于一点,这些是三角形的心它到得距离相等2、中线:三角形的三条中线都在三角形部,且交于一点3、高线:不同三角形的三条高线位置不同,锐角三角形三条高都连三角形直角三角形有一条高线在部,另两条河重合,钝角三角形有一条高线在三角形部,两条在三角形部4、中位线:连接三角形任意两边的线段叫做三角形的中位线。

定理:三角形的中位线第三边且等于第三边的注意:三角形的平分线、中线、高线、中位线都是且都有条】五、全等三角形的概念和性质:1、的两个三角形叫做全等三角形2、性质:全等三角形的、分别相等,全等三角形的对应线段(角平分线、中线、高线)周长、面积分别对应注意:全等三角形的性质是证明线段、角等之间数量关系的最主要依据。

一、全等三角形的判定:1、一般三角形的全等判定方法:①边角边,简记为②角边角:简记为③角角边:简记为④边边边:简记为2、直角三角形的全等判定除可用一般三角形全等判定的所有方法以外,还可以用来判定注意:1、判定全等三角形的条件中,必须至少有一组对应相等,用SAS判定全等,切记角为两边的2、判定全等三角形的有关条件要特别注意对应两个字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年中考数学复习三角形1.(2012广东肇庆,9,3)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为A.16 B.18C.20 D.16或20【解析】先利用等腰三角形的性质:两腰相等;再由三角形的任意两边和大于第三边,确定三角形的第三边长,最后求得其周长.【答案】C【点评】本题将两个简易的知识点:等腰三角形的两腰相等和三角形的三边关系组合在一起.难度较小.2.(2012广东肇庆,3,3)如图1,已知D、E在△ABC的边上,DE∥BC,∠B = 60°,∠AED = 40°,则∠A的度数为AD EB C图1A.100°B.90°C.80°D.70°【解析】结合两直线平行,同位角相等及三角形内角和定理,把已知角和未知角联系起来,即可求出角的度数.【答案】C【点评】本题考查了三角形的内角和定理,及平行线的性质。

3.(2012山东省滨州,1,3分)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形【解析】三角形的三个角依次为180°×=30°,180°×=45°,180°×=105°,所以这个三角形是钝角三角形.【答案】选D.【点评】本题考查三角形内角和定理:三角形的内角和是180°.再由三个角的大小之比可求出三个角的大小.4.( 2012年四川省巴中市,3,3)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线【解析】根据中线的定义,”连接三角形一个顶点和它对边中点的线段叫做三角形的中线”,知三角形的中线把三角形分成等底同高的两个三角形,它们的面积相等.故选A.【答案】A【点评】本题考查三角形中线及三角形面积的有关概念,比较容易.D5.(2012广东汕头,7,3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( )21世纪教育网6.(2012年广西玉林市,8,3)如图在菱形ABCD 中,对角线AC 、DB 相交于点O ,且AC ≠BD ,则图中全等三角形有A .4对B .6对C .8对D .10对分析:根据菱形四边形等,对角线互相垂直且平分,结合全等三角形的判定即可得出答案. 解:图中全等三角形有:△ABO ≌△ADO 、△ABO ≌△CDO ,△ABO ≌△CBO ;△AOD ≌△COD ,△AOD ≌△COB ;△DOC ≌△BOC ;△ABD ≌△CBD ,△ABC ≌△ADC ,共8对.故选C .点评:此题考查了全等三角形的判定及菱形的性质,注意掌握全等三角形的几个判定定理,在查找时要有序的进行,否则很容易出错.7. ( 2012年四川省巴中市,10,3)如图3,已知AD 是△ABC 的 BC 边上的高,下列能使△ABD ≌△ACD 的条件是( ) A.AB=AC B.∠BAC=900 C.BD=AC D.∠B=450【解析】由条件A,与直角三角形全等的判定“斜边、直角边”可判定△ABD ≌△ACD ,其它条件均不能使 △ABD ≌△ACD ,故选A 【答案】A【点评】本题考查直角三角形全等的判定“斜边、直角边”应用.8.(2012四川泸州,11,3分)若下列各组值代表线段的长度,则不能构成三角形的是( ) A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,8解析:根据三角形两边之和大于第三边或两边边之差小于第三边进行判断.由于3+4<8,所以不能构成三角形;因为4+6>9,所以三线段能构成三角形;因为8+15>20,所以三线段能构成三角形;因为9+8>15,所以三线段能构成三角形.故选A.答案:A 点评:判断三条线段能否构成三角形的边,可以从三条线段中选较小两边之和与剩下一边比较,和大于这边,就能够组成三角形的边.9.(2012黑龙江省绥化市,4,3分)等腰三角形的两边长是3和5,它的周长是 . 【解析】 解:题中给出了等腰三角形的两边长,因没给出具体谁是底长,故需分类讨论:①当3是底边长时,周长为5+5+3=13;②当5是底边长时,周长为3+3+5=11. 【答案】 11或13.【点评】 本题考查了等腰三角形中的常见分类讨论思想,已知两边求第三边长或周长面积等,解决本题的关键是注意要分类讨论,但注意有时其中一种情况不能构造出三角形,考生稍不留神也会写出这种不合题意的答案.难度中等.10.(2012深圳市 6 ,3分)如图1所示,一个60角的三角形纸片,剪去这个60角后,得到一个四边形,则∠+∠12 的度数为( )A. 120B. 180C. 240D. 300【解析】:考查多边形的内角和,根据公式()n -1802来算即可。

也可以用三角形的内角和与平角的定义来求。

【解答】:先由三角形的内角各,求出三角形另两个角的度数为120,再根据四边形内角各求出∠+∠=12240,故选择C【点评】:掌握各种角度的计算方法,灵活运用相关知识,即可顺利解答。

11.(2012贵州省毕节市,9,3分)如图.在Rt △ABC 中,∠A=30°,DE 垂直平分斜边AC ,交AB 于D ,E 式垂足,连接CD ,若BD=1,则AC 的长是( ) A.23B.2C.43D.4 21世纪教育网2160°图1解析:求出∠ACB ,根据线段垂直平分线求出AD=CD ,求出∠ACD 、∠DCB , 求出CD 、AD 、AB ,由勾股定理求出BC ,再求出AC 即可. 解答:解:∵∠A=30°,∠B=90°,∴∠ACB=180°-30°-90°=60°, ∵DE 垂直平分斜边AC ,∴AD=CD ,∴∠A=∠ACD=30°,∴∠DCB=60°-30°=30°, ∵BD=1,∴CD=2=AD ,∴AB=1+2=3, 在△BCD 中,由勾股定理得:CB=3,在△ABC 中,由勾股定理得:AC=22BCAB=32,故选A .点评:本题考查了线段垂直平分线,含30度角的直角三角形,等腰三角形的性质,三角形的内角和定理等知识点的应用,主要考查学生运用这些定理进行推理的能力,题目综合性比较强,难度适中.12.(2012广安中考试题第9题,3分)已知等腰△ABC 中,AD ⊥BC 于点D ,且AD=21BC ,则△ABC 底角的度数为( C )A .45oB .75oC .45o 或15oD .60o 9、C思路导引:结合题意画出图形,有助于解题,注意分类讨论 解析:分类讨论,①当BC 为底边时,AB=AC,AD ⊥BC,AD=12BC,而BD=DC=12BC,所以AD=BD=DC ,又 ∠ADB=90°,所以△ABC 底角∠ABC=45°,DBCA②当BC 为腰长时,如图所示,BC=AB, AD ⊥BC,AD=12BC, AD=12AB,所以∠BAC=30°,因此△ABC 底角∠ACB=75°,点评:等腰三角形的边、角的计算问题,如果题目无图形,注意画图,运用数形结合解答问题,再等腰三角形问题往往有两种情况,应当分类讨论.13.(2012江苏苏州,9,3分)如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )14.(2012呼和浩特,13,3分)如图,在△ABC 中,∠B=47°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC=______°BF【解析】∵∠B=47°,∴∠BAC+∠BCA=180°– 47°=133°,∴∠CAD+∠ACF=360°–133°=227° 又∵AE 和CE 是角平分线,∴∠CAE+∠ACE=113.5°,∴∠E=180°–113.5°=66.5° 【答案】66.5【点评】本题考查了三角形的内角和以及角平分线的性质。

15.(2012,湖北孝感,12,3分)如图,在菱形ABCD 中,∠A=60°,E ,F 分别是AB ,AD 的中点,DE ,BF 相交于点G ,连接BD ,CG ,有下列结论:①∠BGD=120° ;②BG+DG=CG ;③△BDF ≌△CGB ;④24A B D S△.其中正确的结论有( )A .1个B .2个C .3个D .4个 【解析】根据题意,△ABD 是等边三角形,由此可推得BG=DG=∠EBG ,∠GCB=30° ,∠GBC=90° ;因为直角三角形中30°角所对的边等于斜边的一半,所以BG=12GC;显然CG>BD,△BDF和△CGB不可能全等;故①,②,④正确.【答案】C【点评】考查菱形的性质和轴对称及等边三角形等知识的综合应用.根据∠A=60°得到等边三角形△ABD是解本题的关键.16.(2012,湖北孝感,11,3分)如图,在△ABC中,AB=AC,∠A =36°,BD平分∠ABC 交AC于点D,若AC=2,则AD的长是()A.2B.2C1D1【解析】根据三角形特点,先求出角的度数,从而得到三角形相似,再根据相似三角形对应边成比例即可求得.在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB=72°∵BD平∠ABC,∴∠ABD=∠CBD=36°,∴BD=AD=BC,∠BDC=72°∴△ABC∽△BCD故:AB︰BC=BC︰CD设AD=x,则BC=x,CD=2-x,∴2︰x= x︰(2-x)解得1-或1>AC(舍去)【答案】C【点评】题考查了相似三角形的证明和性质,本题中求证三角形相似是解题的关键.17.(2012湖南衡阳市,23,6)如图,AF=DC,BC∥EF,请只补充一个条件,使得△ABC≌△DEF,并说明理由.解析:首先由AF=DC可得AC=DF,再由BC∥EF根据两直线平行,内错角相等可得∠EFD=∠BCA,再加上条件EF=BC即可利用SAS证明△ABC≌△DEF.答案:解:补充条件:EF=BC,可使得△ABC≌△DEF.理由如下:∵AF=DC,∴AF+FC=DC+FC,即:AC=DF,∵BC∥EF,∴∠EFD=∠BCA,在△EFD和△BCA中,,∴△EFD≌△BCA(SAS).点评:此题主要考查了全等三角形的判定,关键是熟练掌握判定定理:SSS、SAS、ASA、AAS,HL.18.(2012四川泸州,23,7分)解析:找出三角形全等条件、再由全等三角形性质得出线段相等.解:在△ABC和△EDC中,∵AB⊥BC,ED⊥BC,∴∠ABC=∠EDC∵BC=DC,∠ACB=∠DCE.∴△ABC≌△EDC(ASA).∴AB=ED.点评:本题考查了全等三角形性质与条件.解题的关键是寻找三角形全等的条件.19.(2012江苏省淮安市,14,3分)如图,△ABC中,AB=AC,AD⊥BC,垂足为点D,若∠BAC=70º,则∠BAD= º.【解析】根据等腰三角形的性质:等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合(三线合一),可得∠BAD=12∠BAC=35º.【答案】35º【点评】本题考查了等腰三角形的性质,利用三线合一是正确解答本题的关键.20.(2012山东省滨州,16,4分)如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C= .CAB D 【解析】∵AB=AD,∠BAD=20°,∴∠B===80°,∵∠ADC 是△ABD 的外角,∴∠ADC=∠B+∠BAD=80°+20°=100°,∵AD=DC ,∴∠C===40°.【答案】40°.【点评】本题考查三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和,AB=AD ,又已知∠BAD 的大小,可求出∠B 、∠ADB的大小.又已知AD=DC ,由三角形内角和定理可得∠C 的大小.21.(2012,黔东南州,15)用6根相同长度的木棒在空间中最多可搭成 个正三角形。

相关文档
最新文档