【步步高】2014届高考数学一轮复习 3.1.2 指数函数(一)备考练习 苏教版

合集下载

【苏教版】【步步高】2014届高考数学一轮复习备考练习3.1.1平均变化率

【苏教版】【步步高】2014届高考数学一轮复习备考练习3.1.1平均变化率

§3.1 导数的概念3.1.1 平均变化率一、基础过关1.如图,函数y =f (x )在A ,B 两点间的平均变化率为________.2.过曲线y =2x 上两点(0,1),(1,2)的割线的斜率为________.3.函数y =1在[2,5]上的平均变化率是________.4.一物体的运动方程是s =3+t 2,则在一小段时间[2,2.1]内相应的平均速度为________.5.设函数y =f (x )=x 2-1,当自变量x 由1变为1.1时,函数的平均变化率为________.6.过曲线y =f (x )=x 2+1上两点P (1,2)和Q (1+Δx,2+Δy )作曲线的割线,当Δx =0.1时,割线的斜率k =________.二、能力提升7.甲、乙二人跑步路程与时间关系如右图所示,________跑得快.8.将半径为R 的球加热,若半径从R =1到R =m 时球的体积膨胀率为28π3,则m 的值为________. 9.在x =1附近,取Δx =0.3,在四个函数①y =x ,②y =x 2,③y =x 3,④y =1x中,平均变化率最大的是________.10.求函数y =sin x 在0到π6之间和π3到π2之间的平均变化率,并比较它们的大小. 11.一正方形铁板在0℃时,边长为10 cm ,加热后膨胀.当温度为t ℃时,边长变为10(1+at ) cm ,a 为常数,试求铁板面积对温度的膨胀率.12.已知气球的体积为V (单位:L)与半径r (单位:dm)之间的函数关系是V (r )=43πr 3. (1)求半径r 关于体积V 的函数r (V );(2)比较体积V 从0 L 增加到1 L 和从1 L 增加到2 L 半径r 的平均变化率;哪段半径变化较快(精确到0.01)?此结论可说明什么意义?三、探究与拓展13.巍巍泰山为我国的五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八, 慢十八,不紧不慢又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线 图.同样是登山,但是从A 处到B 处会感觉比较轻松,而从B 处到C 处会感觉比较吃力.想想看,为什么?你能用数学语言来量化BC段曲线的陡峭程度吗?答案1.-12.13.04.4.15.2.16.2.17.乙8.29.③10.解 在0到π6之间的平均变化率为sin π6-sin 0π6-0=3π; 在π3到π2之间的平均变化率为sin π2-sin π3π2-π3=3(2-3)π. ∵2-3<1,∴3π>3(2-3)π. ∴函数y =sin x 在0到π6之间的平均变化率为3π,在π3到π2之间的平均变化率为3(2-3)π,且在0到π6之间的平均变化率较大. 11.解 设温度的增量为Δt ,则铁板面积S 的增量为ΔS =102[1+a (t +Δt )]2-102(1+at )2=200(a +a 2t )Δt +100a 2(Δt )2,因此ΔS Δt=200(a +a 2t )+100a 2Δt . 所以铁板面积对温度的膨胀率为200(a +a 2t )+100a 2Δt . 12.解 (1)∵V =43πr 3, ∴r 3=3V 4π,r =33V 4π, ∴r (V )=33V 4π. (2)函数r (V )在区间[0,1]上的平均变化率约为r (1)-r (0)1-0=33×14π-01≈0.62(dm/L), 函数r (V )在区间[1,2]上的平均变化率约为r (2)-r (1)2-1=33×24π-33×14π≈0.16(dm/L). 显然体积V 从0 L 增加到1 L 时,半径变化快,这说明随着气球体积的增加,气球的半径增加得越来越慢.13.解 山路从A 到B 高度的平均变化率为h AB =Δy Δx =10-050-0=15, 山路从B 到C 高度的平均变化率为h BC =Δy Δx =15-1070-50=14, ∴h BC >h AB ,∴山路从B 到C 比从A 到B 陡峭.。

【步步高】2014届高三数学大一轮复习讲义--函数图象与性质的综合应用

【步步高】2014届高三数学大一轮复习讲义--函数图象与性质的综合应用

专题一 函数图象与性质的综合应用1.函数的三要素是对应关系、定义域、值域;其中函数的核心是对应关系. 2.函数的性质主要包括:单调性、周期性、对称性、最值等.3.求函数值域的方法有配方法、换元法、不等式法、函数单调性法、图象法等. 4.作图一般有两种方法:描点法作图、图象变换法作图. 5.图象的三种变换:平移变换、伸缩变换和对称变换.1. (2011·安徽)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)等于( )A .-3B .-1C .1D .3 答案 A解析 ∵f (x )是奇函数,当x ≤0时,f (x )=2x 2-x , ∴f (1)=-f (-1)=-[2×(-1)2-(-1)]=-3.2. 函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为 ( )A.13B.23 C .1 D .2 答案 B解析 令f (x )=0,解得x =1;令f (x )=1,解得x =13或3.因为函数f (x )在(0,1)上为减函数,在(1,+∞)上为增函数.故b -a 的最小值为1-13=23.3. (2011·辽宁)设函数f (x )=⎩⎪⎨⎪⎧21-x , x ≤11-log 2x , x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞) 答案 D解析 当x ≤1时,由21-x ≤2,知x ≥0,即0≤x ≤1.当x >1时,由1-log 2x ≤2,知x ≥12,即x >1,所以满足f (x )≤2的x 的取值范围是[0,+∞).4. (2011·湖北)已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于 ( ) A .2 B.154 C.174 D .a 2答案 B解析 ∵f (x )是奇函数,g (x )是偶函数, ∴由f (x )+g (x )=a x -a -x +2,① 得-f (x )+g (x )=a -x -a x +2,②①+②,得g (x )=2,①-②,得f (x )=a x -a -x . 又g (2)=a ,∴a =2,∴f (x )=2x -2-x , ∴f (2)=22-2-2=154.5. 已知y =f (x )的图象如图,则y =f (1-x )的图象为下列四图中的 ( )答案 A解析 将y =f (1-x )变形为y =f [-(x -1)]①作y =f (-x )图象,将y =f (x )关于y 轴对称即可; ②将f (-x )的图象沿x 轴正方向平移1个单位, 得y =f [-(x -1)]=f (1-x )的图象.题型一 函数求值问题例1 (2012·苏州模拟)设f (x )=⎩⎪⎨⎪⎧log 3(x 2+t ),x <0,2×(t +1)x ,x ≥0 且f (1)=6,则f (f (-2))的值为________.思维启迪:首先根据f (1)=6求出t 的取值,从而确定函数解析式,然后由里到外逐层求解f (f (-2))的值,并利用指数与对数的运算规律求出函数值. 答案 12解析 ∵1>0,∴f (1)=2×(t +1)=6, 即t +1=3,解得t =2.故f (x )=⎩⎪⎨⎪⎧log 3(x 2+2),x <0,2×3x , x ≥0,所以f (-2)=log 3[(-2)2+2]=log 36>0. f (f (-2))=f (log 36)=2×3log 36=2×6=12.探究提高 本题的难点有两个,一是准确理解分段函数的定义,自变量在不同取值范围 内对应着不同的函数解析式;二是对数与指数的综合运算问题.解决此类问题的关键是 要根据分段函数的定义,求解函数值时要先判断自变量的取值区间,然后再代入相应的 函数解析式求值,在求值过程中灵活运用对数恒等式进行化简求值.(2012·广东六校联考)已知f (x )=⎩⎪⎨⎪⎧-cos (πx ), x >0,f (x +1)+1, x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于 ( )A .-2B .1C .2D .3 答案 D解析 f ⎝⎛⎭⎫43=12,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=52,f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 题型二 函数性质的应用例2 设奇函数f (x )在(0,+∞)上为单调递增函数,且f (2)=0,则不等式f (-x )-f (x )x≥0的解集为 ( ) A .[-2,0]∪[2,+∞) B .(-∞,-2]∪(0,2] C .(-∞,-2]∪[2,+∞) D .[-2,0)∪(0,2] 思维启迪:转化成f (m )<f (n )的形式,利用单调性求解. 答案 D解析 因为f (x )为奇函数,所以f (-x )=-f (x ),不等式可化为-f (x )-f (x )x ≥0,即-f (x )x ≥0.当x >0时,则有f (x )≤0=f (2),由f (x )在(0,+∞)上单调递增可得x ≤2;当x <0时,则有f (x )≥0=-f (2)=f (-2),由函数f (x )为奇函数可得f (x )在(-∞,0)上单调递增,所以x ≥-2.所以不等式的解集为[-2,0)∪(0,2].探究提高 解决抽象函数问题的关键是灵活利用抽象函数的性质,利用函数的单调性去 掉函数符号是解决问题的关键,由函数为奇函数可知,不等式的解集关于原点对称,所 以只需求解x >0时的解集即可.设函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,log 2(-x ),x <0,若f (m )<f (-m ),则实数m 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1) 答案 C解析 f (-x )=⎩⎪⎨⎪⎧ log 12(-x ),-x >0log 2x ,-x <0=⎩⎪⎨⎪⎧log 12(-x ),x <0,log 2x ,x >0.当m >0时,f (m )<f (-m )⇒log 12m <log 2m ⇒m >1;当m <0时,f (m )<f (-m )⇒log 2(-m )<log 12(-m )⇒-1<m <0.所以,m 的取值范围是(-1,0)∪(1,+∞). 题型三 函数图象及应用例3 已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc的取值范围是_____________.思维启迪:可以先画出函数f (x )的图象,通过图象的特征观察a 、b 、c 的关系. 答案 (10,12)解析 画出函数f (x )的图象,再画出直线y =d (0<d <1),如图所示,直观上知0<a <1,1<b <10,10<c <12,再由|lg a |=|lg b |,得-lg a =lg b ,从而得ab =1,则10<abc <12.探究提高 通过图形可以发现a ,b ,c 所在的区间,再把绝对值符号去掉,就能发现ab =1,这样利用数形结合就可把问题化难为易了.已知不等式x 2-log a x <0,当x ∈⎝⎛⎭⎫0,12时恒成立,求实数a 的取值范围. 解由x 2-log a x <0, 得x 2<log a x .设f (x )=x 2,g (x )=log a x .由题意知,当x ∈⎝⎛⎭⎫0,12时,函数f (x )的图象在函数g (x )的图象的下方, 如图,可知⎩⎪⎨⎪⎧ 0<a <1,f ⎝⎛⎭⎫12≤g ⎝⎛⎭⎫12,即⎩⎪⎨⎪⎧0<a <1,⎝⎛⎭⎫122≤log a 12, 解得116≤a <1.∴实数a 的取值范围是⎣⎡⎭⎫116,1. 题型四 函数的值域与不等式恒成立问题例4 (2012·天津滨海新区五所重点学校联考)定义在R 上的增函数y =f (x )对任意x ,y ∈R都有f (x +y )=f (x )+f (y ). (1)求f (0);(2)求证:f (x )为奇函数;(3)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围.思维启迪:(1)赋值法是解决抽象函数问题的常用方法,第(1)(2)两问可用赋值法解决. (2)将恒成立问题转化成函数最值问题. (1)解 令x =y =0,得f (0+0)=f (0)+f (0), 即f (0)=0.(2)证明 令y =-x ,得f (x -x )=f (x )+f (-x ), 又f (0)=0,则有0=f (x )+f (-x ), 即f (-x )=-f (x )对任意x ∈R 成立, 所以f (x )是奇函数.(3)解 方法一 因为f (x )在R 上是增函数, 又由(2)知f (x )是奇函数.f (k ·3x )<-f (3x -9x -2)=f (-3x +9x +2), 所以k ·3x <-3x +9x +2,32x -(1+k )·3x +2>0对任意x ∈R 成立.令t =3x >0,问题等价于t 2-(1+k )t +2>0对任意t >0恒成立. 令f (t )=t 2-(1+k )t +2,其对称轴为x =1+k2,当1+k2<0即k <-1时,f (0)=2>0,符合题意; 当1+k2≥0即k ≥-1时,对任意t >0,f (t )>0恒成立⇔⎩⎪⎨⎪⎧1+k 2≥0,Δ=(1+k )2-4×2<0,解得-1≤k <-1+2 2.综上所述,当k <-1+22时,f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立.方法二 由k ·3x <-3x +9x +2,得k <3x +23x -1.u =3x +23x -1≥22-1,3x =2时,取“=”,即u 的最小值为22-1,要使对x ∈R ,不等式k <3x +23x -1恒成立,只要使k <22-1.探究提高 对于恒成立问题,若能转化为a >f (x ) (或a <f (x ))恒成立,则a 必须大于f (x )的最大值(或小于f (x )的最小值).因此恒成立问题可以转化为我们较为熟悉的求最值的问题进行求解.若不能分离参数,可以将参数看成常数直接求解.定义在R 上的奇函数f (x ),当x ∈[0,+∞)时,f (x )是增函数,对于任意的θ∈⎣⎡⎦⎤0,π2,均有f (cos 2θ-3)+f (4m -2m cos θ)>0,试求实数m 的取值范围. 解 因为f (x )是定义在R 上的奇函数,当x ∈[0,+∞)时,f (x )是增函数,则f (x )在(-∞,0]上也是增函数,所以f (x )在R 上是增函数,且f (0)=0, ∵f (cos 2θ-3)+f (4m -2m cos θ)>0, ∴f (cos 2θ-3)>f (2m cos θ-4m ), 于是cos 2θ-3>2m cos θ-4m ,① 即cos 2θ-m cos θ+2m -2>0. 得m >cos 2θ-2cos θ-2,设h (θ)=cos 2θ-2cos θ-2,则h (θ)=4-⎣⎡⎦⎤(2-cos θ)+22-cos θ≤4-22,即h (θ)max =4-22,只须m >4-2 2.故实数m 的取值范围是(4-22,+∞). 2.高考中的函数零点问题典例:(2011·山东)已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.考点分析 本题考查对数函数、函数单调性、函数零点等知识,体现了函数知识的综合.求解策略 解答本题可先确定函数f (x )在(0,+∞)上的单调性,然后根据a ,b 满足的条件及对数的运算性质探究出f (x )零点所在的区间,从而对照x 0∈(n ,n +1),n ∈N *确定出n 的值. 答案 2解析 ∵2<a <3,∴f (x )=log a x +x -b 为定义域上的单调递增函数.f (2)=log a 2+2-b , f (3)=log a 3+3-b .∵2<a <3<b ,∴0<lg 2<lg a <lg 3,∴lg 2lg 3<lg 2lg a <1.又∵b >3,∴-b <-3,∴2-b <-1, ∴log a 2+2-b <0,即f (2)<0.∵1<lg 3lg a <lg 3lg 2,3<b <4,∴-1<3-b <0,∴log a 3+3-b >0,∴f (3)>0,即f (2)·f (3)<0. 由x 0∈(n ,n +1),n ∈N *知,n =2.解后反思 (1)本题考查函数零点,与函数的单调性相结合;(2)解决函数的有关问题,要综合利用函数的图象,函数的单调性、对称性、周期性、值域等.方法与技巧1. 利用复合函数求函数值是一类重要问题,解题关键是利用已知的函数值,通过解析式的变化特点进行代入求值,有时也可以利用周期性来解题.2. 抽象函数奇偶性的判断关键在于构造f (-x ),使之与f (x )产生等量关系,即比较f (-x )与±f (x )是否相等,此时赋值比较多的是-1、1、0等.3. 作图、识图和用图是函数图象中的基本问题.作图的基本途径:求出函数的定义域;尽量求出值域;变换(化简、平移、对称、伸缩等)出图象的形状;描点作图.识图就是从 图形中发现或捕捉所需信息,从而使问题得到解决.用图就是根据需要,作出函数的图 形,使问题求解得到依据,使函数、方程、不等式中的许多问题化归为函数图象问题. 失误与防范1. 函数求值问题一定要关注自变量的取值范围,尤其是分段函数,以防代错解析式. 2. 对于由抽象函数不等式向具体不等式转化的过程中,一定要注意单调区间,需将自变量转化到同一个单调区间上去.3. 识图要抓住性质特征,关键点;作图要规范,一般从基本图形通过平移、对称等变换来作图.(时间:60分钟) A 组 专项基础训练一、选择题(每小题5分,共20分)1. (2011·重庆)下列区间中,函数f (x )=|ln(2-x )|在其上为增函数的是 ( )A .(-∞,1]B .[-1,43]C .[0,32) D .[1,2)答案 D解析 方法一 当2-x ≥1,即x ≤1时,f (x )=|ln(2-x )|=ln(2-x ),此时函数f (x )在(- ∞,1]上单调递减.当0<2-x ≤1,即1≤x <2时,f (x )=|ln(2-x )|=-ln(2-x ),此时函 数f (x )在[1,2)上单调递增,故选D. 方法二 f (x )=|ln(2-x )|的图象如图所示.由图象可得,函数f (x )在区间[1,2)上为增函数,故选D.2. (2011·北京)如果log 12x <log 12y <0,那么 ( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x 答案 D解析 不等式转化为⎩⎨⎧log 12x <log 12y ,log 12y <0⇒1<y <x .3. (2012·浙江改编)设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎭⎫32等于 ( ) A.32 B .-14 C.14 D.12 答案 A解析 当x ∈[-1,0]时,-x ∈[0,1], ∵f (x )为偶函数,∴f (x )=f (-x )=-x +1. ∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12=-⎝⎛⎭⎫-12+1=32. 4. (2012·江西)如图所示,|OA |=2(单位:m),|OB |=1(单位:m),OA 与OB 的夹角为π6,以A 为圆心,AB 为半径作圆弧BDC 与线段OA 延长线交于点C .甲、乙两质点同时从点O 出发,甲先以速率1(单位:m/s)沿线段OB 行至点B ,再以速率3(单位:m/s)沿圆弧BDC 行至点C 后停止;乙以速率2(单位:m/s)沿线段OA 行至点A 后停止.设t 时刻甲、乙所到达的两点连线与它们经过的路径所围成图形的面积为S (t )(S (0)=0),则函数y =S (t )的图象大致是( )答案 A解析 对t 进行分段,确定函数y =S (t )的解析式.由题意知,当0<t ≤1时,甲从O 向B 移动,乙从O 向A 移动,则t 时刻,|OB |=t ,|OA | =2t ,此时S (t )=12·|OB |·|OA |sin π6=12t 2,此段图象为抛物线;当t >1时,设圆弧半径为r ,甲从B 沿圆弧移动到C 后停止,乙在A 点不动,则此时S (t )=12×1×2·sin π6+12·r ·3(t -1)=3r 2t +1-3r2,此段图象为直线,当甲移动至C 点后,甲、乙均不再移动,面积不再增加,选项B 中开始一段函数图象不对,选项C 中后两段图象不对,选项D 中前两段 函数图象不对,故选A. 二、填空题(每小题5分,共15分)5. 设a >0,a ≠1,函数f (x )=log a (x 2-2x +3)有最小值,则不等式log a (x -1)>0的解集为______. 答案 (2,+∞)解析 ∵x 2-2x +3>0,即(x -1)2+2>0的解集为R , ∴函数f (x )=log a (x 2-2x +3)的定义域为R . 又∵函数y =x 2-2x +3有最小值2,无最大值. 据题意有a >1.∴log a (x -1)>0=log a 1等价于⎩⎪⎨⎪⎧x -1>0,x -1>1,解得x >2,即不等式log a (x -1)>0的解集为(2,+∞). 6. 设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x ),g (x )-x ,x ≥g (x ),则f (x )的值域是__________. 答案 [-94,0]∪(2,+∞)解析 由x <g (x )得x <x 2-2,∴x <-1或x >2;由x ≥g (x )得x ≥x 2-2,∴-1≤x ≤2.∴f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2.即f (x )=⎩⎨⎧(x +12)2+74,x <-1或x >2,(x -12)2-94,-1≤x ≤2.当x <-1时,f (x )>2;当x >2时,f (x )>8.∴当x ∈(-∞,-1)∪(2,+∞)时,函数的值域为(2,+∞). 当-1≤x ≤2时,-94≤y ≤0.∴当x ∈[-1,2]时,函数的值域为[-94,0].综上可知,f (x )的值域为[-94,0]∪(2,+∞).7. 已知函数f (x )=⎩⎪⎨⎪⎧a x -5 (x >6),⎝⎛⎭⎫4-a 2x +4 (x ≤6),在R 上是单调递增函数,则实数a 的取值范围为________.答案 [7,8)解析 由题意知,实数a 应满足⎩⎪⎨⎪⎧a >14-a 2>0⎝⎛⎭⎫4-a 2×6+4≤a 6-5,即⎩⎪⎨⎪⎧a >1a <8a ≥7,解得7≤a <8. 三、解答题(共25分)8. (12分)若直线y =2a 与函数y =|a x -1| (a >0且a ≠1)的图象有两个交点,求a 的取值范围.解 ①当a >1时,画出函数y =|a x -1|的草图:若y =2a 与y =|a x -1|的图象有两个交点, 则有0<2a <1,∴0<a <12(舍去).②当0<a <1时,画出函数y =|a x -1|的草图:若y =2a 与y =|a x -1|的图象有两个交点,则有0<2a <1,∴0<a <12. 综上所述,a 的取值范围是⎝⎛⎭⎫0,12. 9. (13分)已知a >0,且a ≠1,f (log a x )=a a 2-1⎝⎛⎭⎫x -1x . (1)求f (x );(2)判断f (x )的单调性;(3)求f (x 2-3x +2)<0的解集.解 (1)令t =log a x (t ∈R ),则x =a t ,且f (t )=a a 2-1⎝⎛⎭⎫a t -1a t .∴f (x )=a a 2-1(a x -a -x ) (x ∈R ). (2)当a >1时,a x -a -x 为增函数, 又a a 2-1>0,∴f (x )为增函数; 当0<a <1时,a x -a -x 为减函数, 又aa 2-1<0,∴f (x )为增函数. ∴函数f (x )在R 上为增函数.(3)∵f (0)=a a 2-1(a 0-a 0)=0,∴f (x 2-3x +2)<0=f (0). 由(2)知:x 2-3x +2<0,∴1<x <2.∴不等式的解集为{x |1<x <2}.B 组 专项能力提升一、选择题(每小题5分,共15分)1. 已知函数f (x )=||lg x ,若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是 ( )A .(22,+∞) B.[ 22,+∞)C .(3,+∞) D.[ 3,+∞)答案 C解析 由已知条件0<a <1<b 和f (a )=f (b )得,-lg a =lg b ,则lg a +lg b =0,ab =1,因此a +2b =a +2a ,由对勾函数知y =x +2x在(0,1)单调递减,得a +2b >3,即a +2b 的取值范围是(3,+∞).2.设函数f (x )是定义在R 上周期为3的奇函数,若f (1)<1,f (2)=2a -1a +1,则 ( )A .a <12且a ≠-1 B .-1<a <0 C .a <-1或a >0 D .-1<a <2答案 C解析 ∵函数f (x )为奇函数,∴f (1)=-f (-1)<1,∴f (-1)>-1.又∵函数f (x )的周期为3,∴f (-1)=f (2)=2a -1a +1>-1,∴3a a +1>0, 解得a >0或a <-1.3. 设f (x )是定义在R 上的偶函数,对任意的x ∈R ,都有f (x -2)=f (x +2),且当x ∈[-2,0]时,f (x )=⎝⎛⎭⎫12x -1,若在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0 (a >1)恰有3个不同的实数根,则a 的取值范围是 ( )A .(1,2)B .(2,+∞)C .(1,34)D .(34,2)答案 D解析由f (x -2)=f (x +2),知f (x )是以4为周期的周期函数,于是可得f (x )在(-2,6]上的大致图象如图中实线所示,令g (x )=log a (x +2) (a >1),则g (x )的大致图象如图所示,结合图象可知,要使得方程f (x )-log a (x+2)=0 (a >1)在区间(-2,6]内恰有3个不同的实数根,则只需⎩⎪⎨⎪⎧ g (2)<3g (6)>3,即⎩⎨⎧log a 4<3log a 8>3,解得34<a <2. 二、填空题(每小题4分,共12分)4. 函数f (x )=log 0.5(3x 2-ax +5)在(-1,+∞)上是减函数,则实数a 的取值范围是__________.答案 [-8,-6]解析 设g (x )=3x 2-ax +5,由已知⎩⎪⎨⎪⎧a 6≤-1,g (-1)≥0,解得-8≤a ≤-6.5. 已知f (x )=a sin x +b 3x +4 (a ,b ∈R ),且f [lg(log 210)]=5,则f [lg(lg 2)]=________.答案 3解析 lg(log 210)=-lg(lg 2),f (-x )=a sin(-x )+b 3-x +4=-(a sin x +b 3x )+4.又f [lg(log 210)]=5,∴f [lg(lg 2)]=4-5+4=3.6. 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a的取值范围是__________.答案 (-2,1)解析∵f (x )是奇函数,∴当x <0时,f (x )=-x 2+2x ,作出f (x )的大致图象如图中实线所示,结合图象可知f (x )是R 上的增函数,由f (2-a 2)>f (a ),得2-a 2>a ,即-2<a <1.三、解答题(13分)7. 设函数f (x )=3ax 2-2(a +c )x +c (a >0,a ,c ∈R ).(1)设a >c >0.若f (x )>c 2-2c +a 对x ∈[1,+∞)恒成立,求c 的取值范围;(2)函数f (x )在区间(0,1)内是否有零点,有几个零点?为什么?解 (1)因为二次函数f (x )=3ax 2-2(a +c )x +c 的图象的对称轴为x =a +c 3a,由条件a >c >0, 得2a >a +c ,故a +c 3a <2a 3a =23<1,即二次函数f (x )的对称轴在区间[1,+∞)的左边,且抛 物线开口向上,故f (x )在[1,+∞)内是增函数.若f (x )>c 2-2c +a 对x ∈[1,+∞)恒成立,则f (x )min =f (1)>c 2-2c +a ,即a -c >c 2-2c +a , 得c 2-c <0,所以0<c <1.(2)①若f (0)·f (1)=c ·(a -c )<0,则c <0,或a <c ,二次函数f (x )在(0,1)内只有一个零点.②若f (0)=c >0,f (1)=a -c >0,则a >c >0.因为二次函数f (x )=3ax 2-2(a +c )x +c 的图象的对称轴是x =a +c 3a. 而f ⎝⎛⎭⎫a +c 3a =-a 2+c 2-ac 3a <0,所以函数f (x )在区间⎝ ⎛⎭⎪⎫0,a +c 3a 和⎝ ⎛⎭⎪⎫a +c 3a ,1内各有一个零点,故函数f (x )在区间(0,1) 内有两个零点.。

【苏教版】【步步高】2014届高考数学一轮复习备考课件3.2.1常见函数的导数

【苏教版】【步步高】2014届高考数学一轮复习备考课件3.2.1常见函数的导数

本 专 题 栏 目 开 关
x+Δx- x Δy fx+Δx-fx 解 = = Δx Δx Δx
x+Δx- x x+Δx+ x = Δx· x+Δx+ x Δx = Δx· x+Δx+ x
本 专 题 栏 目 开 关
1 = . x+Δx+ x
Δy 1 从而,当Δx→0时, → . Δx 2 x 1 ∴f′(x)= . 2 x
答案 ①③④
练一练· 当堂检测、目标达成落实处
本 专 题 栏 目 开 关
3 2.函数f(x)= x,则f′(3)等于________ . 6 1 解析 ∵f′(x)=( x)′= , 2 x
3 ∴f′(3)= =6. 2 3 1
练一练· 当堂检测、目标达成落实处
本 专 题 栏 目 开 关
3.设正弦曲线y=sin x上一点P,以点P为切点的切线为直 π 3π [0, ]∪[ ,π) 4 4 线l,则直线l的倾斜角的范围是__________________ .
x a ln a a>0,且 a≠ 1) f′(x)= ______( x e f′(x)= ________ 1 f′(x)= ________( xln a a>0且 a≠ 1)
α-1
本 专 题 栏 目 开 关
x
f(x)= logax f(x)= ln x
1 f′(x)= ________ x
研一研· 问题探究、课堂更高效
π ∴f′3=-sin
π 3 3=- 2 .
研一研· 问题探究、课堂更高效
本 专 题 栏 目 开 关
小结
函数f(x)在点x0处的导数等于f′(x)在点x=x0处的函
数值.在求函数在某点处的导数时可以先利用导数公式求 出导函数,再将x0代入导函数求解,不能先代入后求导.

【步步高】2014届高考数学一轮复习 第2章 章末检测备考练习 苏教版

【步步高】2014届高考数学一轮复习 第2章 章末检测备考练习 苏教版

章末检测一、填空题1.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=________. 2.等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4=________. 3.若{a n }是等比数列,其公比是q ,且-a 5,a 4,a 6成等差数列,则q =________.4.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a +b +c 的值为5.“嫦娥奔月,举国欢庆”,据科学计算,运载“神六”的“长征二号”系列火箭,在点火第一秒钟通过的路程为2 km ,以后每秒钟通过的路程都增加2 km ,在达到离地面240 km 的高度时,火箭与飞船分离,则这一过程大约需要的时间是________秒.6.设等比数列{a n }的前n 项和为S n ,若S 10S 5=12,则S 15S 5=________.7.已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n=________.8.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是________. 9.如果数列{a n }满足a 1=2,a 2=1,且a n a n -1a n -1-a n =a n a n +1a n -a n +1,则此数列的第10项a 10=________.10.已知S n =1-2+3-4+…+(-1)n -1n ,则S 17+S 33+S 50=________.11.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=________.12.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=________.13.已知数列1,12,21,13,22,31,14,23,32,41,…,则56是数列中的第________项.14.等比数列{a n }的公比为q ,其前n 项的积为T n ,并且满足条件a 1>1,a 99a 100-1>0,a 99-1a 100-1<0.给出下列结论:①0<q <1;②a 99a 101-1<0;③T 100的值是T n 中最大的;④使T n >1成立的最大自然数n 等于198.其中正确的结论是________.(填写所有正确的序号) 二、解答题15.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.16.已知数列{log 2(a n -1)} (n ∈N *)为等差数列,且a 1=3,a 3=9.(1)求数列{a n }的通项公式;(2)证明:1a 2-a 1+1a 3-a 2+…+1a n +1-a n<1.17.等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6.(1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和.18.在数列{a n }中,a 1=1,a n +1=2a n +2n.(1)设b n =a n2n -1.证明:数列{b n }是等差数列;(2)求数列{a n }的前n 项和S n .19.已知正项数列{b n }的前n 项和B n =14(b n +1)2,求{b n }的通项公式.20.甲、乙两大超市同时开业,第一年的全年销售额为a 万元,由于经营方式不同,甲超市前n 年的总销售额为a2(n 2-n +2)万元,乙超市第n 年的销售额比前一年销售额多a ⎝ ⎛⎭⎪⎫23n -1万元. (1)求甲、乙两超市第n 年销售额的表达式;(2)若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年? 答案1.88 2.8 3.-1或2 4.1 5.15 6.34 7.2n8.20 9.15 10.1 11.-7 12.313.50 14.①②④15.(1)解 设成等差数列的三个正数分别为a -d ,a ,a +d ,依题意,得a -d +a +a +d =15,解得a =5. 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d . 依题意,有(7-d )(18+d )=100, 解得d =2或d =-13(舍去). 故{b n }的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以{b n }是以54为首项,2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3.(2)证明 数列{b n }的前n 项和S n =541-2n 1-2=5·2n -2-54,即S n +54=5·2n -2.所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2. 因此⎩⎨⎧⎭⎬⎫S n +54是以52为首项,2为公比的等比数列.16.(1)解 设等差数列{log 2(a n -1)}的公差为d .由a 1=3,a 3=9,得log 2(9-1)=log 2(3-1)+2d , 则d =1.所以log 2(a n -1)=1+(n -1)×1=n , 即a n =2n+1. (2)证明 因为1a n +1-a n =12n +1-2n=12n , 所以1a 2-a 1+1a 3-a 2+…+1a n +1-a n=121+122+123+…+12n =12×⎝ ⎛⎭⎪⎫1-12n 1-12=1-12n <1.17.解 (1)设数列{a n }的公比为q .由a 23=9a 2a 6得a 23=9a 24,所以q 2=19.由条件可知q >0,故q =13.由2a 1+3a 2=1,得2a 1+3a 1q =1,所以a 1=13.故数列{a n }的通项公式为a n =13n .(2)b n =log 3a 1+log 3a 2+…+log 3a n=-(1+2+…+n )=-n n +12.故1b n =-2n n +1=-2⎝ ⎛⎭⎪⎫1n -1n +1, 1b 1+1b 2+…+1b n=-2[⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1]=-2n n +1. 所以数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和为-2nn +1.18.(1)证明 由已知a n +1=2a n +2n,得b n +1=a n +12n =2a n +2n 2n=a n2n -1+1=b n +1. ∴b n +1-b n =1,又b 1=a 1=1.∴{b n }是首项为1,公差为1的等差数列. (2)解 由(1)知,b n =n ,a n2n -1=b n =n .∴a n =n ·2n -1.∴S n =1+2·21+3·22+…+n ·2n -1两边乘以2得:2S n =1·21+2·22+…+(n -1)·2n -1+n ·2n, 两式相减得:-S n =1+21+22+…+2n -1-n ·2n=2n -1-n ·2n =(1-n )2n-1, ∴S n =(n -1)·2n+1. 19.解 当n =1时,B 1=b 1,∴b 1=14(b 1+1)2,解得b 1=1.当n ≥2时,b n =B n -B n -1 =14(b n +1)2-14(b n -1+1)2 =14(b 2n -b 2n -1+2b n -2b n -1), 整理得b 2n -b 2n -1-2b n -2b n -1=0, ∴(b n +b n -1)(b n -b n -1-2)=0. ∵b n +b n -1>0,∴b n -b n -1-2=0.∴{b n }为首项b 1=1,公差d =2的等差数列. ∴b n =2(n -1)+1=2n -1,即{b n }的通项b n =2n -1. 20.解 (1)设甲、乙两超市第n 年的销售额分别为a n ,b n .则有a 1=a ,当n ≥2时,a n =a 2(n 2-n +2)-a2[(n -1)2-(n -1)+2]=(n -1)a .∴a n =⎩⎪⎨⎪⎧a , n =1,n -1a , n ≥2.b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=a +a ⎝ ⎛⎭⎪⎫23+a ⎝ ⎛⎭⎪⎫232+…+a ⎝ ⎛⎭⎪⎫23n -1=⎣⎢⎡⎦⎥⎤3-2⎝ ⎛⎭⎪⎫23n -1a (n ∈N *). (2)易知b n <3a ,所以乙将被甲超市收购,由b n <12a n 得:⎣⎢⎡⎦⎥⎤3-2⎝ ⎛⎭⎪⎫23n -1a <12(n -1)a . ∴n +4⎝ ⎛⎭⎪⎫23n -1>7,∴n ≥7.即第7年乙超市的年销售额不足甲超市的一半,乙超市将被甲超市收购.。

【步步高】2014届高考数学一轮复习 3.2.1 常见函数的导数备考练习 苏教版

【步步高】2014届高考数学一轮复习 3.2.1 常见函数的导数备考练习 苏教版

§3.2 导数的运算3.2.1 常见函数的导数一、基础过关1.下列结论中正确的个数为________.①f (x )=ln 2,则f ′(x )=12; ②f (x )=1x 2,则f ′(3)=-227; ③f (x )=2x ,则f ′(x )=2xln 2;④f (x )=log 2x ,则f ′(x )=1x ln 2. 2.过曲线y =1x上一点P 的切线的斜率为-4,则点P 的坐标为________. 3.已知f (x )=x a ,若f ′(-1)=-4,则a 的值等于________.4.函数f (x )=x 3的斜率等于1的切线有________条.5.若f (x )=10x ,则f ′(1)=________.6.曲线y =14x 3在x =1处的切线的倾斜角的正切值为______. 7.求下列函数的导数:(1)y =x x ;(2)y =1x 4;(3)y =5x 3; (4)y =log 2x 2-log 2x ;(5)y =-2sin x 2⎝⎛⎭⎪⎫1-2cos 2x 4. 二、能力提升8.若曲线y =x -12在点(a ,a -12)处的切线与两个坐标轴围成的三角形的面积为18,则a =________.9.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为________.10.直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b =________. 11.求与曲线y =3x 2在点P (8,4)处的切线垂直于点P 的直线方程.12.已知抛物线y=x2,直线x-y-2=0,求抛物线上的点到直线的最短距离.三、探究与拓展13.设f0(x)=sin x,f1(x)=f′0(x),f2(x)=f′1(x),…,f n+1(x)=f′n(x),n∈N,试求f2 012(x).答案1.32.⎝ ⎛⎭⎪⎫12,2或⎝ ⎛⎭⎪⎫-12,-23.44.25.10ln 106.-347.解 (1)y ′=(x x )′=⎝ ⎛⎭⎪⎫x 32′=32x 32-1=32x .(2)y ′=⎝ ⎛⎭⎪⎫1x 4′=(x -4)′=-4x -4-1=-4x -5=-4x 5. (3)y ′=(5x 3)′=⎝ ⎛⎭⎪⎫x 35′=35x 35-1=35x -25=355x 2.(4)∵y =log 2x 2-log 2x =log 2x ,∴y ′=(log 2x )′=1x ·ln 2.(5)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4=2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x2=sin x ,∴y ′=(sin x )′=cos x .8.649.e10.ln 2-111.解 ∵y =3x 2,∴y ′=(3x 2)′=⎝ ⎛⎭⎪⎫x 23′=23x -13, ∴在P (8,4)处曲线的切线斜率k =23×8-13=13. ∴适合题意的切线的斜率为-3.从而适合题意的直线方程为y -4=-3(x -8),即3x +y -28=0.12.解 根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线,对应的切点到直线x -y -2=0的距离最短,设切点坐标为(x 0,x 20),则切线斜率k =2x 0=1,所以x 0=12,所以切点坐标为⎝ ⎛⎭⎪⎫12,14, 切点到直线x -y -2=0的距离 d =⎪⎪⎪⎪⎪⎪12-14-22=728,所以抛物线上的点到直线x -y -2=0的最短距离为728. 13.解 f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=f 1(x ),f 6(x )=f 2(x ),…,f n +4(x )=f n (x ),可知周期为4,∴f 2 012(x )=f 0(x )=sin x .。

【苏教版】【步步高】2014届高考数学一轮复习备考练习:第3章-习题课-空间向量的应用]

【苏教版】【步步高】2014届高考数学一轮复习备考练习:第3章-习题课-空间向量的应用]

习题课 空间向量的应用一、基础过关 1.如图所示,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠F AB=90°,BC 綊12AD ,BE 綊错误!F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? (3)设AB =BE ,证明:平面ADE ⊥平面CDE . 2.如图所示,在四棱锥P —ABCD 中,底面ABCD 是一直角梯形,∠BAD =90°,AD ∥BC ,AB =BC =a ,AD =2a ,且P A ⊥底面ABCD ,PD 与底面成30°角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)求异面直线AE 与CD 所成角的余弦值. 3.如图所示,在四棱锥O —ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =错误!,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点. (1)证明:直线MN ∥平面OCD ;(2)求异面直线AB 与MD 所成角的大小. 二、能力提升 4.如图所示,在四棱锥P-ABCD中,P A⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,P A=AD=2,AC=1.(1)证明:PC⊥AD;(2)求二面角A-PC-D的正弦值;(3)设E为棱P A上的点,满足异面直线BE与CD所成的角为30°,求AE的长.5.等边△ABC中,D,E分别是AC,AB的中点,沿DE将△ADE折起,使平面ADE⊥平面BCDE(如图所示).(1)求证:平面ABC⊥平面ABE;(2)求直线AC与平面ABE所成角的正弦值.三、探究与拓展6.如图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的错误!倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面P AC,求二面角P—AC-D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面P AC。

【步步高】2014届高考数学一轮复习 习题课数列求和备考练习 苏教版

【步步高】2014届高考数学一轮复习 习题课数列求和备考练习 苏教版

习题课 数列求和一、基础过关1.数列12·5,15·8,18·11,…,13n -1·3n +2,…的前n 项和为________.2.已知数列{a n }的通项a n =2n +1,由b n =a 1+a 2+a 3+…+a nn所确定的数列{b n }的前n 项之和是________.3.设数列1,(1+2),(1+2+4),…,(1+2+22+…+2n -1)的前m 项和为2 036,则m 的值为________.4.若1+3+5+…+2x -111·2+12·3+13·4+…+1x x +1=132 (x ∈N *),则x =________.5.已知数列{a n }前n 项和为S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 15+S 22-S 31的值是________.6.在100内所有能被3整除但不能被7整除的正整数之和是________. 7.已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .8.已知数列{a n }满足a 1=1,a n +1=2a n +1. (1)求证:数列{a n +1}是等比数列; (2)求数列{a n }的通项公式a n 和前n 项和S n . 二、能力提升9.数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1是首项为1,公比为2的等比数列,那么a n =________.10.数列{a n }中,S n 是其前n 项和,若a 1=1,a n +1=13S n (n ≥1),则a n =____________.11.在数列{a n }中,a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,则a n =________.12.设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n . 三、探究与拓展13.等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列.(1)求数列{a n }的通项公式;(2)若数列{b n }满足:b n =a n +(-1)nln a n ,求数列{b n }的前n 项和S n . 1.n 6n +4 2.12n (n +5) 3.10 4.11 5.-76 6.1 473 7.解 (1)设等差数列{a n }的首项为a 1,公差为d . 因为a 3=7,a 5+a 7=26,所以⎩⎪⎨⎪⎧a 1+2d =7,2a 1+10d =26,解得⎩⎪⎨⎪⎧a 1=3,d =2.所以a n =3+2(n -1)=2n +1,S n =3n +n n -12×2=n 2+2n .所以,a n =2n +1,S n =n 2+2n .(2)由(1)知a n =2n +1,所以b n =1a 2n -1=12n +12-1=14·1n n +1 =14·⎝ ⎛⎭⎪⎫1n -1n +1, 所以T n =14·(1-12+12-13+…+1n -1n +1)=14·(1-1n +1)=n 4n +1, 即数列{b n }的前n 项和T n =n4n +1.8.(1)证明 ∵a n +1=2a n +1,∴a n +1+1a n +1=2a n +1+1a n +1=2a n +2a n +1=2a n +1a n +1=2, ∴数列{a n }是等比数列,公比为2,首项为a 1+1=2. (2)解 由(1)知{a n +1}为等比数列, ∴a n +1=(a 1+1)·2n -1=2n,∴a n =2n-1. ∴S n =a 1+a 2+…+a n=(21-1)+(22-1)+(23-1)+...+(2n -1)=(21+22+ (2))-n=21-2n1-2-n =2n +1-n -2.9.2n-110.⎩⎪⎨⎪⎧1, n =113·⎝ ⎛⎭⎪⎫43n -2, n ≥211.2+ln n12.解 (1)由已知,当n ≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n -1+22n -3+…+2)+2=22(n +1)-1.而a 1=2,符合上式,所以数列{a n }的通项公式为a n =22n -1.(2)由b n =na n =n ·22n -1知S n =1·2+2·23+3·25+…+n ·22n -1,①从而22·S n =1·23+2·25+3·27+…+n ·22n +1.② ①-②得(1-22)S n =2+23+25+…+22n -1-n ·22n +1,即S n =19[(3n -1)22n +1+2].13.解 (1)当a 1=3时,不合题意;当a 1=2时,当且仅当a 2=6,a 3=18时,符合题意; 当a 1=10时,不合题意; 因此a 1=2,a 2=6,a 3=18. 所以公比q =3. 故a n =2·3n -1.(2)因为b n =a n +(-1)nln a n=2·3n -1+(-1)n ln(2·3n -1)=2·3n -1+(-1)n [ln 2+(n -1)ln 3]=2·3n -1+(-1)n(ln 2-ln 3)+(-1)nn ln 3,所以S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n](ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3所以当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n1-3-(ln 2-ln 3)+(n -12-n )ln 3=3n-n -12ln 3-ln 2-1.综上所述,S n =⎩⎪⎨⎪⎧3n +n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.。

【苏教版】【步步高】2014届高考数学一轮复习备考课件章末复习课(二)

【苏教版】【步步高】2014届高考数学一轮复习备考课件章末复习课(二)

=(PF1-PF2)2+2PF1· PF2(1-cos 60° ), 即4c2=c2+PF1· PF2. 1 又 SPF F=12 3,∴ PF1· PF2sin 60° =12 3, 2 1 2 即PF1· PF2=48.
由①②,得c2=16,c=4,
本 专 题 栏 目 开 关


则a=2,b2=c2-a2=12, x2 y2 ∴所求的双曲线方程为 4 -12=1.
y=kx-4, 由 2 y =4x
本 专 题 栏 目 开 关
得ky2-4y-16k=0,
42 2 2 2 ∴y1+y2=(y1+y2) -2y1y2= +32>32.
k
2 ∴y1 +y2 2的最小值为32.
4 ∴y1+y2= ,y1y2=-16. k

练一练· 当堂检测、目标达成落实处
本 专 题 栏 目 开 关
线上的点到焦点的距离转化为到另一焦点的距离或利用定 义把曲线上的点到焦点的距离转化为其到相应准线的距 离,再利用数形结合的思想去解决有关的最值问题.
研一研· 题型解法、解题更高效
x2 y2 跟踪训练3 已知椭圆 + =1,F1、F2分别是椭圆的 9 5 左、右焦点,点 A(1,1)为椭圆内一点,点P为椭圆上一 点,求PA+PF1的最大值.

2 x2 x (2)设与双曲线 -y2=1有公共渐近线的双曲线方程为 - 2 2
本 专 题 栏 目 开 关
y2=k (k≠0),
22 将点(2,-2)代入得k= 2 -(-2)2=-2, y2 x2 ∴双曲线的标准方程为 2 - 4 =1.
研一研· 题型解法、解题更高效
题型二
“设而不求”思想
例2 (1)过点(1,0)作斜率为-2的直线,与抛物线y2=8x交 于A、B两点,求弦AB的长. (2)若直线l过抛物线y2=4x的焦点,与抛物线交于A、B 两点,且线段 AB中点的横坐标为2,求线段 AB的长.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.2 指数函数(一)
一、基础过关
1.函数f (x )=(a 2
-3a +3)a x
是指数函数,则a =________. 2.函数y =x
12的值域是__________________.
3.若函数y =(a 2-1)x
在(-∞,+∞)上为减函数,则实数a 的取值范围是__________. 4.如果某林区森林木材蓄积量每年平均比上一年增长11.3%,经过x 年可以增长到原来的y 倍,则函数y =f (x )的图象大致为________.(填序号
)
5.函数y =⎝ ⎛⎭
⎪⎫12x 2
-2x +2(0≤x ≤3)的值域为______.
6.函数y =8-2
3-x
(x ≥0)的值域是________.
7.判断下列函数在(-∞,+∞)内是增函数,还是减函数?
(1)y =4x
;(2)y =⎝ ⎛⎭
⎪⎫18x ;(3)y =32x
.
8.比较下列各组数中两个值的大小: (1)0.2-1.5
和0.2
-1.7

(2)
31)41(和32)4
1(;
(3)2-1.5
和30.2
.
二、能力提升
9.设函数f (x )=⎩⎪⎨
⎪⎧
2x
, x <0,
g x , x >0.
若f (x )是奇函数,则g (2)=________.
10.函数y =a |x |
(a >1)的图象是________.(填序号)
11.若f (x )=⎩⎪⎨⎪

a x x >1,⎝ ⎛⎭
⎪⎫
4-a 2x +2 x ≤1.是R 上的单调递增函数,则实数a 的取值范围
为________.
12.求下列函数的定义域与值域:
(1)y =2
1x -4;(2)y =⎝ ⎛⎭
⎪⎫23-|x |;(3)y =4x +2x +1
+1. 三、探究与拓展
13.当a >1时,证明函数f (x )=a x +1
a -1
是奇函数.
答案
1.2
2.(0,1)∪(1,+∞) 3.(-2,-1)∪(1,2) 4.④ 5.⎣⎢
⎡⎦
⎥⎤132,12
6.[0,8)
7.解 (1)因为4>1,所以函数y =4x
在(-∞,+∞)内是增函数; (2)因为0<18<1,所以函数y =⎝ ⎛⎭⎪⎫18x
在(-∞,+∞)内是减函数;
(3)由于3
x 2=(32)x ,并且3
2>1,
所以函数y =3
x 2在(-∞,+∞)内是增函数. 8.解 (1)考虑函数y =0.2x
. 因为0<0.2<1,
所以函数y =0.2x
在实数集R 上是单调减函数. 又因为-1.5>-1.7, 所以0.2
-1.5
<0.2
-1.7
.
(2)考虑函数y =(14)x .因为0<1
4
<1,
所以函数y =(14
)x
在实数集R 上是单调减函数.
又因为13<2
3,所以31)41(>32)
4
1(.
(3)2
-1.5
<20,即2
-1.5
<1;30
<30.2

即1<30.2
, 所以2-1.5
<30.2
.
9.-1
4
10.② 11.[4,8)
12.解 (1)令x -4≠0,得x ≠4.
∴定义域为{x |x ∈R ,且x ≠4}.

1
x -4
≠0, ∴2
1x -4≠1,∴y =21x -4
的值域为{y |y >0,且y ≠1}. (2)定义域为x ∈R .∵|x |≥0,∴y =⎝ ⎛⎭⎪⎫23-|x |=⎝ ⎛⎭⎪⎫32|x |≥⎝ ⎛⎭⎪⎫320=1,故y =⎝ ⎛⎭

⎫23-|x |的值域为{y |y ≥1}.
(3)定义域为x ∈R .因为y =4x
+2x +1
+1=(2x )2+2·2x +1=(2x +1)2,且2x
>0,
∴y >1.故y =4x
+2
x +1
+1的值域为{y |y >1}.
13.证明 由a x
-1≠0,得x ≠0,故函数定义域为{x |x ≠0},易判断其定义域关于原点对称.
又f (-x )=a -x +1a -x -1=a -x +1a x
a -x -1a x
=1+a x
1-a
x =-f (x ), ∴f (-x )=-f (x ).
∴函数f (x )=a x +1
a x -1
是奇函数.。

相关文档
最新文档