2012年新课标高考考试大纲(数学理)

合集下载

2012高考理科数学概率统计_(答案详解)2

2012高考理科数学概率统计_(答案详解)2

高考试题汇编(理)---概率统计解答题1、(全国卷大纲版)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换。

每次发球,胜方得1分,负方得0分。

设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立。

甲、乙的一局比赛中,甲先发球。

(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2)ξ表示开始第4次发球时乙的得分,求ξ的期望。

2、(全国卷新课标版)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(1) 若花店某天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:n∈)的函数解析式;枝,N(2)以(ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.3、(北京卷)近年来,某市为了促进生活垃圾的风分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应分垃圾箱,为调查居民生活垃圾分类投放情况,(1)试估计厨余垃圾投放正确的概率; (2)试估计生活垃圾投放错误额概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为c b a ,,其中0a >, 600a b c ++=。

当数据c b a ,,的方差2s 最大时,写出c b a ,,的值(结论不要求证明),并求此时2s 的值。

(注:])()()[(1222212x x x x x x ns n -++-+-=,其中x 为数据n x x x ,,,21 的平均数) 4、(福建卷)受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率; (2)若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为1X ,生产一辆乙牌轿车的利润为2X ,分别求1X ,2X 的分布列;(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由。

2012年高考四川数学理解析

2012年高考四川数学理解析

2012年普通高等学校招生全国统一考试(四川卷)数 学(供理科考生使用)参考公式:如果事件互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R p =如果事件相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ? 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 343V Rp =在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,,)kkn kn n P k C p p k n -=-=…第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、7(1)x +的展开式中2x 的系数是( )A 、42B 、35C 、28D 、21 [答案]D[解析]二项式7)1(x +展开式的通项公式为1+k T =k k x C 7,令k=2,则2273x C T 、=21C x 272=∴的系数为[点评]:高考二项展开式问题题型难度不大,要得到这部分分值,首先需要熟练掌握二项展开式的通项公式,其次需要强化考生的计算能力. 2、复数2(1)2i i-=( )A 、1B 、1-C 、iD 、i - [答案]B. [解析]2(1)2i i-=12212-=-+iii[点评]突出考查知识点12-=i ,不需采用分母实数化等常规方法,分子直接展开就可以.E 3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( )A 、不存在B 、等于6C 、等于3D 、等于0 [答案]A[解析]分段函数在x=3处不是无限靠近同一个值,故不存在极限.[点评]对于分段函数,掌握好定义域的范围是关键。

4、如图,正方形A B C D 的边长为1,延长B A 至E ,使1A E =,连接E C 、E D 则sin C ED ∠=( ) A 、10B 10C 、10D 15[答案]B1010cos 1sin 10103EC ED 2CD-ECEDCED cos 1CD 5CB AB EA EC 2ADAEED 11AE ][22222222=∠-=∠=∙+=∠∴==++==+=∴=CED CED ,)(,正方形的边长也为解析[点评]注意恒等式sin 2α+cos 2α=1的使用,需要用α的的范围决定其正余弦值的正负情况. 5、函数1(0,1)xy a a a a=->≠的图象可能是( )解析:当1a >时单调递增,10a-<,故A 不正确;因为1xy a a=-恒不过点(1,1),所以B 不正确;当01a <<时单调递减,10a-<,故C 不正确 ;D 正确.答案:D[点评]函数大致图像问题,解决方法多样,其中特殊值验证、排除法比较常用,且简单易用.6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行 [答案]C[解析]若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B 错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D 错;故选项C 正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( ) A 、a b =- B 、//a b C 、2a b = D 、//a b 且||||a b =[答案]D[解析]若使||||a ba b = 成立,则方向相同,与b a 选项中只有D 能保证,故选D.[点评]本题考查的是向量相等条件⇔模相等且方向相同.学习向量知识时需注意易考易错零向量,其模为0且方向任意.8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。

2012年浙江高考试题(理数,word解析版)

2012年浙江高考试题(理数,word解析版)

2012年普通高等学校招生全国统一考试(浙江卷)科数学理本试题卷分选择题和非选择题两部分.全卷共5页,选择题部分1至3页,非选择题部分4至5页.满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|1<x<4},B={x|x 2-2x-3≤0},则A∩(C R B)=A.(1,4) B.(3,4) C.(1,3) D.(1,2)【解析】A=(1,4),B=[-1,3],则A∩(C R B)=(3,4).【答案】B2.已知i是虚数单位,则3+i1i-=A.1-2i B.2-i C.2+i D.1+2i【解析】3+i1i-=()()3+i1+i2=2+4i2=1+2i.【答案】D3.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】当a=1时,直线l1:x+2y-1=0与直线l2:x+2y+4=0显然平行;若直线l1与直线l2平行,则有:211aa=+,解之得:a=1 or a=﹣2.所以为充分不必要条件.【答案】A4.把函数y=cos2x+1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是【解析】把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y 1=cos x +1,向左平移1个单位长度得:y 2=cos(x +1)+1,再向下平移1个单位长度得:y 3=cos(x+1).令x =0,得:y 3>0;x =12-π,得:y 3=0;观察即得答案. 【答案】A5.设a ,b 是两个非零向量.A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得a =λbD .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b |【解析】利用排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,则a ,b 共线,即存在实 数λ,使得a =λb .如选项A :|a +b |=|a |-|b |时,a ,b 可为异向的共线向量;选项B :若a ⊥b ,由正方形得|a +b |=|a |-|b |不成立;选项D :若存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立. 【答案】C6.若从1,2,2,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A .60种B .63种C .65种D .66种 【解析】1,2,2,…,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,则取法有: 4个都是偶数:1种;2个偶数,2个奇数:225460C C =种;4个都是奇数:455C =种. ∴不同的取法共有66种. 【答案】D7.设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误..的是 A .若d <0,则数列{S n }有最大项 B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意的n ∈N*,均有S n >0D .若对任意的n ∈N*,均有S n >0,则数列{S n }是递增数列【解析】选项C 显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n }是递增数列,但是S n >0不成立. 【答案】C8.如图,F 1,F 2分别是双曲线C :22221x y a b-=(a ,b >0)的左右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则C 的离心率是ABCD【解析】如图:|OB |=b ,|O F 1|=c .∴k PQ =b c ,k MN =﹣bc.直线PQ 为:y =b c (x +c ),两条渐近线为:y =b a x .由()b y x c cb y x a ⎧⎪⎪⎨⎪⎪⎩=+=,得:Q (ac c a -,bc c a -);由()b y x c c b y x a ⎧⎪⎪⎨⎪⎪⎩=+=-,得:P (ac c a -+,bc c a +).∴直线MN 为:y -bc c a +=﹣b c (x -ac c a -+),令y =0得:x M =322c c a -.又∵|MF 2|=|F 1F 2|=2c ,∴3c =x M =322c c a -,解之得:2232a c e a==,即e. 【答案】B 9.设a >0,b >0.A .若2223a b a b +=+,则a >bB .若2223a b a b +=+,则a <bC .若2223a b a b -=-,则a >bD .若2223a b a b -=-,则a <b【解析】若2223a b a b +=+,必有2222a ba b +>+.构造函数:()22x f x x =+,则()2ln 220x f x '=⋅+>恒成立,故有函数()22x f x x =+在x >0上单调递增,即a >b 成立.其余选项用同样方法排除. 【答案】A10.已知矩形ABCD ,AB =1,BC ∆ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中,A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 【答案】B非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,每小题4分,共28分. 11.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于___________cm 3.【解析】观察三视图知该三棱锥的底面为一直角三角 形,右侧面也是一直角三角形.故体积等于11312123⨯⨯⨯⨯=. 【答案】112.若程序框图如图所示,则该程序运行后输出的值是______________.【解析】T ,i 关系如下图: 5 【答案】112013.设公比为q (q >0)的等比数列{a n }的前n 项和为{S n }.若2232S a =+,4432S a =+,则q =______________.【解析】将2232S a =+,4432S a =+两个式子全部转化成用1a ,q 表示的式子. 即111233111113232a a q a q a a q a q a q a q +=+⎧⎨+++=+⎩,两式作差得:2321113(1)a q a q a q q +=-,即:2230q q --=,解之得:312q or q ==-(舍去). 【答案】3214.若将函数()5f x x =表示为()()()()250125111f x a a x a x a x =+++++++其中0a ,1a ,2a ,…,5a 为实数,则3a =______________.【解析】对等式:()()()()2550125111f x x a a x a x a x ==+++++++两边连续对x 求导三次得:2234560624(1)60(1)x a a x a x =++++,再运用赋值法,令1x =-得:3606a =,即310a =.【答案】1015.在∆ABC 中,M 是BC 的中点,AM =3,BC =10,则AB AC ⋅=______________. 【解析】此题最适合的方法是特例法.假设∆ABC 是以AB =AC 的等腰三角形,如图, AM =3,BC =10,AB =ACcos ∠BAC =1783421003434-=⨯-+.AB AC ⋅=.16)178(3434-=-⋅⋅【答案】-1616.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线C 1:y =x 2+a 到直线l :y =x 的距离等于C 2:x 2+(y +4) 2 =2到直线l :y =x 的距离,则实数a =______________.【解析】C 2:x 2+(y +4) 2 =2,圆心(0,—4),圆心到直线l :y =x的距离为:d ==C 2到直线l :y =x的距离为d d r d '=-=另一方面:曲线C 1:y =x 2+a ,令20y x '==,得:12x =,曲线C 1:y =x 2+a 到直线l :y =x 的距离的点为(12,14a +),492)41(212'=⇒+-==a a d .【答案】4917.设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =______________. 【解析】本题按照一般思路,则可分为一下两种情况: (A )2(1)1010a x x ax ≤⎧⎨≤⎩----, 无解; (B )2(1)1010a x x ax ≥⎧⎨≥⎩----, 无解. 因为受到经验的影响,会认为本题可能是错题或者解不出本题.其实在x >0的整个区间上,我们可以将其分成两个区间(为什么是两个?),在各自的区间内恒正或恒负.(如下答图) 我们知道:函数y 1=(a -1)x -1,y 2=x 2-ax -1都过定点P (0,1).考查函数y 1=(a -1)x -1:令y =0,得M (11a -,0),还可分析得:a >1; 考查函数y 2=x 2-ax -1:显然过点M (11a -,0),代入得:211011a a a ⎛⎫--= ⎪--⎝⎭,解之得:23a 0==或者a ,舍去0=a ,得答案:23=a .【答案】23=a三、解答题:本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分14分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B C . (Ⅰ)求tan C 的值;(Ⅱ)若a ∆ABC 的面积.【解析】本题主要考察三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点。

新课标高考理科数学试卷分析

新课标高考理科数学试卷分析

新课标高考理科数学试卷分析一.题型、题量全卷包括第Ⅰ卷和第Ⅱ卷两部分。

第Ⅰ卷为选择题。

第Ⅱ卷为非选择题。

考试时间为120分钟,总分为150分。

试题分选择题、填空题和解答题.其中,选择题有12个小题,每题5分,共计60分;填空题有4个小题,每题5分,共计20分;解答题有8个题,其中第17题~21题各12分,第22~24题(各10分)选考一题内容分别为选修4—1(几何选讲)、选修4-4(坐标系与参数方程)、4-5(不等式选讲),共计70分.全部试题都要求在答题卡上作答.题型、题量同教育部考试中心近几年命制的新高考数学理科卷相同。

二。

试题考查内容试题内容与考试要求都与2012年新课程高考《考试大纲》的考试内容与要求相吻合,考查的知识内容与方法分布与高中数学新课标和考试大纲所规定的相同.三.试题考查的知识和方法四. 2012年新课标高考理科数学试卷分析2012年全国新课标理科数学试卷突出主干、强化综合;突出应用、体现创新;强化思想、能力立意。

总体难度高于近几年全国新课标卷,平均分将明显下降,对2012年首次参加新课标高考的省份是一个不小的打击,试卷是否会是新课标卷的一个分水岭,值得思考。

(一)、小题综合、难度上升。

相比近几年新课标卷,小题更趋综合,难度提升,基本没有送分题,没有稳定情绪的题目.1、选择题部分。

第1题考查集合,就有一定难度,要求学生对集合语言有一定的理解,更要求学生具有一定的实际操作能力;第2题考查排列组合分配问题,这是教学的一个难点,学生多有恐惧心理,位置太靠前,造成学生一定心理负担,影响全卷解答,试题排列顺序值得商榷;第3题考查复数,结合命题真假命制,题目简单,有创新;第5题考查等比数例性质与运算,要求学生运算能力强、有方程思想;第六题考查程序框图,字母较多、结构复杂,难度相比往年上升一档;第8题考查解析几何,双曲线与抛物线综合,要求学生概念清楚,综合能力强;第11题考查立体几何,三棱锥外接球问题,空间想象能力要求非常高,难度高于往年相同位置的题目;第12题考查指对函数,可结合反函数的思想,利用导数的几何意义进行求解,显然,这部分超出了课标与考纲对反函数知识的要求;2、填空题部分。

2012年北京高考数学试题与答案(理科)

2012年北京高考数学试题与答案(理科)

2012年普通高等学校招生全国统一考试数 学 (理) (北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合{320}A x x =∈+>R ,{(1)(3)0}B x x x =∈+->R ,则AB =(2)设不等式组02,02x y ≤≤⎧⎨≤≤⎩表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是(3)设a ,b ∈R .“0a =”是“复数i a b +是纯虚数”的(4)执行如图所示的程序框图,输出的S 值为(5)如图,90ACB ∠=︒,CD AB ⊥于点D ,以BD 为直径的圆与交BC 于点E .则(A )(,1)-∞-(B )2(1,)3--(C )2(,3)3-(D )(3,)+∞(A )4π (B )22π- (C )6π(D )44π- (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(A )2 (B )4 (C )8 (D )16S=S ∙2k1k=0, S=1是输出S结束开始C(6)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为(7)某三棱锥的三视图如图所示,该三棱锥的表面积是 (8)某棵果树前n 年的总产量n S 与n 之间的关系如图所示.从目前记录的结果看,前m 年的 年平均产量最高,m 的值为二、填空题共6小题,每小题5分,共30分.(A )CE CB AD DB ⋅=⋅ (B )CE CB AD AB ⋅=⋅ (C )2AD AB CD ⋅= (D )2CE EB CD ⋅=(A )24 (B )18(C )12(D )6(A )28+(B )30+(C )56+(D )60+(A )5(B )7 (C )9(D )11俯视图侧(左)视图正(主)视图434(9)直线2(1x t t y t =+⎧⎨=--⎩为参数)与曲线3cos (3sin x y ααα=⎧⎨=⎩为参数)的交点个数为 .(10)已知{}n a 为等差数列,n S 为其前n 项和.若112a =,23S a =,则2a = . (11)在ABC ∆中,若2a =,7bc +=,1cos 4B =-,则b = . (12)在直角坐标系xoy 中,直线l 过抛物线24y x =的焦点F ,且与该抛物线相交于A 、B两点,其中,A 点在x 轴上方.若直线l 的倾斜角为60︒,则OAF ∆的面积为 . (13)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为 . (14)已知()(2)(3)f x m x m x m =-++,()22xg x =-.若同时满足条件:①x ∀∈R ,()0f x <或()0g x <; ②(,4)x ∃∈-∞-,()()0f x g x <. 则m 的取值范围是 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题共13分)已知函数(sin cos )sin 2()sin x x xf x x-=.(Ⅰ)求()f x 的定义域及最小正周期; (Ⅱ)求()f x 的单调递增区间.(16)(本小题共14分)如图1,在Rt ABC ∆中,90C ∠=︒,3BC =,6AC =,D 、E 分别为AC 、AB 上的点,且DE //BC ,2DE =,将ADE ∆沿DE 折起到1A DE ∆的位置,使1A C CD ⊥,如图2.(Ⅰ)求证:1AC ⊥平面BCDE ; (Ⅱ)若M 是1A D 的中点,求CM 与平面1A BE 所成角的大小; (Ⅲ)线段BC 上是否存在点P ,使平面1A DP 与平面1A BE 垂直?说明理由.(17)(本小题共13分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其 他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取 了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):(Ⅰ)试估计厨余垃圾投放正确的概率; (Ⅱ)试估计生活垃圾投放错误的概率;(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,,a b c ,其中0a >,a b c ++=600.当数据,,a b c 的方差2s 最大时,写出,,a b c的值(结论不要求证明),并求此时2s 的值. (注:222121[()()s x x x x n=-+-+…2()]n x x +-,其中x 为数据12,,,n x x x ⋅⋅⋅的平均数)(18)(本小题共13分)已知函数2()1(0)f x ax a =+>,3()g x x bx =+.(Ⅰ)若曲线()y f x =与曲线()y g x =在它们的交点(1,)c 处具有公共切线,求,a b 的值; (Ⅱ)当24a b =时,求函数()()f x g x +的单调区间,并求其在区间(]1-- ∞上的最大值.(19)(本小题共14分)已知曲线C :22(5)(2)8m x m y -+-=()m ∈R . (Ⅰ)若曲线C 是焦点在x 轴点上的椭圆,求m 的取值范围;(Ⅱ)设4m =,曲线C 与y 轴的交点为A 、B (点A 位于点B 的上方),直线4y kx =+与曲线C 交于不同的两点M 、N ,直线1y =与直线BM 交于点G . 求证:,,A G N 三点共线.(20)(本小题共13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,满足:每个数的绝对值不大于1,且所有数的和为零.记(,)S m n 为所有这样的数表构成的集合.对于(,)A S m n ∈,记()i r A 为A 的第i 行各数之和(1≤i ≤)m ,()j c A 为A 的第j 列各数之和(1≤j ≤)n .记()k A 为1|()|r A ,2|()|r A ,…,|()|m r A ,1|()|c A ,2|()|c A ,…,|()|n c A 中的最小值.(Ⅰ)对如下数表A ,求()k A 的值;(Ⅱ)设数表(2,3)A S ∈形如求()k A 的最大值;(Ⅲ)给定正整数t ,对于所有的(2,21)A S t ∈+,求()k A 的最大值.2012高考北京数学真题答案及简析三、解答题 15.解:(sin cos )sin 2(sin cos )2sin cos ()2(sin cos )cos sin sin x x x x x x x f x x x x x x--===-{}πsin 21cos 221|π4x x x x x k k ⎛⎫=-+=--≠∈ ⎪⎝⎭Z ,,(1)原函数的定义域为{}|πx x k k ≠∈Z ,,最小正周期为π.(2)原函数的单调递增区间为πππ8k k ⎡⎫-+⎪⎢⎣⎭,k ∈Z ,3πππ8k k ⎛⎤+ ⎥⎝⎦,k ∈Z16.解:(1)CD DE ⊥,1A E DE ⊥∴DE ⊥平面1A CD ,又1A C ⊂平面1A CD ,∴1A C ⊥DE又1A C CD ⊥,∴1A C ⊥平面BCDE(2)如图建系C xyz -,则()200D -,,,()0023A ,,,()030B ,,,()220E -,,∴(103A B =-,,,()1210A E =--,,设平面1A BE 法向量为()n x y z =,, 则1100A Bn A E n ⎧⋅=⎪⎨⋅=⎪⎩∴3020y x y ⎧-=⎪⎨--=⎪⎩∴2z y y x ⎧=⎪⎪⎨⎪=-⎪⎩∴(12n =-,又∵(10M -,∴()103CM =-,,∴cos ||||1CM n CM n θ⋅====⋅∴CM 与平面1A BE 所成角的大小45︒(3)设线段BC 上存在点P ,设P 点坐标为()00a ,,,则[]03a ∈,则(10AP a =-,,,()20DP a =,, 设平面1A DP 法向量为()1111nx y z =,, 则1111020ay x ay ⎧-=⎪⎨+=⎪⎩∴111112z x ay ⎧=⎪⎪⎨⎪=-⎪⎩∴()136n a =-,y C假设平面1A DP 与平面1A BE 垂直则10n n ⋅=,∴31230a a ++=,612a =-,2a =- ∵03a <<∴不存在线段BC 上存在点P ,使平面1A DP 与平面1A BE 垂直17.(1)由题意可知:4002=6003 (2)由题意可知:200+60+403=100010(3)由题意可知:22221(120000)3s a b c =++-,因此有当600a =,0b =,0c =时,有280000s =. 18.解:(1)由()1c ,为公共切点可得:2()1(0)f x ax a =+>,则()2f x ax '=,12k a =, 3()g x x bx =+,则2()=3f x x b '+,23k b =+,∴23a b =+⎺又(1)1f a =+,(1)1g b =+,∴11a b +=+,即a b =,代入①式可得:33a b =⎧⎨=⎩. (2)24a b =,∴设3221()()()14h x f x g x x ax a x =+=+++则221()324h x x ax a '=++,令()0h x '=,解得:12a x =-,26ax =-;0a >,∴26a a-<-,∴原函数在2a ⎛⎫-∞- ⎪⎝⎭,单调递增,在26a a ⎛⎫-- ⎪⎝⎭,单调递减,在6a ⎛⎫-+∞ ⎪⎝⎭,上单调递增 ①若12a--≤,即2a ≤时,最大值为2(1)4a h a =-;②若126a a -<-<-,即26a <<时,最大值为12a h ⎛⎫-= ⎪⎝⎭③若16a --≥时,即6a ≥时,最大值为12a h ⎛⎫-= ⎪⎝⎭.综上所述:当(]02a ∈,时,最大值为2(1)4a h a =-;当()2,a ∈+∞时,最大值为12a h ⎛⎫-= ⎪⎝⎭.19.(1)原曲线方程可化简得:2218852x y m m +=--由题意可得:8852805802m m mm ⎧>⎪--⎪⎪>⎨-⎪⎪>⎪-⎩,解得:752m <<(2)由已知直线代入椭圆方程化简得:22(21)16240k x kx +++=,2=32(23)k ∆-,解得:232k >由韦达定理得:21621M N k x x k +=+①,22421M Nx x k =+,② 设(,4)N N N x k x +,(,4)M M M x kx +,(1)G G x , MB 方程为:62M M kx y x x +=-,则316M M x G kx ⎛⎫⎪+⎝⎭,, ∴316M M x AG x k ⎛⎫=-⎪+⎝⎭,,()2N N AN x x k =+,,欲证A G N ,,三点共线,只需证AG ,AN 共线即3(2)6MN N M x x k x x k +=-+成立,化简得:(3)6()M N M N k k x x x x +=-+将①②代入易知等式成立,则A G N ,,三点共线得证。

2012年成人高等学校招生全国统一考试数学(理工农医类)-成人高考高起点数学(理)试卷与试题

2012年成人高等学校招生全国统一考试数学(理工农医类)-成人高考高起点数学(理)试卷与试题

A
B
C
D
17. 从6位同学中任意选出4位参加公益活动,不同的选法共有[5分]-----正确答案(B) A 30种 B 15种 C 10种 D 6种
二、填空题:本大题共4小题,每小题4分,共16分。把答案写在答题卡相应题号后。
18. 圆
的半径为
3
。[每空4分]
19. 圆锥的底面半径为
11. 已知空间直角坐标系中三点 余弦值为[5分]-----正确答案(C) A
为坐标原点,则直线 OA 与 MN 所成角的
B
C
D0
12. 已知一个等差数列的首项为1,公差为3,那么该数列的前5项和为[5分]-----正确答案(A) A 35 B 30 C 20 D 10
13. 函数y = lg(x2-1) 的定义域是
乙:
,则[5分]-----正确答案(B)
A 甲是乙的必要条件,但不是乙的充分条件
B 甲是乙的充分条件,但不是乙的必要条件
C 甲不是乙的充分条件,也不是乙的必要条件
D 甲是乙的充分必要条件
6. 下列函数中,为偶函数的是[5分]-----正确答案(A)
A
B
C
D
7. 已知点(—4,2),(0,0),则线段的垂直平分线的斜率为[5分]-----正确答案(D) A —2 B
A B C D
14. 使log2a>log327 成立a的取值范围是[5分]-----正确答案(D) A (0,∞) B (3,∞) C (9,∞) D (8,∞)
15. 在长方体
A
B2
C
D
中,
16. 函数的反函数为[5分]-----正确答案(B)
[5分]-----正确答案(C) [5分]-----正确答案(D)

2012年新课标数学高考试题(理科数学理科数学高考试题,word教师版【免费下载】)

2012年新课标数学高考试题(理科数学理科数学高考试题,word教师版【免费下载】)

2012年普通高等学校招生全国统一考试(新课标) 理科数学第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种()B 10种 ()C 9种()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种 (3)下面是关于复数21z i=-+的四个命题:其中的真命题为( )1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)iz i ii i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点,P 为直线32a x =上一点,∆21F P F 是底角为30 的等腰三角形,则E 的离心率为( )()A 12()B23()C 34()D 45【解析】选C ∆21F P F 是底角为30的等腰三角形221332()224c P F F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7()B 5 ()C -5()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和()B 2A B +为12,,...,n a a a 的算术平均数()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

2012年全国高考考试大纲【新课标】——数学

2012年全国高考考试大纲【新课标】——数学

2012年全国高考考试大纲【新课标】——数学2012年高考课程标准实验版理科数学考试说明根据教育部考试中心《2012年普通高等学校招生全国统一考试大纲(理科·课程标准实验板)》,结合基础教育的实际情况,制定了《2012年普通高等学校招生全国统一考试大纲的说明(理科·课程标准实验板)》(以下简称《说明》)的数学课部分.制定《说明》既要有利于数学课程的改革,又要发挥数学作为基础学科的作用;既要重视考查学生对中学数学知识的掌握程度,又要值域考查进入高等学校继续学习的潜能;既要符合《普通高中数学课程标准(实验)》和《普通高中课程方案(实验)》要求,符合教育部考试中心《大纲》的要求,符合本省(自治区、直辖市)普通高等学校招生全国统一考试工作方案和普通高中课程改革实验的实际情况,又要利用考高命题的导向功能,推动新课程的课堂教学改革.Ⅰ.命题指导思想1.普通高等学校招生全国统一考试,是具有合格的高中毕业生和具有同等学力的考生参加的选拔性考试.2.命题注重考查考生的数学基础知识、基本技能和数学思想方法,考查考生对数学本质的理解水平,体现课程标准对知识与技能、过程与方法、情感态度与价值观等目标要求.空题10%左右,解答题50%左右.2.难度控制试题按其难度分为容易题、中等难度题和难题.难度在0.7以上的试题为容易题,难度为0.4—0.7的试题是中等难度题,难度在0.4以下的试题界定为难题.三种难度的试题应控制合适的分值比例,试卷总体难度适中.Ⅲ.考核目标与要求一、知识要求知识是指《普通高中数学课程标准(实验)》所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能.对知识的要求由低到高分为三个层次,依次是知道(了解、模仿)、理解(独立操作)、掌握(运用、迁移),且高一级的层次要求包括低一级的层次要求.1.知道(了解、模仿):要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.2.理解(独立操作):要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达、表示,推测、想象,比较、判别、判断,初步应用等.3.掌握(运用、迁移):要求能够对所列的知识内容能够推导证明,利用所学知识对问题能够进行分析、研究、讨论,并且加以解决.这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.三、个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档