苏科版数学八年级下册二次根式单元试卷含答案
八年级数学下册《二次根式》综合练习题含答案

八年级数学下册《二次根式》综合练习题测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232B .32321C .281D .241三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525(6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x 5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式: (1)25与______; (2)y x 2-与______; (3)mn 与______; (4)32+与______; (5)223+与______; (6)3223-与______. 23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49.5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6. 11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1. 19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b (6);52 (7)49; (8)12; (9)⋅y xy 263 8..cm 62 9..72 10.210.11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1.16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5) ;36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab + 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+-- 15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0. 19.原式,32y x +=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n nn n nn (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n n n n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax -4.D . 5.D . 6.B . 7.⋅66 8..1862-- 9..3314218- 10.⋅417 11..215 12..62484- 13.(1)3;(2).55-- 14.B . 15.D .16.⋅-41 17.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.。
八年级数学下册二次根式练习题及参考答案:(含答案)

二次根式练习题(1)____班 姓名__________ 分数__________一、选择题(每小题3分,共30分)1.若m -3为二次根式,则m 的取值为 ( )A .m≤3B .m <3C .m≥3D .m >32.下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x . A .2个 B .3个 C .4个 D .5个3.当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2B .a >2C .a≠2D .a≠-24.下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-;A .1个B .2个C .3个D .4个5.化简二次根式352⨯-)(得 ( )A .35-B .35C .35±D .306.对于二次根式92+x ,以下说法不正确的是 ( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是37.把ab a123分母有理化后得 ( )A .b 4B .b 2C .b 21 D . b b2 8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31 C .153 D .143 10.计算:abab b a 1⋅÷等于 ( ) A .ab ab 21B .ab ab 1C .ab b1 D .ab b 二、填空题(每小题3分,共分)11.当x___________时,x 31-是二次根式.12.当x___________时,x 43-在实数范围内有意义.13.比较大小:23-______32-.14.=⋅ba ab 182____________;=-222425__________. 15.计算:=⋅b a 10253___________.16.计算:2216a c b =_________________. 17.当a=3时,则=+215a ___________.18.若x x x x --=--3232成立,则x 满足_____________________.三、解答题(46分)19.(8分)把下列各式写成平方差的形式,再分解因式:⑴52-x ; ⑵742-a ;⑶15162-y ; ⑷2223y x -.20.(12分)计算: ⑴))((36163--⋅-; ⑵63312⋅⋅;⑶)(102132531-⋅⋅; ⑷z y x 10010101⋅⋅-.21.(12分)计算: ⑴20245-; ⑵14425081010⨯⨯..; ⑶521312321⨯÷; ⑷)(ba b b a 1223÷⋅.22.(8分)把下列各式化成最简二次根式: ⑴27121352722-; ⑵b a c abc 4322-.23.(6分)已知:2420-=x ,求221xx +的值.参考答案:一、选择题1.A ;2.C ;3.B ;4.A ;5.B ;6.B ;7.D ;8.C ;9.D ;10.A .二、填空题11.≤31;12.≤43;13.<;14.31,7;15.ab 230;16.a c b 4;17.23;18.2≤x <3.三、解答题19.⑴))((55-+x x ;⑵))((7272-+a a ;⑶))((154154-+y y ; ⑷))((y x y x 2323-+;20.⑴324-;⑵2;⑶34-;⑷xyz 10;21.⑴43-;⑵203;⑶1;⑷43;22.⑴33;⑵ bc a c 242-;23.18.。
(完整版)八年级数学下册二次根式单元测试题及答案,推荐文档

验证: 2 2 23 23 2 2 2 22 1 2 2 2
33
22 1
22 1
3
Hale Waihona Puke 式②: 3 3 3 38
8
验证: 3 3 33 33 3 3 3 32 1 3 3 3
88
32 1
32 1
8
⑴ 针对上述式①、式②的规律,请再写出一条按以上规律变化的式子;
C. x 2 2x 1 x 1
D. (2.5)2 ( 2.5)2
9.化简 8 2( 2 2) 得(
)
A.—2 B. 2 2 C.2 D. 4 2 2
10.如果数轴上表示 a、b 两个数的点都在原点的左侧,且 a 在 b 的左侧,则
a b (a b)2的值为( )A. 2b B. 2b C. 2a D. 2a
21、在实数范围内分解因式:(每小题 4 分)
(1) 9a4 25
(2) a4 4a2 4
(5) ( 1 )1 ( 3 2)0 4 2
2
8
(7) ( 3 2)2010 ( 3 2)2011
(4)
6. 2
b
ab5
3 2
a3b
3
b a
(8) 2 9x (x 1 x )
3
x
22.计算:((每小题 4 分))
x2
1 x2
2
的值。(5
分)
29.阅读下面问题: 1 1 ( 2 1) 2 1
1 2 ( 2 1)( 2 1)
建议收藏下载本文,以便随时1 学 习3! 2 3 2; 3 2 ( 3 2)( 3 2)
25.若10 17的整数部分是a,小数部分是b,求2ab b2的值 。(5 分)
八年级下册数学第16章《二次根式》单元测试题(含答案)

⼋年级下册数学第16章《⼆次根式》单元测试题(含答案)⼋年级下册数学第16章《⼆次根式》单元测试题(含答案)⼀、选择题(共13⼩题)1.下列式⼦⼀定是⼆次根式的是()A. B. C. D.2.若在实数范围内有意义,则x的取值范围是()A.x>﹣4B.x≥﹣4C.x>﹣4且x≠1D.x≥﹣4且x≠﹣13.若是⼆次根式,则a,b应满⾜的条件是()A.a,b均为⾮负数B.a,b同号C.a≥0,b>0D.4.已知是正整数,则满⾜条件的最⼤负整数m为()A.﹣10B.﹣40C.﹣90D.﹣1605.已知是整数,正整数n的最⼩值为()A.0B.1C.6D.366.已知x、y为实数,,则y x的值等于()B.4C.6D.167.实数a、b在数轴上对应点的位置如图所⽰,则化简﹣|a+b|的结果为()A.bB.﹣2a+bC.2a+bD.2a﹣b8.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>59.化简:x的结果是()A. B. C.﹣ D.﹣10.下列⼆次根式;5;;;;。
其中,是最简⼆次根式的有()A.2个B.3个C.4个D.5个11.如果a=2+,b=,那么()A.a>bB.a<bC.a=b12.下列⼆次根式化成最简⼆次根式后不能与合并的是()A. B. C. D.13.如图,在长⽅形ABCD中⽆重叠放⼊⾯积分别为16cm2和12cm2的两张正⽅形纸⽚,则图中空⽩部分的⾯积为()cm2.A.16﹣8B.﹣12+8C.8﹣4D.4﹣2⼆、填空题(共6⼩题)14.若=2﹣x,则x的取值范围是.15.如图,数轴上点A表⽰的数为a,化简:a+=.16.化简:=;=;=;=.17.若与最简⼆次根式是同类⼆次根式,则a=.18.要使式⼦在实数范围内有意义,则实数x的取值范围是.19.实数a、b在数轴上位置如图,化简:|a+b|+=.三、解答题(共6⼩题)(1)﹣(2)(2﹣3)÷.21.已知x=,y=,求x2y+xy2的值.22.如果与都是最简⼆次根式,⼜是同类⼆次根式,且+=0,求x、y的值.23.在进⾏⼆次根式的化简与运算时,我们有时会碰上如,,⼀样的式⼦,其实我们还可以将其进⼀步化简:;;.以上这种化简的步骤叫做分母有理化.(1)化简:=;=.(2)填空:的倒数为.(3)化简:.24.已知a=,b=(1)化简a,b;(2)求a2﹣4ab+b2的值.⽅形,现将塑料容器内的⼀部分⽔倒⼊⼀个底⾯半径2cm的圆柱形玻璃容器中,玻璃容器⽔⾯⾼度上升了3cm,求长⽅形塑料容器中的⽔下降的⾼度.(注意:π取3).参考答案⼀、选择题(共13⼩题)1.下列式⼦⼀定是⼆次根式的是()A. B. C. D.【分析】根据⼆次根式的被开⽅数是⾮负数对每个选项做判断即可.【解答】解:A、当x=±1时,x2﹣2=﹣1<0,⽆意义,此选项错误;B、当x=1时,﹣x﹣2=﹣3<0,⽆意义,此选项错误;C、当x=﹣1时,⽆意义,此选项错误;D、∵x2+2≥2,∴符合⼆次根式定义,此选项正确;故选:D.2.若在实数范围内有意义,则x的取值范围是()A.x>﹣4B.x≥﹣4C.x>﹣4且x≠1D.x≥﹣4且x≠﹣1【分析】直接利⽤⼆次根式的定义结合分式有意义的条件得出答案.【解答】解:若在实数范围内有意义,则x+4≥0且x+1≠0,解得:x≥﹣4且x≠﹣1.故选:D.3.若是⼆次根式,则a,b应满⾜的条件是()A.a,b均为⾮负数B.a,b同号C.a≥0,b>0D.【分析】根据⼆次根式的定义得出根式有意义的条件,再逐个判断即可.【解答】解:∵是⼆次根式,∴≥0,A、a、b可以都是负数,故本选项错误;B、a=0可以,故本选项错误;C、a、b可以都是负数,故本选项错误;D、≥0,故本选项正确;故选:D.4.已知是正整数,则满⾜条件的最⼤负整数m为()A.﹣10B.﹣40C.﹣90D.﹣160【分析】直接利⽤⼆次根式的定义分析得出答案.【解答】解:∵是正整数,∴满⾜条件的最⼤负整数m为:﹣10.故选:A.5.已知是整数,正整数n的最⼩值为()A.0B.1C.6D.36【分析】因为是整数,且,则6n是完全平⽅数,满⾜条件的最⼩正整数n为6.【解答】解:∵,且是整数,∴是整数,即6n是完全平⽅数;∴n的最⼩正整数值为6.故选:C.6.已知x、y为实数,,则y x的值等于()C.6D.16【分析】根据⼆次根式的性质和分式的意义,被开⽅数⼤于等于0,求得x、y的值,然后代⼊所求求值即可.【解答】解:∵x﹣2≥0,即x≥2,①x﹣2≥0,即x≤2,②由①②知,x=2;∴y=4,∴y x=42=16.故选:D.7.实数a、b在数轴上对应点的位置如图所⽰,则化简﹣|a+b|的结果为()A.bB.﹣2a+bC.2a+bD.2a﹣b【分析】直接利⽤数轴得出a<0,a+b<0,进⽽化简得出答案.【解答】解:原式=﹣a﹣[﹣(a+b)]=﹣a+a+b=b.故选:A.8.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.9.化简:x的结果是()A. B. C.﹣ D.﹣【分析】根据⼆次根式的性质由题意可知x<0,我们在变形时要注意原式的结果应该是个负数,然后根据⼆次根式的性质化简⽽得出结果.【解答】解:原式=x=x=x=﹣故选:D.10.下列⼆次根式;5;;;;.其中,是最简⼆次根式的有()A.2个B.3个C.4个D.5个【分析】根据最简⼆次根式的定义即可判断.【解答】解:=,=,=211.如果a=2+,b=,那么()A.a>bB.a<bC.a=bD.a=【分析】根据分母有理化先化简b,再⽐较a与b的⼤⼩即可.【解答】解:b===2+,∵a=2+,∴a=b,故选:C.12.下列⼆次根式化成最简⼆次根式后不能与合并的是()A. B. C. D.【分析】各项化简得到最简,利⽤同类⼆次根式定义判断即可.【解答】解:A、原式=3,不符合题意;B、原式=,不符合题意;C、原式=3,符合题意;D、原式=,不符合题意,故选:C.13.如图,在长⽅形ABCD中⽆重叠放⼊⾯积分别为16cm2和12cm2的两张正⽅形纸⽚,则图中空⽩部分的⾯积为()cm2.B.﹣12+8C.8﹣4D.4﹣2【分析】根据正⽅形的⾯积求出两个正⽅形的边长,从⽽求出AB、BC,再根据空⽩部分的⾯积等于长⽅形的⾯积减去两个正⽅形的⾯积列式计算即可得解.【解答】解:∵两张正⽅形纸⽚的⾯积分别为16cm2和12cm2,∴它们的边长分别为=4cm,=2cm,∴AB=4cm,BC=(2+4)cm,∴空⽩部分的⾯积=(2+4)×4﹣12﹣16,=8+16﹣12﹣16,=(﹣12+8)cm2.故选:B.⼆、填空题(共6⼩题)14.若=2﹣x,则x的取值范围是x≤2.【分析】根据已知得出x﹣2≤0,求出不等式的解集即可.【解答】解:∵=2﹣x,∴x﹣2≤0,x≤2则x的取值范围是x≤2故答案为:x≤2.15.如图,数轴上点A表⽰的数为a,化简:a+=2.【分析】直接利⽤⼆次根式的性质以及结合数轴得出a的取值范围进⽽化简即可.【解答】解:由数轴可得:0<a<2,则a+=a+=a+(2﹣a)故答案为:2.=;=;=;=.【分析】根据⼆次根式的性质化简即可.【解答】解:=,==,=,=,故答案为:;;;.17.若与最简⼆次根式是同类⼆次根式,则a =2.【分析】根据同类⼆次根式的概念求解可得.【解答】解:∵=2,∴a =2,故答案为:2.18.要使式⼦在实数范围内有意义,则实数x 的取值范围是x >1.【分析】根据被开⽅数⼤于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得x ﹣1>0,解得x >1.故答案为:x >1.19.实数a 、b 在数轴上位置如图,化简:|a +b |+=﹣2a.【分析】根据绝对值与⼆次根式的性质即可求出答案.【解答】解:由题意可知:a <0<b ,∴a +b <0,a ﹣b <0,∴原式=﹣(a +b )﹣(a ﹣b )=﹣a ﹣b ﹣a +b故答案为:﹣2a三、解答题(共6⼩题)20.计算:(1)﹣(2)(2﹣3)÷.【分析】(1)⾸先化简⼆次根式,进⽽合并求出即可;(2)⾸先化简⼆次根式,进⽽合并,利⽤⼆次根式除法运算法则求出即可.【解答】解:(1)﹣=3﹣2=;(2)(2﹣3)÷=(8﹣9)÷=﹣=﹣.21.已知x=,y=,求x2y+xy2的值.【分析】⾸先将原式提取公因式xy,进⽽分解因式求出答案.【解答】解:∵x═2﹣,y=,∴x2y+xy2=xy(x+y)=[(2﹣)+(2+)]×1=4.22.如果与都是最简⼆次根式,⼜是同类⼆次根式,且+=0,求x、y的值.【分析】根据同类⼆次根式的概念列式求出a,根据算术平⽅根的⾮负性计算即可.【解答】解:由题意,得3a﹣11=19﹣2a,解得,a=6,∴+=0,∵≥0,≥0,∴24﹣3x=0,y﹣6=0,解得,x=8,y=6.23.在进⾏⼆次根式的化简与运算时,我们有时会碰上如,,⼀样的式⼦,其实我们还可以将其进⼀步化简:;;.以上这种化简的步骤叫做分母有理化.(1)化简:=;=.(2)填空:的倒数为﹣.(3)化简:.【分析】(1)利⽤分母有理化得到化简的结果;(2)把分母有理化即可;(3)先分母有理化,然后合并后利⽤平⽅差公式计算.【解答】解:(1)==;==;(2)=﹣,即的倒数为﹣;故答案为,,﹣;(3)原式=+++…+)(+1)=(﹣1)(+1)=(2n+1﹣1)=n.24.已知a=,b=(1)化简a,b;(2)求a2﹣4ab+b2的值.【分析】(1)利⽤分母有理化求解可得;(2)将化简后的a、b的值代⼊原式=(a﹣b)2﹣2ab计算可得.【解答】解:(1)a====﹣2,b====+2;(2)原式=(a﹣b)2﹣2ab=(﹣﹣2)2﹣2×(﹣2)(+2)=(﹣4)2﹣2×(5﹣4)=16﹣2=14.25.⼀个长⽅体的塑料容器中装满⽔,该塑料容器的底⾯是长为4cm,宽为3cm的长⽅形,现将塑料容器内的⼀部分⽔倒⼊⼀个底⾯半径2cm的圆柱形玻璃容器中,玻璃容器⽔⾯⾼度上升了3cm,求长⽅形塑料容器中的⽔下降的⾼度.(注意:π取3).【分析】根据倒出的⽔的体积不变列式计算即可.【解答】解:设长⽅形塑料容器中⽔下降的⾼度为h,根据题意得:4×3h=3×(2)2×3,解得:h=2,所以长⽅形塑料容器中的⽔下降2cm.。
初中八年级数学下册第十六章二次根式单元考试习题(含答案) (68)

初中八年级数学下册第十六章二次根式单元考试习题(含答案)阅读下面的材料:我们可以用配方法求一个二次三项式的最大值或最小值,例如:求代数式225a a -+的最小值.方法如下:∵()2222521414a a a a a -+=-++=-+,由()210a -≥,得()2144a -+≥; ∴代数式225a a -+的最小值是4.(1)仿照上述方法求代数式2107x x ++的最小值.(2)代数式2816a a --+有最大值还是最小值?请用配方法求出这个最值.【答案】(1)18-;(2)有最大值,最大值为32.【解析】【分析】(1)仿照阅读材料、利用配方法把原式化为完全平方式与一个数的和的形式,根据偶次方的非负性解答;(2)利用配方法把原式进行变形,根据偶次方的非负性解答即可.【详解】解:(1)∵()222107102518518x x x x x ++=++-=+-,由()250x +≥, 得 ()251818x +-≥-; ∵代数式2107x x ++的最小值是18-;(2)()22281681632432a a a a a --+=---+=-++, ∵()240a -+≤,∵()243232a -++≤,∵代数式2816--+有最大值,最大值为32.a a【点睛】本题考查的是配方法的应用和偶次方的非负性,掌握配方法的一般步骤、偶次方的非负性是解题的关键.102.计算:(1)-|1|(2)4(2x-1)2=16【答案】(1)-4;(2)x=-0.5,x=1.5【解析】【分析】(1)分别计算立方根、绝对值,再合并即可.(2)先变形为(2x-1)2=4,再利用平方根的定义求出x;【详解】(1) 1-1(2) 4(2x-1)2=16∴(2x-1)2=4∴2x-1是4的平方根∴2x-1=2或2x-1=-2∴x=1.5或x=-0.5【点睛】(1)本题考查了二次根式的化简、立方根的性质、绝对值的性质,正确掌握相关性质是解题的关键.(2)本题考查用平方根的定义,熟知若x 2=a,则x 是a 的平方根是解题的关键.103.观察下列各式:1121==-==等于什么? 你能得到什么样的规律?利用你得到的规律计算下面的题目:.......+++(n 为正整数)=1.【解析】【分析】 观察题目中已知算式特点:分子都是1,分母都是相邻两个自然数的算术平方根的和,结果是大数的算术平方根减去小数的算术平方根,即可得到规律,先【详解】1121==-====, 以此类推, 可得到的规律是:第n=;.......+++(n 为正整数) 1.......+1.=1. 【点睛】本题考查分母有理化,规律型:数字的变化类.104.(本题6分)计算:【答案】2【解析】试题分析:首先根据幂的计算法则、二次根式和三角函数的计算法则得出各式的值,然后进行计算.试题解析:原式=4﹣2+1﹣√3×√33=4﹣2+1﹣1=2考点:实数的计算.105.甲同学用如图方法作出C 点,表示数在△OAB 中,∠OAB=90°,OA=2,AB=3,且点 O ,A ,C 在同一数轴上,OB=OC ,(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如图所给数轴上描出表示F.【答案】(1)点C (2)点A 表示的数为【解析】【详解】(1)在Rt△AOB 中,,∵OB=OC,∴∴点 C(2)如图所示:取OB=5,作BC⊥OB,取BC=2.由勾股定理可知:OC=∵∴点 A表示的数为.【点睛】本题主要考查的是实数与数轴、勾股定理的应用,掌握勾股定理是解题的关键.106.已知实数m,n满足n【答案】0【解析】【分析】根据二次根式有意义的条件即可求出答案.【详解】解:由题意可知:2240 4020 mmm⎧-≥⎪-≥⎨⎪-≠⎩∴m=﹣2,∴n=00 22 + --=0【点睛】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.107.计算:(1(2(30(1+ (4)2+【答案】(1);(2(3)6;(4)0 【解析】(1==(23==+=(3(01151 6.=+=+= (4)22225720.+=-+=-+=108.如图,五边形ABCDE 中,,,90AB a BC b B ︒==∠=.且236b =+.(1)求-a b 的平方根;(2)请在CD 的延长线上找一点G ,使得四边形ABCG 的面积与五边形ABCDE 的面积相等;(说明找到G 点的方法)(3)已知点F 在AC 上,//FH AB 交BC 于H ,若6FH =,则BH = .【答案】(1)-a b 的平方根为;(2)见解析;(3)32BH =【解析】【分析】(1)根据已知条件即可求a −b 的平方根;(2)连接AD ,过点E 作//EG AD 交CD 延长线于G 点,即为所求;(3)根据等面积法即可求线段BH 的长.【详解】()1由题知:22640640a a ⎧-≥⎨-≥⎩226464a a ⎧≥∴⎨≤⎩264a ∴=8a ∴=±80a +≠8a ∴≠-8a ∴=236b ∴=6b ∴=±0b BC =>6b ∴=∴a-b=2∵a-b 的平方根是()2如图∵连接AD∵过点E 作//EG AD 交CD 延长线于G 点理由:连接AG 交ED 于点O//AD EGAED AGD S S ∆∆∴=AOE GOD S S ∆∆∴=ABCDE AOE ABCDO GOD ABCDO S S S S S ∆∆∴=+=+ABCG S =∴所以四边形ABCG 的面积与五边形ABCDE 的面积相等;(3)连接FB ,FH ∥AB过点F 作FQ ⊥AB 于点Q ,则四边形FQBH 是矩形,∴FQ =BH ,ABC ABF FBC S S S ∆∆∆=+111222AB BC AB h BC FH ∴=+ 86866h ∴⨯=⨯+⨯32h ∴= 32BH h ∴== 故答案为:32.【点睛】本题考查了作图−应用与设计作图,综合运用平方根、二次根式有意义的条件、平行线的性质、三角形的面积等知识解决问题,解题关键是利用等面积法.109.已知:,+2,分别求下列代数式的值:(1)a2b-ab2(2)a2+ab+b2【答案】(1)4 (2)13【解析】试题分析:(1)由a、b的值先计算出ab、a﹣b,再代入原式=ab(a﹣b)可得答案;(2)将a﹣b、ab代入原式(a﹣b)2+3ab计算可得.试题解析:解:(1)∵a2,b,∴ab=﹣2))=3﹣4=﹣1,a﹣b﹣22=﹣4,则a2b﹣ab2=ab(a﹣b)=4;(2)原式=(a﹣b)2+3ab=16﹣3=13点睛:本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和法则.110.计算(1)-(2)2+--(71)(3(4)×【答案】(1)2-2)45-+3(4)+6【解析】分析:(1)先将二次根式化为最简,然后再进行二次根式的除法及减法运算.(2) 运用平方差及完全平方式解答即可.(3) 将二次根式化为最简,然后再进行同类二次根式的合并即可.(4) 先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)原式=2-(2)原式=45-+(3)原式=2﹣2+﹣=﹣;(4)(+3﹣2)×2=(+)×2=6+6.点睛:本题考查了二次根式的计算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.。
苏科版数学八年级下《二次根式》单元测试题含答案

苏科版数学八年级下《二次根式》单元测试题含答案初二数学《二次根式》复习专题1.以下各式正确的选项是()A .a2aB .a2a C.a2a D .a2a22.把 x 1根号外的因式移入根号内,化简的结果是() xA .xB .x C.-x D .-x.在11中与3是同类二次根式的个数是()27,1122A . 0B .1C. 2 D .34.预计321的运算结果应在() 202A . 6 到 7 之间B .7 到 8 之间C. 8 到 9 之间 D .9 到 10 之间5.函数 y=x 3 中,自变量x的取值范围是_______.6.在△ ABC 中,∠ C= 90°, AC =10cm, AB =34c m,则 BC = _______.7.写出以下等式建立的条件:(1)x x1x x 1 _______;(2)x26x 9 3 x _______.8.已知 a= 2 3a2+ 1,求 a+ 1-的值.a19.计算:(1)83113(2)2635263532210.已知 x= 2 3 +1,求x2-2x-3的值.a a6a,此中 a= 2 -3.11.先化简,再求值:32a34a212a2a9212.在15,1, 1 1,40 中不可以再化简的二次根式的个数是()62A . 1 个B .2 个C. 3 个 D .4 个13.在二次根式①12,②23,③3,④27 中,是同类二次根式的是() 2A .①和③B .②和③C.①和④ D .③和④14. a 22 a 的值必定是()A . 0B .4- 2a C. 2a- 4 D .415.若代数式2a 422,则 a 的范围为() 2 a的值为常数A . a≥4B .a≤ 2C. 2≤ a≤ 4 D .a= 2 或 a= 4 16.以下各式中与27 x3是同类二次要式的是()A .27x3B .x3C.13x2 D .x2792317.在实数范围内分解因式:x2-5= _______; a2+ 2 3 a+3=_______.218.若实数x、 y 知足x 2y3=0,则xy的值是_______.19.把二次根式(x- 1)1中根号外的因式移到根号内,结果是_______.1 x20.计算:(1)1332108(2)51182225252520132014(3)752752(4)31031021.物体着落时,自开始落下的高度h(m) 与落到地面所用的时间t(s)之间相关系: t=h.现5有 4 个苹果从树上落下来,从树上到地面的高度分别为2m、 2.5 m、 3m、 3.2 m,求这4个苹果从树上落到地面所用的时间总和.22.已知:△ ABC 的三边长a、b、c 知足 a+ b+ c- 2 a 2 -4c 3 +3=0.求△ABC 的周长.参照答案1.C2.D3.C4.C5.x≥- 3 6.2 6 cm7.(1)x ≥ 0(2)x ≤38.-39. (1) 32 +33(2) - 2110. 811.2a3, 1-326222a3212. A13. C14. A15. C 16. B17. (1) x5x5(2)2 a318.- 2 3 19.- 1x3172(2) 5510210 20. (1)35(3) -2525(4) - 3-1021.2310215422. 15.55555255。
初中八年级数学下册第十六章二次根式单元检测复习试题七(含答案) (112)

初中八年级数学下册第十六章二次根式单元检测复习试题七(含答案)若最简二次根式2、3是同类二次根式,则x y-=____.【答案】-2【解析】【分析】根据最简二次根式以及同类二次根式即可求出答案.【详解】解:由题可知:322y x y=++,即2x y-=-,故答案为:2- .【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式以及同类二次根式的概念,本题属于基础题型.81a的取值范围是_____________ .【答案】12a≤【解析】分析:根据二次根式有意义的条件列出不等式,解不等式即可.详解:由题意得,12a-≥0,解得,a≤12,故答案为a≤12.点睛:本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.三、解答题82.下列各式中,当字母分别取什么实数时,它就是二次根式?(1(2(3【答案】(1)a ≤1 (2)x ≥0 (3)a 为任意实数.【解析】【分析】二次根式有意义的条件就是被开方数是非负数,即选取a 取任意实数时,被开方数是非负数的式子.【详解】(1)由题意,得1-a ≥0,解得:a ≤1,当a ≤1(2)由题意,得30x ≥,解得:x ≥0,当x ≥0(3)由题意,得21a +≥0 ,无论a 为何值21a +都大于0,当a 为任意实数时,【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题的关键.83.勾股定理是一个基本的几何定理,早在我国西汉吋期算书《周髀算经》就有“勾三股四弦五”的记载.如果一个直角三角形三边长都是正整数,这样的直角三角形叫“整数直角三角形”;这三个整数叫做一组“勾股数”,如:3,4,5;5,12,13;7,24,25;8,15,17;9,40,41等等都是勾股数.(1)小李在研究勾股数时发现,某些整数直角三角形的斜边能写成两个整数的平方和,有一条直角边能写成这两个整数的平方差.如3,4,5中,5=22+12,3=22﹣12;5,12,13中,13=32+22,5=32﹣22;请证明:m ,n 为正整数,且m >n ,若有一个直角三角形斜边长为m 2+n 2,有一条直角长为m 2﹣n 2,则该直角三角形一定为“整数直角三角形”;(2,斜边长a 和b 均为正整数,用含b 的代数式表示a ,并求出a 和b 的值;(3)若c 1=a 12+b 12,c 2=a 22+b 22,其中,a 1、a 2、b 1、b 2均为正整数.证明:存在一个整数直角三角形,其斜边长为c 1•c 2.【答案】(1)见解析;(2)97307b a +=,a =31,b =4;(3)见解析 【解析】【分析】(1)根据勾股定理:利用(m 2+n 2)2﹣(m 2﹣n 2)2,解得另一条直角边长为2mn ,因为m ,n 为正整数,所以2mn 也为正整数,即可得证;(2)首先根据勾股定理求出a 关于b 的代数式,再根据被开方数需大于等于0,即可求得a 、b 的范围,且a 、b 均为正整数,将b 的可能值:1,2,3,4分别代入,即可求得符合条件的正整数a 、b ;(3)观察发现,当a 1=b 1=1,a 2=b 2=2时,c 1•c 2=5×5=25,而22225=1520+,故存在. 【详解】(1)证明:∵(m 2+n 2)2﹣(m 2﹣n 2)2,=(m 2+n 2+m 2﹣n 2)•(m 2+n 2﹣m 2+n 2),=2m 2•2n 2,=(2mn )2,∴(2mn )2+(m 2﹣n 2)2=(m 2+n 2)2,∵m ,n 为正整数,且m >n ,∴2mn ,m 2﹣n 2,m 2+n 2均为正整数,∴该直角三角形一定为“整数直角三角形”;(2)由勾股定理得:7a ﹣7+(150﹣30b )=16×15, ∴97307b a +=, 由题意可知:7a ﹣7>0,150﹣30b >0,∴a >1,0<b <5,∵a 和b 均为正整数,∴b 的可能值为:1,2,3,4,当b =1时,973012777a +== ,不是正整数,故b =1不符合题意; 当b =2时,976015777a +==,不是正整数,故b =2不符合题意; 当b =3时,979018777a +==,不是正整数,故b =3不符合题意; 当b =4时,97120217=3177a +====∵22=240+,(2=240,∴(222=+, ∴b =4符合题意, ∴97307b a +=;a =31,b =4; (3)证明:观察发现,当a 1=b 1=1,a 2=b 2=2时,c 1•c 2=5×5=25, 152+202=225+400=625,252=625,∴152+202=252.∴存在一个整数直角三角形,其斜边长为c 1•c 2.【点睛】本题目考查勾股定理,难度一般,也是中考的常考知识点,熟练掌握勾股定理的应用以及二次根式的相关性质是顺利解答此题的关键.84.计算:(1)))11⨯;(2【答案】(1)2;(2)【解析】【分析】(1)利用平方差公式和二次根式的性质计算.(2)先把各二次根式化为最简二次根式,然后合并即可【详解】(1)利用平方差公式得原式312=-=(2)把各二次根式化为最简二次根式得 原式==【点睛】本题考查二次根的混合运算,熟练掌握计算法则是解题关键.85.写出所有符合下列条件的数.(1) 大于的所有整数; (2)数.【答案】(1) -4, ±3, ±2, ±1,0;(2) ±4,±3,±2,±1,0.【解析】试题分析:(1)用两边夹的方法判断出的整数部分,再求解;(2)先判断出.试题解析:(1)因为<<54-<<-.<<,所以34<<.则-4的整数部分是3所以大于的所有整数是-4,±3,±2,±1,0;(2)<<,所以45<<,54-<-,所以-44,±4,±3,±2,±1,0.点睛:本题主要考查了无理数的估算,估算无理数的基本方法是“两边夹”,即判断所要估算的无理数在哪两个相邻的整数之间,则可得到这个无理数的整数部分,从而估算出这个无理数大小.86.阅读材料:若22m 2mn 2n 8n 160-+-+=,求m ,n 的值.解:22m 2mn 2n 8n 160-+-+=,()()222m 2mn n n 8n 160∴-++-+=.22(m n)(n 4)0∴-+-=, 2(m n)0-≥,2(n 4)0-≥,2(m n)0∴-=,2(n 4)0-=,n 4∴=,m 4=.根据你的观察,探究下面的问题:(1)已知:22x 2xy 2y 2y 10++++=,求2x y +的值;(2)已知:ABC 的三边长a ,b ,c 都是正整数,且满足:22a b 12a 16b 1000+--+=,求ABC 的最大边c 的值;(3)已知:a 5b 2c 20-+=,24ab 8c 20c 1250+++=,直接写出a 的值.【答案】(1) 1;(2)8、9、10、11、12、13;(3)12.5.【解析】【分析】()1把已知条件变形为22()(1)0x y y +++=,利用非负数性质得出x ,y 的值,即可求得2x y +的值;()2)先把2212161000a b a b +--+=变形为22(6)(8)0a b -+-=,得出6a =,8b =,再根据组成三角形的条件得出c 的范围,然后根据c 是正整数就可以确定ABC 的最大边c 的值;()3由5220a b c -+=,得5220a b c =-+,代入248201250ab c c +++=,再配方求得b ,c 的值,进而得出a 的值.【详解】()22122210x xy y y ++++=,()()2222210x xy y y y ∴+++++=,22()(1)0x y y ∴+++=,0x y ∴+=,10y +=,1x ∴=,1y =-,2211x y ∴+=-=,即2x y +的值是1.()22212161000a b a b +--+=,()()22123616640a a b b ∴-++-+=,22(6)(8)0a b ∴-+-=, 60a ∴-=,80b -=,6a ∴=,8b =,8686c -<<+,8c ≥,c 为正整数,814c ∴≤<, ABC ∴的最大边c 的值可能是8、9、10、11、12、13.()35220a b c -+=,5220a b c ∴=-+,248201250ab c c +++=,()2452208201250b c b c c ∴-++++=,22208808201250b bc b c c ∴-++++=,222(22)(410)(25)0b c b c ∴-++++=,52b c ∴==-, 12.5a ∴=.【点睛】此题主要考查了因式分解方法的应用,要熟练掌握,解答此题的关键是要明确:用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分;此题还考查了三角形的三条边之间的关系,要熟练掌握,解答此题的关键是要明确:任意两边之和大于第三边;任意两边之差小于第三边.87.座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式为T=其中T表示周期(单位:s),l表示摆长(单位:m),2 2=,9.8/sg m假如一台座钟的摆长为0.49m,它每摆动一个来回发出一次滴答声,那么,它摆动60 2.24≈,π取3,结果保留整数)【答案】它摆动60个来回大约需要81s【解析】【分析】先运用公式求出这个座钟的周期.再用60乘以周期即可.【详解】解:=2ππ取3,Tg∴=⨯T23=≈.1.344(s)60 1.34480.6481⨯=≈.答:它摆动60个来回大约需要81s .【点睛】本题主要考查了二次根式的乘除,解题的关键是运用公式求出这个座钟的周期.88.(1)求x 的值:225x =(2【答案】(1)5x =±;(2)4【解析】【分析】(1)直接开平方,即可得到答案;(2)先根据二次根式的性质进行化简,然后合并同类项即可.【详解】解:(1)225x =,∴5x =±;(22244=-+=;【点睛】本题考查了二次根式的性质,立方根,以及直接开平方法解方程,解题的关键是熟练掌握二次根式的性质进行解题.89.计算(1)(-1)+(-8)(2)()32164⨯--÷(3)221432225⎛⎫⎛⎫-+-⨯- ⎪ ⎪⎝⎭⎝⎭(421+【答案】(1)-9 (2)10 (3)-10 (4)4【解析】【分析】(1)先去括号,然后加减运算即可;(2)先计算乘除,然后计算加减即可;(3)先计算乘方,然后计算乘法,再计算加减即可;(4)先计算立方根,平方根与去绝对值,然后进行加减运算即可.【详解】解:(1)原式=-1-8=-9;(2)原式=6410+=;(3)原式=25449911025⎛⎫-+⨯-=--=- ⎪⎝⎭;(4)原式=)2314+=. 【点睛】 本题主要考查了有理数的混合运算与二次根式的运算,熟练掌握运算法则是解题的关键.。
苏科版八年级数学下册第12章二次根式检测卷(含答案)

第12章 二次根式 检测卷(满分:100分时间:90分钟)一、选择题(本大题共8小题,每小题3分,共24分)1.(2013.苏州)若式子12x -在实数范围内有意义,则x 的取值范围是 ( ) A .x>1 B .x<1C .x ≥1D .x ≤1 2.下列判断正确的是 ( )A .带根号的式子一定是二次根式B .式子21x +一定是二次根式C .式子x y +一定是二次根式D .二次根式的值必是无理数3.计算()23-的结果是 ( )A .3B .-3C .±3D .9 4.已知12n -是正整数,则实数n 的最大值为 ( )A .12B .11C .8D .3 5.(2013.西宁)下列各式计算正确的是 ( )A .2-22=-2B .28a =4a(a>0)C .()()4949-⨯-=-⨯-D .633÷=6.下列运算正确的是 ( )A .632a a = B .()22323-=-⨯ C .21a a a = D .1882-=7.计算132252⨯+⨯的结果估计在 ( ) A .6至7之间 B .7至8之间 C .8至9之间 D .9至10之间8.若x -y =2-1,xy =2,则代数式(x -1)(y +1)的值等于 ( )A .2+22B .22-2C .22D .2二、填空题(本大题共10小题,每小题2分,共20分)9.(2013.龙岩)已知23a b -+-=0,则a b =_______.10.代数式5a a +--的值为_______.11.若a>0,则化简3ab -的结果为_______.12.计算112121335÷÷的结果为_______. 13.已知x 、y 为实数,且满足()111x y y +---=0,那么x 2013-x 2013=_______.14.长方形的一边的长是2cm ,面积为6 cm 2,则这个长方形的周长为_______.15.(2013.南京)计算3122-的结果是_______. 16.不等式2x >3x 的解集为_______.17.观察下列各式:11111112,23,34334455+=+=+=……请你将发现的规律用含自然数n(n ≥1)的等式表示出来:______________.18.先阅读理解,再回答问题: 因为2112+=,1<2<2,所以211+的整数部分为1; 因为2226+=,2<6<3,所以222+的整数部分为2; 因为23312+=,3<12<4,所以233+的整数部分为3; 依次类推,我们不难发现2n n +(n 为正整数)的整数部分为_______. 现已知5的整数部分是x ,小数部分是y ,则x -y =_______.三、解答题(第19题6分,第20题16分,第21题8分,第22题8分,第23题9分,第24题9分,共56分)19.实数p 在数轴上的位置如图所示:化简222144p p p p -++-+.20.计算:(1)2712108-+ (2)11383322+-+(3)21212434828⎛⎫+- ⎪ ⎪⎝⎭ (4)3122a b b a b ⎛⎫∙÷ ⎪ ⎪⎝⎭21.若x 、y 是实数,且y<1112x x -+-+,求11y y --的值.22.已知a =2-1,先化简2222222114164821442a a a a a a a a a a a a a -+--+++÷--+-+-,再求值.23.(2013.张家界)先简化,再求值:2211211x x x x x +⎛⎫÷+ ⎪-+-⎝⎭,其中x =2+1.24.先阅读下面的材料,然后解答问题: 形如2m n ±的化简,只要我们找到两个数a 、b 使a +b =m ,ab =n ,即()()22a b m +=a b n ∙=,那么便有()22m n a b a b ±=±=±(a>b ). 例如:化简:743+.解:首先把743+化为7212+,这里m =7,n =12.由于4+3=7,4×3=12,即()()2243+=7,4·3=12,所以743+=7212+=()243+=2+3.根据上述材料中的方法化简: (1)13242-(2)740- (3)23-参考答案一、1.C 2.B 3.A 4.B 5.A 6.D 7.B 8.B二、9.8 10.-5 11.-b ab - 12.25713.-2 14.82 cm 15.2 16.x<2+3 17.()11122n n n n +=+++ 18.n 4-5 三、19.原式=1 20.(1)73 (2)322+323 (3)1-46 (4)3421.-1 22.原式=11a -,原式=222+- 23.原式=11x -,原式=22 24.(1)76- (2)52- (3)622-初中数学试卷灿若寒星 制作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版数学八年级下册二次根式单元试卷含答案
二次根式测验
一、选择(每小题3分,共30分)
1a≥2)A .1个B .2个C .3个
D .4个2.下面算式中,错误的是()
A .=±0.03
B .=±0.07
C D .-=-0.13
3、下列二次根式中,最简二次根式是()
A 、51
B 、5.0
C 、5
D 、504.面积为6cm 2的正方形的边长为(
)
A cm
B .2cm
C .3cm
D .36cm 5.若方程(y-2)2=144,则y 的值是(
)A .10B .-10C .-10或14D .12
6.若,则A 的算术平方根是()
A .a 2+3
B .(a 2+3)2
C .(a 2+9)2
D .a 2+9
7+=_______.
A .第一象限
B .第二象限
C .第三象限
D .第四象限
8.式子4
x -中,x 的取值范围是()A .x≤3B .x≥3C .x>3D .x≥3且x≠4
9有意义的未知数x 有(
)个.A .0
B .1
C .2
D .无数10、计算()()201420132323-+的结果是()
A 、32+
B 、2
3-C 、3
2-D 、3二、填空(每小题3分,共24分)
1.(-7)2的平方根是_______________.
2有意义,则x=_______.
3.当x_______a 的值是_______.
4________.
5,那么a2004+b2004=_______.
6.当x_______
7.已知,则x
y=________.
8、若x-y=1
2-,xy=2,则代数式(x-1)(y+1)的值等于。
三、解答题(共46分)
1.x为何值时,下面各式有意义:(9分)
①
2.求下列各式x的值:(9分)
①x2=144;②9(x2+1)=10;③25(x+2)2-36=0。
3.(6分)已知a、b=b+4,求a、b的值.
4.(6分)正数x的平方根是3a+1和-a-3,求
5.(8分)x 、y 都是实数,且满足+12,试化简|1|1y y --的值.6、(8分)已知13,13-=+=y x ,求2
22
22y x y xy x -+-的值。
答案:
1.±7,32.03.≥1,-14.a≥-15.2 6.C7.A8.A9.C10.D
11. ①0≤x≤1,②x>-1,③x取任意实数
12.①±12,②x=±1
3;③x1=-
4
5,x2=-
16
5
13.<114.2
515.
1
316.C17.D18.B
19.1-y>0,|1|y-
-
=-120.a=5,b=-4
21.(3a+1)+(-a-3)=0,∴a=1,x=(3a+1)2=16,
=5。