算法设计与分析
算法分析与设计概论

9
How to Study Algorithm?
“Sometimes we have experiences, and sometimes not. Therefore, the better way is to learn more."
10
1.1 算法与程序
算法:是满足下述性质的指令序列。
输 入:有零个或多个外部量作为算法的输入。 输 出:算法产生至少一个量作为输出。 确定性:组成算法的每条指令清晰、无歧义。 有限性:算法中每条指令的执行次数有限,执行 每条指令的时间也有限。
1) 第一种解法:
输入:所购买的三种鸡的总数目n 输出:满足问题的解的数目k,公鸡,母鸡,小鸡的只数g[ ],m[ ],s[ ] 1. void chicken_question(int n,int &k,int g[ ],int m[ ],int s[ ]) 2. { int a,b,c; 4. k = 0; 5. for (a=0;a<=n;a++) 6. for (b=0;b<=n;b++) 7. for (c=0;c<=n;c++) { 8. if ((a+b+c==n)&&(5*a+3*b+c/3==n)&&(c%3==0)) { 9. g[k] = a; 10. m[k] = b; 11. s[k] = c; 12. k++; 13. }}}
矩阵。
数组 T:表示售货员的路线,依次存放旅行路线中的城 市编号。
售货员的每一条路线,对应于城市编号的一个排列。
n 个城市共有 n! 个排列,采用穷举法逐一计算每一条路线的费 用,从中找出费用最小的路线,便可求出问题的解。
电大计算机本科_算法设计与分析

电大计算机本科_算法设计与分析
算法设计与分析是计算机科学和数学领域的重要课程。
它涉及到一系
列算法设计、分析和实现的方面,涉及到算法流程、语法、数据结构等多
方面。
在算法设计与分析这门课程中,学生首先要学习怎么设计一个算法,
怎么从实际问题中提取算法,怎么分析算法复杂度,怎么评价算法效率。
接下来要学习算法,基本排序算法和选择算法,分治算法,贪婪算法,动
态规划,回溯算法,朴素贝叶斯,马尔科夫链等等各种算法。
学生还要熟
悉现代算法建模工具(如Matlab、SAS、C++),熟悉算法的优化技巧,
掌握算法的编码实现方法,并研究其实际应用。
本课程可以使学生充分发挥自己的能力,培养学生的算法设计能力,
提高实践能力,掌握算法的基本原理及运用,把握算法分析及其优化技术。
它不仅帮助学生提高数学思维能力,同时也有助于他们在计算机编程方面
的能力。
学习算法设计与分析有助于学生全面掌握算法设计这一重要组成
部分,也可以拓展学生的应用领域,使学生更具有竞争力。
学习算法设计与分析也有其困难之处,首先是算法编程比较抽象,学
生需要有较强的理论功底和数学能力。
算法设计与分析(第2版) 郑宗汉 第1章-1

8
Байду номын сангаас
学习要求
深刻理解每一类算法的思想及其实现
能熟练运用所学知识解决实际问题
培养提高计算思维能力
9
考核方式
Homework and Reading: 20%
Final Exam (Written Test): 80%
10
第1章 算法的基本概念
1.1 引言
1.1.1 算法的定义和特性
c %3 0
(1.1.3)
16
1.1.2 算法的设计和复杂性分析
百鸡问题的穷举法
输入:所购买的3种鸡的总数目n 输出:满足问题的解的数目k,公鸡,母鸡,小鸡的只数g[],m[],s[]
1. void chicken_question(int n, int &k, int g[], int m[], int s[]) 2. { 3. int a,b,c; 分析发现:只能买到n/5 4. k = 0; 只公鸡,n/3只母鸡,将 5. for (a = 0; a <= n; a++) { 算法进行改进。 6. for ( b = 0; b <= n; b++) { 7. for (c = 0; c <= n; c++) { 8. if ((a + b + c == n) && (5 * a + 3 * b + c / 3 == n) && (c%3 == 0)) { 9. g[k] = a; 10. m[k] = b; 11. s[k] = c; 12. k++; 13. } 14. } 15. } 16. } 17. }
《算法设计与分析》课件

常见的贪心算法包括最小生成树算法 、Prim算法、Dijkstra算法和拓扑排 序等。
贪心算法的时间复杂度和空间复杂度 通常都比较优秀,但在某些情况下可 能需要额外的空间来保存状态。
动态规划
常见的动态规划算法包括斐波那契数列、背包 问题、最长公共子序列和矩阵链乘法等。
动态规划的时间复杂度和空间复杂度通常较高,但通 过优化状态转移方程和状态空间可以显著提高效率。
动态规划算法的时间和空间复杂度分析
动态规划算法的时间复杂度通常为O(n^2),空间复杂度为O(n)。
04 经典问题与算法实现
排序问题
冒泡排序
通过重复地遍历待排序序列,比较相邻元素的大小,交换 位置,使得较大的元素逐渐往后移动,最终达到排序的目 的。
快速排序
采用分治策略,选取一个基准元素,将比基准元素小的元 素移到其左边,比基准元素大的元素移到其右边,然后对 左右两边的子序列递归进行此操作。
动态规划是一种通过将原问题分解为若干个子 问题,并从子问题的最优解推导出原问题的最 优解的算法设计方法。
动态规划的关键在于状态转移方程的建立和状态 空间的优化,以减少不必要的重复计算。
回溯算法
01
回溯算法是一种通过穷举所有可能情况来求解问题的算法设计方法。
02
常见的回溯算法包括排列组合、八皇后问题和图的着色问题等。
空间换时间 分治策略 贪心算法 动态规划
通过增加存储空间来减少计算时间,例如使用哈希表解决查找 问题。
将问题分解为若干个子问题,递归地解决子问题,最终合并子 问题的解以得到原问题的解。
在每一步选择中都采取当前状态下最好或最优(即最有利)的 选择,从而希望导致结果是最好或最优的。
通过将问题分解为相互重叠的子问题,并保存子问题的解,避 免重复计算,提高算法效率。
《算法设计与分析》(全)

1.1、算法与程序
程序:是算法用某种程序设计语言的具体实现。 程序可以不满足算法的性质(4)。 例如操作系统,是一个在无限循环中执行的程序, 因而不是一个算法。 操作系统的各种任务可看成是单独的问题,每一个 问题由操作系统中的一个子程序通过特定的算法来实 现。该子程序得到输出结果后便终止。
渐近分析记号的若干性质
(1)传递性: ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= O(g(n)), g(n)= O (h(n)) f(n)= O (h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= o(g(n)), g(n)= o(h(n)) f(n)= o(h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); (2)反身性: ➢ f(n)= (f(n));f(n)= O(f(n));f(n)= (f(n)). (3)对称性: ➢ f(n)= (g(n)) g(n)= (f(n)) . (4)互对称性: ➢ f(n)= O(g(n)) g(n)= (f(n)) ; ➢ f(n)= o(g(n)) g(n)= (f(n)) ;
巢湖学院计算机科学与技术系
渐近分析记号的若干性质
规则O(f(n))+O(g(n)) = O(max{f(n),g(n)}) 的证明: ➢ 对于任意f1(n) O(f(n)) ,存在正常数c1和自然数n1,使得对
所有n n1,有f1(n) c1f(n) 。 ➢ 类似地,对于任意g1(n) O(g(n)) ,存在正常数c2和自然数
巢湖学院计算机科学与技术系
第1章 算法引论
算法设计与分析

算法设计与分析算法是计算机科学中的核心概念,它是解决问题的一系列步骤和规则的有序集合。
在计算机科学的发展中,算法设计和分析扮演着至关重要的角色。
本文将探讨算法设计和分析的相关概念、技术和重要性。
一、算法设计的基本原则在设计算法时,需要遵循一些基本原则来确保其正确性和有效性:1. 正确性:算法设计应确保能够正确地解决给定的问题,即输出与预期结果一致。
2. 可读性:设计的算法应具有清晰的结构和逻辑,易于理解和维护。
3. 高效性:算法应尽可能地减少时间和空间复杂度,以提高执行效率。
4. 可扩展性:算法应具备良好的扩展性,能够适应问题规模的变化和增长。
5. 可靠性:设计的算法应具备稳定性和鲁棒性,对不同的输入都能给出正确的结果。
二、常见的算法设计技术1. 枚举法:按照规定的顺序逐个尝试所有可能的解,直到找到满足条件的解。
2. 递归法:通过将一个大问题分解成若干个小问题,并通过递归地解决小问题,最终解决整个问题。
3. 贪心算法:在每个阶段选择最优解,以期望通过一系列局部最优解达到全局最优解。
4. 分治算法:将一个大问题划分成多个相互独立的子问题,逐个解决子问题,并将解合并得到整体解。
5. 动态规划:通过将一个大问题分解成多个小问题,并存储已解决子问题的结果,避免重复计算。
三、算法分析的重要性算法分析可以评估算法的效率和性能。
通过算法分析,可以:1. 预测算法在不同规模问题上的表现,帮助选择合适的算法解决具体问题。
2. 比较不同算法在同一问题上的性能,从而选择最优的算法。
3. 评估算法在不同硬件环境和数据集上的表现,选择最适合的算法实现。
四、常见的算法分析方法1. 时间复杂度:衡量算法所需执行时间的增长率,常用的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。
2. 空间复杂度:衡量算法所需占用存储空间的增长率,常用的空间复杂度有O(1)、O(n)和O(n^2)等。
3. 最坏情况分析:对算法在最不利情况下的性能进行分析,可以避免算法性能不稳定的问题。
算法分析与设计

算法分析与设计在计算机科学领域,算法是解决问题的一种方法或步骤。
对于任何给定的问题,可能有许多不同的算法可用于解决。
算法的效率直接影响着计算机程序的性能,在实践中,我们通常需要进行算法分析和设计来确保程序的高效性和可靠性。
算法分析算法分析是用来评估算法性能的过程。
主要关注的是算法的效率和资源消耗。
常见的算法分析方法包括时间复杂度和空间复杂度。
时间复杂度时间复杂度描述了算法运行时间随输入规模增加而增加的趋势。
通常用大O符号表示,比如O(n)、O(log n)等。
时间复杂度越低,算法执行速度越快。
空间复杂度空间复杂度描述了算法在运行过程中所需的内存空间大小。
同样用大O符号表示。
空间复杂度越低,算法消耗的内存越少。
算法设计算法设计是指为了解决特定问题而创造新的算法的过程。
常见的算法设计方法包括贪心算法、分治法、动态规划等。
贪心算法贪心算法是一种在每一步选择当前状态下最优解的算法。
虽然贪心算法并不总是能得到全局最优解,但它的简单性和高效性使其在实际应用中很受欢迎。
分治法分治法将复杂问题分解为子问题来求解,然后将子问题的解合并起来得到原问题的解。
典型的应用有归并排序和快速排序等。
动态规划动态规划是一种将问题分解为重叠子问题、并存储子问题解的方法。
通过利用已解决的子问题来解决更大规模的问题,动态规划能够显著提高算法的效率。
结语算法分析和设计是计算机科学中至关重要的一部分,它帮助我们理解算法的效率和性能,并指导我们选择合适的算法来解决问题。
通过不断学习和实践,我们可以不断提升自己在算法领域的能力,为创造更高效、更可靠的计算机程序做出贡献。
算法设计与分析基础

2023/12/21
20
LingJie/GDUT
1.2.6 详细表述该算法的方法
• 可以用到的工具有自然语言(nature
language)、伪代码(pseudocode)以及程序 流程图(flow chart)等。
• 当对一个问题有了概要的理解后,下面的工作
就是把这个问题的想法进行细化。所谓的细化 就是把它们表示成算法的步骤。
令执行顺序以及同步等问题。并行算法的设计 有相应的理论,这里仅考虑串行算法。
2023/12/21
17
LingJie/GDUT
1.2.3 选择精确或者近似的算法
• 解决问题下一步要考虑的是使用精确的还是近
似的算法。并不是每一个可解的问题都有精确 的算法,例如求一个数的平方根,求非线性方 程的解等。有时候一个问题有精确的解法但是 算法的执行效率很差,例如旅行家问题。因此 如果待处理的问题涉及到上述那些方面,则要 考虑是选择精确的还是近似的算法。
2023/12/21
10
LingJie/GDUT
-- 2* 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
-- 2 3*
5
7
9
11
13
15
17
19
21
23
25
-- 2 3
5*
7
11
13
17
19
23
25
-- 2 3
5
7
11
13
第一步:找出m的所有质因数。 第二步:找出n的所有质因数。 第三步:从第一步求得的m的质因数分解式和第二步求得的n
的质因数分解式中,找出所有公因数。 第四步:将第三步找到的公因数相乘,结果为所求的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回溯算法
一、实验目的与要求
1、掌握0—1背包问题的回溯算法;
2、进一步掌握回溯算法;
二、实验题:
给定n种物品和一背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?
三、实验步骤
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Arrays;
import parator;
public class BTKnapsack {
double c;// 背包重量
int n; // 物品总数
double[] w;// 物品重量数组
double[] p;// 物品价值数组
double cw; // 当前重量
double cp; // 当前价值
double bestp; // 当前最优价值
public double knapsack(double pp[], double
ww[], double cc) {
c = cc;
n = pp.length;
cw = 0.0;
cp = 0.0;
bestp = 0.0;
Element[] q = new Element[n];
for (int i = 0; i < n; i++) {
q[i] = new Element(i + 1, pp[i] / ww[i]);
}
Arrays.sort(q, new ElemComparator());
p = new double[n + 1];
w = new double[n + 1];
for (int i = 1; i <= n; i++) {
p[i] = pp[q[i - 1].id - 1];
w[i] = ww[q[i - 1].id - 1];
}
backtrack(1);
return bestp;
}// 回溯过程
private void backtrack(int i) {
if (i > n) {// 达到叶节点
bestp = cp;
return;
}
if (cw + w[i] <= c) {
cw += w[i];
cp += p[i];
backtrack(1 + i);
cw -= w[i];
cp -= p[i];
}
if (bound(i + 1) > bestp) {
backtrack(1 + i);
}
}// 计算上界值
private double bound(int i) {
double cleft = c - cw;
double bound = cp;// 以物品单位重量价值递减顺序装入物品
while (i <= n && w[i] <= cleft) { cleft -= w[i];
bound += p[i];
i++;
}// 装满背包
if (i <= n) {
bound += p[i] * cleft / w[i];
}
return bound;
}
public class Element {
int id;// 编号
double d;// 单位重量价值
public Element(int id, double d) {
this.id = id;
this.d = d;
}
}
public class ElemComparator implements Comparator<Object> {
public int compare(Object object1, Object object2) {
Element element1 = (Element)
object1;
Element element2 = (Element)
object2;
if (element1.d < element2.d) {
return 1;
} else {
return 0;
}
}
}
public static void main(String[] args) {
String input;
String flag;
double capacity = 0;
double[] pp;
double[] ww;
double bestP=0.0;
BTKnapsack btKnapsack=new BTKnapsack();
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
do {
try {
do {
System.out.println("请选择数字功能键: 1--输入数据,2--退出系统");
flag =
in.readLine().trim();
} while (!(flag.equals("1") || flag.equals("2")));
if (flag.equals("2")) {
break;
}
do {
System.out.println("请输入各物品重量,数据之间必须以顿号间隔分开!");
input =
in.readLine().trim();
input =
in.readLine().replaceAll(" ", "");
} while (input.equals(""));
if(input.equals("2")){
break;
}
String datas[] = input.split(" [、]");
int n1 = datas.length;
pp=new double[n1];
ww=new double[n1];
for (int i = 0; i < n1; i++) { ww[i]=
Double.parseDouble(datas[i]);
}
do {
System.out.println("请输入各物品价值,数据之间必须以顿号间隔分开!");
input =
in.readLine().trim();
input =
in.readLine().replaceAll(" ", "");
} while (input.equals(""));
if(input.equals("2")){
break;
}
datas= input.split("[,]");
int n2 = datas.length;
if(n1!=n2){
System.out.println("输入
数据个数不一致,重新输入");
continue;
}
for (int i = 0; i < n1; i++) { pp[i]=
Double.parseDouble(datas[i]);
}
do {
System.out.println("请输
入背包的容量:");
input =
in.readLine().trim();
input =
in.readLine().replaceAll(" ", "");
} while (input.equals(""));
if(input.equals("2")){
break;
}
capacity=Double.parseDouble(input);
bestP=btKnapsack.knapsack(pp,
ww, capacity);
System.out.println("回溯法解得最
优价值:"+bestP);
} catch (Exception e) {
e.printStackTrace();
}
} while (true);
}
}
四.实验结果
五.实验心得
通过本次实验是我更深层的了解0—1背包问题的回溯算法,进一步掌握回溯算法;。