第四章---季节性指数平滑法
指数平滑——精选推荐

指数平滑指数平滑法⼀、指数平滑法简介指数平滑法是布朗(Robert G..Brown)所提出,布朗(Robert G..Brown)认为时间序列的态势具有稳定性或规则性,所以时间序列可被合理地顺势推延;他认为最近的过去态势,在某种程度上会持续到最近的未来,所以将较⼤的权数放在最近的资料。
指数平滑法是⽣产预测中常⽤的⼀种⽅法。
也⽤于中短期经济发展趋势预测,所有预测⽅法中,指数平滑是⽤得最多的⼀种。
简单的全期平均法是对时间数列的过去数据⼀个不漏地全部加以同等利⽤;移动平均法则不考虑较远期的数据,并在加权移动平均法中给予近期资料更⼤的权重;⽽指数平滑法则兼容了全期平均和移动平均所长,不舍弃过去的数据,但是仅给予逐渐减弱的影响程度,即随着数据的远离,赋予逐渐收敛为零的权数。
也就是说指数平滑法是在移动平均法基础上发展起来的⼀种时间序列预测分析法,它是通过计算指数平滑值,配合⼀定的时间序列预测模型对现象的未来进⾏预测。
其原理是任⼀期的指数平滑值都是本期实际观察值与前⼀期指数平滑值的加权平均。
⼆、指数平滑法的基本公式指数平滑法的基本公式是:式中,S t--时间t的平滑值;y t--时间t的实际值;S t 1--时间t-1的平滑值;a--平滑常数,其取值范围为[0,1];由该公式可知:1.S t是y t和S t?1的加权算术平均数,随着a取值⼤⼩变化,决定y t和S t?1对S t的影响程度,当a取1时,S t = y t;当a取0时,S t = S t? 1。
2.S t具有逐期追溯性质,可探源⾄S t?t+ 1为⽌,包括全部数据。
其过程中,平滑常数以指数形式递减,故称之为指数平滑法。
指数平滑常数取值⾄关重要。
平滑常数决定了平滑⽔平以及对预测值与实际结果之间差异的响应速度。
平滑常数a越接近于1,远期实际值对本期平滑值影响程度的下降越迅速;平滑常数a 越接近于 0,远期实际值对本期平滑值影响程度的下降越缓慢。
由此,当时间数列相对平稳时,可取较⼤的a;当时间数列波动较⼤时,应取较⼩的a,以不忽略远期实际值的影响。
季节指数法的原理及应用

季节指数法的原理及应用1. 什么是季节指数法?季节指数法是一种时间序列分析方法,主要用于确定季节性因素对于时间序列数据的影响程度,以及进行季节性趋势的预测和调整。
它基于一种假设,即历史上的季节性变化趋势会在未来重复出现,因此可以利用历史数据来分析和预测未来的季节性变化。
2. 季节指数法的原理季节指数法的原理基于以下步骤: 1. 数据收集和整理:收集时间序列数据,以季度为单位进行整理,例如每个季度的销售额或生产数量。
2. 季节性因素的计算:计算每个季度的平均值,即该季度的数据在历史上的平均水平。
将每个季度的平均值除以整个时间序列的平均值,得到季节指数。
季节指数反映了该季度相对于整体平均的季节性因素。
3. 趋势性分析:对除去季节性因素后的数据进行趋势性分析,例如利用移动平均线或指数平滑法进行趋势性预测。
4. 季节性调整:将趋势性分析得出的预测结果乘以对应季度的季节指数,得到最终的季节性调整结果。
3. 季节指数法的应用季节指数法在实际应用中具有广泛的应用价值,以下是一些常见的应用场景:3.1 销售预测•对于某些产品或行业,销售额可能呈现明显的季节性变化。
通过季节指数法,可以分析每个季度的销售水平相对于整体销售水平的影响程度,从而预测未来季度的销售趋势,并作出相应的调整和决策。
3.2 生产计划•季节指数法可以帮助生产企业优化生产计划,根据季节性因素调整生产数量和时间,以适应季节性需求的变化。
例如,对于农产品,不同季节的需求量可能会有显著差异,通过季节指数法可以预测出不同季节的需求量,从而合理安排生产计划。
3.3 股票市场分析•季节指数法可以用于股票市场的分析,特别是对于某些行业或股票具有明显季节性特征的情况下。
通过分析季节指数,可以了解该股票或行业在不同季度的涨跌情况,从而制定更具针对性的投资策略。
3.4 旅游业规划•季节指数法在旅游业规划中也具有应用价值。
通过分析每个季度的季节指数,可以了解不同季度的旅游需求量以及旅游价格的波动情况,从而制定合理的旅游行程和价格策略,更好地满足游客的需求。
时间序列公式指数平滑法ARIMA模型

时间序列公式指数平滑法ARIMA模型时间序列分析是指对一系列按时间顺序排列的数据进行统计分析和预测的方法。
其中,指数平滑法和ARIMA模型是时间序列分析中应用广泛的两种方法。
本文将介绍这两种方法的原理、应用及其比较。
一、指数平滑法指数平滑法是一种简单且有效的时间序列预测方法,适用于数据变动较为平稳的序列。
其基本原理是通过对历史数据进行加权平均,得到未来一段时间的预测值。
1. 简单指数平滑法简单指数平滑法是最基本的指数平滑法。
其公式如下:St = αYt + (1-α)St-1其中,St为预测值,Yt为实际观测值,St-1为前一个周期的预测值,α是平滑系数,取值范围为0到1。
2. 加权指数平滑法加权指数平滑法在简单指数平滑法的基础上,对不同时期的数据进行加权,以减小较早期数据的权重。
其公式如下:St = αYt + (1-α)(α^(t-1))Yt-1 + (1-α)(α^(t-2))Yt-2 + ...其中,α为平滑系数,t为时间周期。
3. 双重指数平滑法双重指数平滑法适用于具有趋势的时间序列数据。
其基本思想是通过指数平滑法预测趋势的影响,进而得到未来的预测值。
二、ARIMA模型ARIMA模型是一种基于时间序列预测的自回归(AR)和滑动平均(MA)模型。
ARIMA模型是一种更为复杂和全面的方法,可以应对更多类型的时间序列数据。
ARIMA模型包括三个参数:AR(p)、I(d)和MA(q),分别表示自回归项、差分项和滑动平均项。
ARIMA模型的一般形式如下:ARIMA(p,d,q):Yt = c + ϕ1Yt-1 + ϕ2Yt-2 + ... + ϕpYt-p + θ1et-1 +θ2et-2 + ... + θqet-q + et其中,Yt为观测值,c为常数,ϕ为自回归系数,θ为滑动平均系数,et为白噪声误差项。
ARIMA模型的建立包括模型识别、估计参数、检验和预测四个步骤。
在实际应用中,还可以通过模型诊断来进一步改进和优化ARIMA模型。
指数平滑

指数平滑法一、指数平滑法简介指数平滑法是布朗(Robert G..Brown)所提出,布朗(Robert G..Brown)认为时间序列的态势具有稳定性或规则性,所以时间序列可被合理地顺势推延;他认为最近的过去态势,在某种程度上会持续到最近的未来,所以将较大的权数放在最近的资料。
指数平滑法是生产预测中常用的一种方法。
也用于中短期经济发展趋势预测,所有预测方法中,指数平滑是用得最多的一种。
简单的全期平均法是对时间数列的过去数据一个不漏地全部加以同等利用;移动平均法则不考虑较远期的数据,并在加权移动平均法中给予近期资料更大的权重;而指数平滑法则兼容了全期平均和移动平均所长,不舍弃过去的数据,但是仅给予逐渐减弱的影响程度,即随着数据的远离,赋予逐渐收敛为零的权数。
也就是说指数平滑法是在移动平均法基础上发展起来的一种时间序列预测分析法,它是通过计算指数平滑值,配合一定的时间序列预测模型对现象的未来进行预测。
其原理是任一期的指数平滑值都是本期实际观察值与前一期指数平滑值的加权平均。
二、指数平滑法的基本公式指数平滑法的基本公式是:式中,∙S t--时间t的平滑值;∙y t--时间t的实际值;∙S t− 1--时间t-1的平滑值;∙a--平滑常数,其取值范围为[0,1];由该公式可知:1.S t是y t和S t−1的加权算术平均数,随着a取值大小变化,决定y t和S t−1对S t的影响程度,当a取1时,S t = y t;当a取0时,S t = S t− 1。
2.S t具有逐期追溯性质,可探源至S t−t+ 1为止,包括全部数据。
其过程中,平滑常数以指数形式递减,故称之为指数平滑法。
指数平滑常数取值至关重要。
平滑常数决定了平滑水平以及对预测值与实际结果之间差异的响应速度。
平滑常数a越接近于1,远期实际值对本期平滑值影响程度的下降越迅速;平滑常数a 越接近于 0,远期实际值对本期平滑值影响程度的下降越缓慢。
由此,当时间数列相对平稳时,可取较大的a;当时间数列波动较大时,应取较小的a,以不忽略远期实际值的影响。
滑动平均法指数平滑法

对时间序列分析方法的学习摘要:本文对时间序列分析方法中的移动平均法、滑动平均法和指数平滑法进行简介,主要从数学公式、数学含义、计算方法这三个方面进行了介绍。
然后利用指数平滑法以钢厂产钢量预测进行了实例分析,得出了指数平滑法对钢厂产钢量模拟情况较好,但仍存在部分异常值不可模拟的结论。
最后对这三种方法进行了总结。
关键词:移动平均法滑动平均法指数平均法实证分析移动平均法又称滑动平均法,滑动平均模型法。
移动平均法的基本原理即算术平均,包括简单移动平均、加权移动平均、项和项移动平均,对称的亨德森移动平均、PA (阶段平均)等方法。
该方法直接采用时间序列的移动平均值来代表经济序列的长期趋势,优点是计算简便、方法客观,适用于长期趋势较为复杂且随机波动很大的时间序列数据的处理;同时也便于不同时间序列波动幅度大小变化的比较研究。
简单移动平均法采用的方法是取一定数量时期的数据平均,按时间顺序逐次推进,每推进一次,就舍去前一个数据,同时增加一个后续相邻的数据,再进行平均,依次类推,最后形成一个新的序列。
若原时间序列没有明显的不稳定变动的话,则可用最近一次移动平均数作为下一个时期预测值。
此方法的特点是只能用于近期预测,即只能对于后续相邻的那一项预测,而且也仅适用于时间序列变化比较平稳的近期预测。
移动平均法是用一组最近的实际数据值来预测未来一期或几期内公司产品的需求量、公司产能等的一种常用方法。
移动平均法适用于即期预测。
当产品需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法能有效地消除预测中的随机波动,是非常有用的。
移动平均法根据预测时使用的各元素的权重不同移动平均法是一种简单平滑预测技术,它的基本思想是:根据时间序列资料、逐项推移,依次计算包含一定项数的序时平均值,以反映长期趋势的方法。
因此,当时间序列的数值由于受周期变动和随机波动的影响,起伏较大,不易显示出事件的发展趋势时,使用移动平均法可以消除这些因素的影响,显示出事件的发展方向与趋势(即趋势线),然后依趋势线分析预测序列的长期趋势。
holtwinters三参数指数平滑法参数选择

holtwinters三参数指数平滑法参数选择Holt-Winters三参数指数平滑法是一种用于预测时间序列数据的经典方法。
它使用三个参数(平滑系数α,季节性系数β和趋势系数γ)来将过去观察值的权重考虑进预测值中。
在应用Holt-Winters方法之前,我们需要选择适当的参数值。
本文将一步一步回答如何选择Holt-Winters三参数指数平滑法的参数。
第一步:确定季节长度首先,我们需要确定时间序列数据的季节长度。
季节长度代表相邻季节之间的时间间隔,例如对于按月的销售数据,季节长度为12个月,而对于按周的商品需求数据,季节长度为52周。
确定季节长度有两种方法。
一种是基于经验知识,根据数据的周期性和熟悉该领域的经验来选择。
另一种是使用自相关函数(ACF)分析。
ACF可以帮助我们检测出周期性模式,因此我们可以通过观察ACF图来确定季节长度。
第二步:初始化系数在选择Holt-Winters方法的三个参数之前,我们需要为它们选择初始值。
初始值可以根据经验或试验来选择。
平滑系数α是控制观察值对预测值的权重的参数。
经验表明,α通常取接近于1的值,表示较大的权重。
可以通过试验不同的α值并评估其对模型的预测能力来选择合适的初始α值。
季节性系数β是控制季节性部分对预测值的影响的参数。
根据经验,β通常取较小的值,例如0.1或0.2。
同样,我们可以通过试验不同的β值并评估其对模型的预测能力来选择合适的初始β值。
趋势系数γ是控制趋势部分对预测值的影响的参数。
选择合适的初始γ值也需要通过试验和评估来确定。
第三步:参数优化在选择初始参数后,我们需要优化Holt-Winters方法的参数。
优化的目标是找到使模型的预测误差最小化的参数。
有多种方法可以进行参数优化。
一种常用的优化方法是使用最小二乘法,通过最小化预测值与实际观察值之间的平方误差来选择最佳参数。
另一种常用的方法是使用均方根误差(RMSE)或平均绝对百分比误差(MAPE)来评估模型的预测准确度。
霍尔特指数平滑法wps

霍尔特指数平滑法wps
霍尔特指数平滑法(Holt's Exponential Smoothing)是一种时间序列预测方法,用于预测未来的趋势和季节性变化。
在霍尔特指数平滑法中,有两个重要的平滑参数,即平滑系数α和β。
其中,α用于平滑级数项,β用于平滑趋势项。
这两个参数的选择可以通过对历史数据进行拟合和优化来确定。
一般情况下,α和β的取值范围在 0 到 1 之间,较大的值表示更高的权重。
霍尔特指数平滑法的计算过程如下:
1. 初始化水平项(Level)和趋势项(Trend);
2. 对于每个时间点 t,根据当前观测值 Yt,计算水平项 Lt 和趋势项 Tt;
- 水平项的更新:Lt = α×Yt + (1 - α)×(Lt-1 + Tt-1)
- 趋势项的更新:Tt = β×(Lt - Lt-1) + (1 - β)×Tt-1
3. 根据当前的水平项和趋势项,预测未来的值。
在实际应用中,霍尔特指数平滑法通常用于对具有趋势和季节性变化的数据进行预测,如销售数据、股票价格等。
通过不断地迭代更新水平项和趋势项,该方法可以适应数据的变化,并提供较为准确的预测结果。
WPS(WPS Office)是一种办公软件套件,类似于 Microsoft
Office。
它包括文字处理、表格编辑、演示文稿等功能。
WPS Office可以在多个操作系统上运行,并提供与其他办公软件的兼容性。
在这种情况下,如果你提到的是"WPS"作为一个参数或特定的数据,可能需要提供更多的上下文信息,以便我可以更好地回答你的问题。
指数平滑法的公式

指数平滑法的公式指数平滑法是一种常用的时间序列预测方法,它通过对历史数据进行加权平均来预测未来的趋势。
该方法的公式如下:St = αYt + (1-α)St-1其中,St表示预测值,Yt表示实际值,α为平滑系数,取值范围为0到1之间。
当α越大时,历史数据的权重越大,预测值越趋近于历史数据的平均值;当α越小时,历史数据的权重越小,预测值越趋近于实际值。
指数平滑法的优点在于它能够对数据进行平滑处理,减少随机波动的影响,同时能够快速反应趋势的变化。
因此,它被广泛应用于股票市场、经济预测、销售预测等领域。
在实际应用中,指数平滑法有多种变体,其中最常用的是双重指数平滑法和三重指数平滑法。
双重指数平滑法是在指数平滑法的基础上,增加了一个趋势项,用于预测未来的趋势。
其公式如下:St = αYt + (1-α)(St-1 + Tt-1)Tt = β(St - St-1) + (1-β)Tt-1其中,Tt表示趋势项,β为趋势系数,取值范围也为0到1之间。
当β越大时,趋势项的权重越大,预测值越趋近于趋势的变化;当β越小时,趋势项的权重越小,预测值越趋近于历史数据的平均值。
三重指数平滑法是在双重指数平滑法的基础上,增加了一个季节项,用于预测未来的季节性变化。
其公式如下:St = α(Yt - St-m) + (1-α)(St-1 + Tt-1)Tt = β(St - St-1) + (1-β)Tt-1Ct = γ(Yt - St - Tt) + (1-γ)Ct-m其中,Ct表示季节项,γ为季节系数,m为季节长度。
季节长度是指数据中一个完整的季节所包含的时间段,例如一年中的四个季度。
总的来说,指数平滑法是一种简单而有效的时间序列预测方法,它能够快速反应趋势的变化,同时能够对数据进行平滑处理,减少随机波动的影响。
在实际应用中,我们可以根据具体情况选择不同的变体,以获得更加准确的预测结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中,IT类似一个季节性指数.该指数可由数列的本期 指标值XT 除以数列的本期单重平滑值ST算出,即XT与ST 的 比值.如果XT 大于ST ,这个比值大于1;如果XT小于ST ,这 个比值就小于1.对比理解这种方法和季节性指数I的作用
具有重要意义的是,要认识到ST 是一个数列的平滑值或平 均值, 其中不再含有季节性因素在内.但是数据值XT 却含 有季节性的因素。必须明白.XT 包含着数列中的一些随机 成分。为了修复这种随机成分,I的方程式用加权于新计
对参数估计值 aˆT、bˆT、CˆT 的指数平滑运算,需要初始指
数平滑值 aˆ0、bˆ0、C0 和L个 Cˆ 0K(K=1、2、3…L),如果
存在历史数据,我们可用不同的方法计算这些初始指数平
滑值。比较简单的方法是,用L个时期的时间序列数据,aˆ 0
取该时间序列的平均数,bˆ0 取该时序每期变化量的平均数
式中: at、bt、Ct 是模型的参数; Ct 是积性季节因子
定义符
积性季节模型同时考虑了线
性趋势和季节因素的影响.右图
描述了经济变量的这种变化过
程或行为
8
为了建立预测模型,定义 bˆT、CˆT 分别是模型中斜率和季 节因素在时间T的估计值,aˆT是以T为原点的常数项估计值
运用一次指数平滑公式时,每个时期对模型中的参数重
新估计.在时期T,当获得新的观测值XT后,下列指数平滑
公式用来计算新的参数估计值:
每个方程式能修匀一个与数 据样式的三种成分:随机性, 线性,季节性之一有关的参数
aˆT XT / CˆTL (1)(aˆT1 bˆT1) bˆT (aˆT aˆT1) (1 )bˆT1 CˆT X T / aˆT (1 )CˆT L
Cˆ T 是对季节指数的估计。利用前T-1期的数据对 CˆT 的
估计值是 CˆT L ,利用本期数据对 Cˆ T 所作的估计应是 X T / aˆT
因此,对季节指数的最终估计值 CˆT 应为 XT / aˆT
和
Cˆ T
的加
L
权平均。同样的道理,第一项 X T / aˆT 是为了从观测值中消
除长期趋势,其结果只包含季节变动和随机变动.对 X T / aˆT 和 CˆT进L 行加权平均,以消除随机干扰以反映季节变动 11
bˆ1 0.2(aˆ1 aˆ0) (1 0.2)bˆ0 0.2(40.61 39.25) 0.81 1.072
Cˆ1 0.1X1 / aˆ1 (1 0.1)Cˆ01 0.138/ 40.61 0.9 0.917 0.91149
同理: aˆ2 0.3 41/ 0.968 0.7(40.6 1.027) 41.884
分离趋势的趋势方程;其次找出季节变动对预测对
象的影响,即分离季节影响;最后将趋势方程与季
节影响因素合并,得到能够描述时间序列总体发展
规律的预测模型,并用于预测。
1
第一节 季节性水平滑法
即季节性一次性指数平滑法.一次指数平滑法适用于预 测变化比较平稳,没有明显季节变动和趋势变动的经济变 量(即水平型的经济变量)。但是许多经济变量既表现为 水平型变化又受季节波动的影响。若用此法预测这种受季 节因素影响的经济变量,就不能取得较好的预测效果。
bˆ2 0.2(41.88 40.61) 0.8 1.072 1.113
年度
Cˆ 2
季度
0.1 41 / 41.884 销售额 aˆT
0.9 0.919
bˆT
Cˆ T
0.969
2005
1
38 40.61 1.072 0.919
2 bCaˆˆ
41 41.88 1.112 0.969
3
49 43.21 1.156 1.122
Cˆ03 44/ 39.25 1.121
Cˆ 04
39/ 39.25
0.994 13
指数平滑过程从05年第一季度开始,取
0.3 0.2 0.1 则
aˆ1 0.3X1 / I01 (1 0.3)(aˆ0 bˆ0 ) 0.3 38/ 0.917 0.7(39.25 1) 40.61
7
第二节 季节性趋势平滑模型
这一节介绍的两个季节性平滑模型可用于预测呈线性趋 势变化并受季节因素影响的经济变量. 根据季节因素影响 经济变量的形式,我们假设两个季节性模型,一次指数平 滑法用来计算模型中的参数估计值。
一、积性季节模型型
积性季节模型模型形式为: X t (at btt)Ct t
在时期T对未来第r时期的预测为:
Xˆ Tr [aˆT bˆT r]CˆTLr 在没有趋势变化的情况下预测方程为 Xˆ Tr aˆT • CˆTLr9
对预测方程 aˆT XT / CˆTL (1)(aˆT1 bˆT1)
aˆT 是对趋势值的估计.第一项 X T / CˆTL 是为从XT中消
I03=44/39=1.128 I04=39/39=1.000 用预测方程 Xˆ T r S0 I0I
可以对05年月季度该商品的销售量预测:
Xˆ1 S0 I01 39 0.897 35 Xˆ 2 S0 I02 390.974 38
Xˆ 3 S0 I03 391.138 44 Xˆ 4 S0 I04 391.000 6 39
素影响的时间数列分解成两部份: 一份数据只反映时间数
列中水平过程的变化, 另以部分数据只反映时间序列的季
节性变化,然后分别对这两个分数据进行平滑处理,消除随
机因素的影响.当用一次指数平滑法计算出指数平滑ST 和 IT-L后,可以把它们结合起来进行预测.在时间T 作出的对 未来第r时期的预测是: Xˆ T r ST IT Lr (r L)
长期趋势。
10
对预测方程 bˆT (aˆT aˆT1) (1 )bˆT1
量是bˆ合T是理对的趋,势但增由量于的随估机计干。扰用因差素值的aˆ存T 在aˆT,1 还表应示该趋对势这的个增
差值进行平滑修正,修正方法是将这个差值与上量的趋势
增量
bˆT
进行加权平均,作为趋势增量的估计。
1
对预测方程 CˆT X T / aˆT (1 )CˆT L
2
的时间序列数据.
对于一次指数平滑公式
ST
XT I TL
(1 )ST 1
之所以用IT-L去除XT ,而没有用IT .是因为在计算平滑值ST
时, 还尚未知道时期T 的季节比率IT,也就是说,要在ST 计
算出来后,才能计算出IT .故这里只能用IT-L的值(以前相同
时期的值)来代替.
用季节调节因子IT-L 去除XT ,其目的是从XT 中消除季节 性波动.这种调节可用下列性质来说明:当T-L时期的值大
例题
某商场某种商品的销售资料为04、05年分别是 36、38、44、39、38、41、49、40万元.用04年 据计算初始指数平滑值:
aˆ0 (36 38 44 39) / 4 39.25
bˆ0 [(38 36) (44 38) (39 44)]/3 1
Cˆ01 36/ 39.25 0.917 Cˆ02 38/ 39.25 0.968
算出的季节性因子XT/ST,用(1-ß)加权于IT-L 。
4
据指数平滑法的基本原理, 反映季节波动的IT需要多个
初始指数平滑值. 例, 若季节波动的周期长度是四个季度,
则需要有第一至四季度的初使平滑值I0.1,I0·2,I 0·3 和I0·4,若季节波动的周期长度为12个月.则初使指数平滑
值应该是12个.虽然,季节性一次指数平滑法把受季节性因
于季节平均值时,IT-L大于1或100%.用大于1或100%的数 去除XT ,将得到小于原值XT的值.其减的百分数恰好等于 T-L 期间的值高于平均值的百分比.相反的调整发生在季
节调整因子小于1或100%的情况下。
3
为了建立预测模型和使用平滑式ST的平滑过程连续进行 需要用一次指数平滑法计算数据IT-L的值,因此我们用下
I1 0.2 36.5/ 39.5 0.8 0.897 0.902
据新的数据S1和I1,可以作出下列四个季度的预测:
Xˆ 2 S1 I 24 39.5 0.974 38.5 Xˆ 4 S1 I 44 39.5 1.000 39.5
Xˆ 3 S1 I34 39.51.128 44.6 Xˆ 5 S1 I 54 39.50.902 35.6
16
一、和性季节模型型
和性季节模型是:Xt at btt Ct t 式中符号如前
如果经济变量具有线性趋势变化和季节变化,而且季度
波动的幅度不依赖于变量变化过程的平均水平,那么该模
型适用于作这种经济变量的预测模型。
在时期T 参数估计值可以用下面指数平滑公式计算
aˆT (XT CˆTL ) (1 )(aˆT1 bˆT1)
解决这个问题的办法之一,是对时序数据进行处理:把季
节波动因素同变量的水平变化过程分开,使处理后的序列数
据只反应水平变化过程,然后用一次指数平滑法进行预测。
ST
XT I TL
(1 )ST 1
L是季节波动的周期长度(例如月数或季数);I 是季节调节因子,它
可以是季节比率,或季节指数,IT-L是只反应季节波动的数据. 如果用 IT-L去除对应时期的原时间序列数据, 其结果就是只反应水平化过程
此式是季节性一次指数平滑法的预测方程
5
例如:已知某商品销售量受季节因素影响,并且该商品 只有05年的季度销售量数据,分别为35,38,44和39万件
用年平均销售量作为初使平滑值S0: S0=(35+38+44+39)/4+39.
用各季度的季节性比率作为初使平滑值I0t即: I01=35/39=0.897 I02=38/39=0.974,
4