第四章 季节性指数平滑法
季节性指数平滑法在城市用水量预测中的应用研究

=a 1 S +( ) J 1一 ( 2一 s 1+
B = y S 一J 1 1 ( 1 s )+( l 1一y B 1 )1 B = y J 一 一)+( 2 (2 1 S 1一y B ) 2一 1 C A = , t+( ) 川 1一 C
随季节性影 响较 大的北方地 区水量 预测 。
() I 4分男 肼算前两个 期内 周 每一时 季节因 期的 子
第 一 个 周期 内每 一 个 时 期 的 季 节 因 子 为 .
。
1 季节性指数平滑法的基本原理
季节 性指数 平滑法 是把 量测 到的 时间序列 值分 成 三部分 : 水平 因素 、 势 因素 、 趋 周期 因素 , 分别 对其
理成 本 。而准确进 行用 水量 预测则是 该 系统必 须解
:
÷ +++ =塞 , ( … ÷ z )
z + .… . z 。
=
决 的重要课 题 。
常用的用水量预测方法有两大类 : 解释性预测和
时 间序列分 析预测 。采用 的模 型 主要 有 : 回归模 型、 线性移动平 均模 型 、 自适应 指 数平 滑模 型 、 节性 指 季 数平滑模 型、 移动平衡 回归模 型 、 色预测模 型 、 灰 神经
t 一1
∑c = c ? ÷
式 中:= +1z 2 z 3 …,lz C + +… t z ,+ ,+ , 2 ; = 工l c 2
2 1
+( ) J_ +B _) 1一 ( f sl f 1 1 )
+ =∑ c 。 c ”
() 第 三 周期 内每 一 时期 进行 初 步 预测 : 7对
用水量预测 平滑常数
指数平滑法优秀课件

(2)计算措施 线性二次移动平均法旳通式为:
St
xt
xt 1
xt 2 N
...
xtN 1
St
St St1
St2 N
...
StN 1
(5.1) (5.2)
at 2St St
bt
N
2
1
St
St
(5.3) (5.4)
Ftm at bt m
m为预测超前期数 回总目录 回本章目录
回总目录 回本章目录
设时间序列为 x1, x2 ,..., 移动平均法能够表达为:
1 t
Ft1
xt xt1 ... xtN 1
/
N
N
xi
t N 1
式中: xt 为最新观察值;
Ft 1为下一期预测值;
由移动平均法计算公式能够看出,每
一新预测值是对前一移动平均预测值旳修
正,N越大平滑效果愈好。
(1)移动平均法有两种极端情况 • 在移动平均值旳计算中涉及旳过去观察值 旳实际个数N=1,这时利用最新旳观察值 作为下一期旳预测值; • N=n,这时利用全部n个观察值旳算术平 均值作为预测值。
回总目录 回本章目录
当数据旳随机原因较大时,宜选用较大 旳N,这么有利于较大程度地平滑由随机用较小旳N,这有利于跟踪 数据旳变化,而且预测值滞后旳期数也少。
回总目录 回本章目录
一次指数平滑法旳初值旳拟定有几种方法:
➢ 取第一期旳实际值为初值; ➢ 取最初几期旳平均值为初值。
一次指数平滑法比较简朴,但也有问题。
问题之一便是力图找到最佳旳α值,以使均
方差最小,这需要经过反复试验拟定。
回总目录 回本章目录
第四章---季节性指数平滑法

式中,IT类似一个季节性指数.该指数可由数列的本期 指标值XT 除以数列的本期单重平滑值ST算出,即XT与ST 的 比值.如果XT 大于ST ,这个比值大于1;如果XT小于ST ,这 个比值就小于1.对比理解这种方法和季节性指数I的作用
具有重要意义的是,要认识到ST 是一个数列的平滑值或平 均值, 其中不再含有季节性因素在内.但是数据值XT 却含 有季节性的因素。必须明白.XT 包含着数列中的一些随机 成分。为了修复这种随机成分,I的方程式用加权于新计
对参数估计值 aˆT、bˆT、CˆT 的指数平滑运算,需要初始指
数平滑值 aˆ0、bˆ0、C0 和L个 Cˆ 0K(K=1、2、3…L),如果
存在历史数据,我们可用不同的方法计算这些初始指数平
滑值。比较简单的方法是,用L个时期的时间序列数据,aˆ 0
取该时间序列的平均数,bˆ0 取该时序每期变化量的平均数
式中: at、bt、Ct 是模型的参数; Ct 是积性季节因子
定义符
积性季节模型同时考虑了线
性趋势和季节因素的影响.右图
描述了经济变量的这种变化过
程或行为
8
为了建立预测模型,定义 bˆT、CˆT 分别是模型中斜率和季 节因素在时间T的估计值,aˆT是以T为原点的常数项估计值
运用一次指数平滑公式时,每个时期对模型中的参数重
新估计.在时期T,当获得新的观测值XT后,下列指数平滑
公式用来计算新的参数估计值:
每个方程式能修匀一个与数 据样式的三种成分:随机性, 线性,季节性之一有关的参数
aˆT XT / CˆTL (1)(aˆT1 bˆT1) bˆT (aˆT aˆT1) (1 )bˆT1 CˆT X T / aˆT (1 )CˆT L
经济时间序列的季节调整、分解和平滑方法

在奇异点t0的外部冲击变量:
2.2 经济时间序列的季节调整方法
2.2.1 X-11季节调整方法
1954年美国商务部国势普查局(Bureau of Census,Department of Commerce)在美国全国经济研究局(NBER)战前研究的 移动平均比法(The Ratio-Moving Average Method)的基础上, 开发了关于季节调整的最初的电子计算机程序,开始大规模地 对经济时间序列进行季节调整。此后,季节调整方法不断改进, 每次改进都以X再加上序号表示。1960年,发表了X-3方法, X-3方法和以前的程序相比,特异项的代替方法和季节要素的 计算方法略有不同。1961年,国势普查局又发表了X-10方法。 X-10方法考虑到了根据不规则变动和季节变动的相对大小来 选择计算季节要素的移动平均项数。1965年10月发表了X-11方 法,这一方法历经几次演变,已成为一种相当精细、典型的季 节调整方法
建立ARIMA(p, d, q)模型,需要确定模型的参数,包括单 整阶数d;自回归模型(AR)的延迟阶数p;动平均模型(MA)的 延迟阶数q。也可以在模型中指定一些外生回归因子,建立 ARIMAX模型。对于时间序列中的一些确定性的影响(如节 假日和贸易日影响),应在季节调整之前去掉。
5.外部影响调整
4991.50
单位:亿元
3871.49
2751.49
1631.48
511.47 1981 1983 1985 1987 1989 1991 1993 1995 1997
4204.20 单位:亿元
3304.66
2405.12
1505.59
606.05 1981 1983 1985 1987 1989 1991 1993 1995 1997
指数平滑法——精选推荐

指数平滑法时间序列分解⼤量时间序列的观测样本表现出趋势性、季节性和随机性,或者三者中的其⼀或其⼆。
于是,我们认为每个时间序列,都可以分为三个部分的叠加其中,T是趋势项,S是季节项,R是随机项。
上述公式表现了趋势项和季节项是累加的,实际应⽤场景中,趋势项和季节项可能是累乘的,时间序列可以分解为如下公式实际应⽤中,随机项R的期望为0,没有规律,并且绝对值不⼤。
所以在应⽤场景中我们往往省略掉R,R称作噪声。
预测公式如下或⼀次指数平滑法线性回归算法中,每个经验点的权重是⼀致的,即很早以前的经验数据也可能对预测数据有较⼤的影响。
很多实际场景中,未来⼀段时间的趋势可能和在最近⼀段时间的趋势关系更加紧密。
⽐如⼩明去年数学考试成绩⼀直不及格,今年连续多次考试90多分,预测⼩明下⼀次数学考试的成绩,情理上90多分的可能性更⾼。
采⽤传统的线性回归算法,预测结果可能是70多分。
指数平滑法认为越⽼的经验数据对趋势的影响越⼩。
我们假定时间t的观测值为y(t),时间t的预测值为S(t),则时间t+1的预测值S(t+1)为a的取值范围(0, 1),a越⼤,最近时间点的观测值对预测值的影响越⼤。
假设我们有t个经验数据,根据上述⼀次指数平滑公式,预测值S(t + n) = S(t + 1),预测值不具备趋势。
⼆次指数平滑我们对⼀次指数平滑值再进⾏指数平滑,可以获得趋势。
⼆次指数平滑法的预测模型为:式中:分别为时间t和时间t - 1的⼆次指数平滑值。
三次指数平滑⼆次指数模型是线性的,对于⾮线性趋势预测我们可以使⽤三次指数平滑法。
公式如下Holt-Winters算法对于具有周期性的趋势预测,我们可以使⽤Holt-Winters算法。
累乘性Holt-Winters公式如下其中,alpha,beta,gamma取值范围为(0, 1),分别表⽰全局因⼦,趋势因⼦,周期性因⼦中最近时间点数据对预测数据的影响程度。
y为经验数据,L为周期。
表⽰使⽤t时间点的估计值预测t+m时间点的值。
时序预测中的时间序列平稳性转换方法分享(四)

在时序预测中,时间序列数据的平稳性是一个非常重要的概念。
平稳性是指数据在时间上的统计性质不会随着时间的推移而改变。
对于非平稳时间序列,我们需要对其进行转换,使其变得平稳,从而更容易进行预测和分析。
在本文中,我们将分享几种常见的时间序列平稳性转换方法,希望对读者有所帮助。
差分法是最常见的时间序列平稳性转换方法之一。
差分法的原理是通过计算相邻时间点上的差值来消除趋势和季节性。
具体来说,对于一个非平稳的时间序列Yt,我们可以使用一阶差分来转换为平稳序列:Yt' = Yt - Yt-1。
如果序列还未平稳,我们可以继续进行二阶或更高阶的差分,直到得到平稳序列为止。
差分法的优点是简单易行,但需要注意的是,差分次数过多可能会导致失去原始序列的信息。
另一个常见的时间序列平稳性转换方法是对数变换。
在某些情况下,时间序列数据的方差随着时间的推移而变化,这会导致非平稳性。
对数变换可以有效地减小数据的方差,从而达到平稳序列的目的。
具体来说,对于一个非平稳的时间序列Yt,我们可以使用对数变换来得到平稳序列:Yt' = log(Yt)。
对数变换的优点是简单易行,并且可以减小数据的波动性,但需要注意的是,对数变换可能会导致数据的信息损失。
另一种常见的时间序列平稳性转换方法是季节性调整。
在某些时间序列数据中,存在由于季节变化引起的非平稳性。
例如,销售数据可能在某些季节性上有周期性的波动。
为了消除这种季节性的影响,我们可以使用季节性调整方法,例如季节性差分或季节性指数平滑法。
季节性差分是指对时间序列数据进行季节性差分,从而消除季节性的影响。
季节性指数平滑法是指对时间序列数据进行季节性平滑处理,从而得到平稳序列。
季节性调整的优点是可以更好地捕捉季节性的影响,但需要注意的是,季节性调整可能会导致数据的失真。
最后,还有一种常见的时间序列平稳性转换方法是趋势消除。
在某些时间序列数据中,存在由于长期趋势引起的非平稳性。
为了消除这种趋势的影响,我们可以使用趋势消除方法,例如趋势差分或趋势指数平滑法。
指数平滑法计算公式

指数平滑法计算公式
(最新版)
目录
1.指数平滑法的概念
2.指数平滑法计算公式的推导
3.指数平滑法计算公式的应用
4.指数平滑法的优缺点
正文
1.指数平滑法的概念
指数平滑法(Exponential Smoothing)是一种时间序列预测方法,
主要用于处理具有线性趋势和季节性效应的时间序列数据。
它通过计算历史数据的加权平均值来预测未来趋势,权重随着时间的推移而呈指数递减。
2.指数平滑法计算公式的推导
设 N 表示观测期的数量,t 表示当前时间,T 表示观测期长度,y_t 表示第 t 期的观测值,y_t-1, y_t-2,..., y_1 表示前 t-1 期的观测值。
指数平滑法的预测公式为:
F_t = α * y_t + (1 - α) * ∑[β_j * y_(t-j)]
其中,F_t 表示第 t 期的预测值,α表示平滑系数,β_j 表示季节性权重,j 表示季节长度。
3.指数平滑法计算公式的应用
指数平滑法适用于处理具有线性趋势和季节性效应的时间序列数据。
在实际应用中,首先需要确定时间序列的线性趋势和季节性效应,然后根据观测期的数量、观测期长度、季节长度等参数计算平滑系数和季节性权重,最后代入公式进行预测。
4.指数平滑法的优缺点
优点:
- 适用于处理具有线性趋势和季节性效应的时间序列数据;- 计算简便,易于实现;
- 能较好地处理数据中的长期趋势和季节性变化。
第4章 移动平均法和指数平滑法(2)

4.3 指数平滑法
一次指数平滑公式的展开如下 :
ˆ ˆ aY 1a Y Y t 1 t t ˆ 1 aYt 1a aY a Y t 1 t1 ˆ aYt a1a Yt1 1a Y t 1
2
aYt a1a Yt1 a1a Yt2 a1a Yt3
例4-4:音像店每周的出租量y
740 660 0 680 y 700 720
5 t
10
15
如果依然使用一次移动平均法进行预测,会产生什 么后果?
4.2 平均值预测法
所谓二次移动平均,就是将一次移动平均序列再进行 一次移动平均。二次移动平均值的计算公式为:
M t M t 1 M t k 1 M k
Y12 Y11 Y10 ˆ ˆ 15.3(万元) Y2003.1 Y13 3
4.2 平均值预测法
一次移动平均法的应用:P101例4.3 采用5期移动平均的方法进行预测 预测方法选择是否合适?预测的效果如何?
4.2 平均值预测法
可对预测误差(残差)进行自相关检验: • 例4.3残差的自相关系数检验图
(2)趋势估算值:
Tt Lt Lt 1 1 Tt 1
(3)未来p期的预测值:
ˆ L pT Y t p t t
表示水平的平滑系数, 表示趋势估算值的平滑系数
4.3 指数平滑法
有关霍特法平滑系数和初始值的说明:
两个平滑系数 与 ,既可以通过主观选择,也可以通过软件 最小化预测误差自动选择 初始值的设定有两种方法: • 方法一:水平的初始值L0=Y1,T0=0 • 方法二:将前几期的观测值作为因变量,时间t作为自变量进 行回归,回归结果中常数项的估计值作为L0,斜率系数作为 趋势的初始值T0 (Stata默认前一半的观测值作为回归的样本 量)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Cˆ1 0.1X1 / aˆ1 (1 0.1)Cˆ01 0.138/ 40.61 0.9 0.917 0.91149
同理: aˆ2 0.3 41/ 0.968 0.7(40.6 1.027) 41.884
Cˆ T 是对季节指数的估计。利用前T-1期的数据对 CˆT 的
估计值是 CˆT L ,利用本期数据对 Cˆ T 所作的估计应是 X T / aˆT
因此,对季节指数的最终估计值 CˆT 应为 XT / aˆT
和
Cˆ T
的加
L
权平均。同样的道理,第一项 X T / aˆT 是为了从观测值中消
除长期趋势,其结果只包含季节变动和随机变动.对 X T / aˆT 和 CˆT进L 行加权平均,以消除随机干扰以反映季节变动 11
运用一次指数平滑公式时,每个时期对模型中的参数重
新估计.在时期T,当获得新的观测值XT后,下列指数平滑
公式用来计算新的参数估计值:
每个方程式能修匀一个与数 据样式的三种成分:随机性, 线性,季节性之一有关的参数
aˆT XT / CˆTL (1)(aˆT1 bˆT1) bˆT (aˆT aˆT1) (1 )bˆT1 CˆT X T / aˆT (1 )CˆT L
式中: at、bt、Ct 是模型的参数; Ct 是积性季节因子
定义符号L为季节波动的周期长度,则
L
Ct L
t 1
积性季节模型同时考虑了线
性趋势和季节因素的影响.右图
描述了经济变量的这种变化过
程或行为
8
为了建立预测模型,定义 bˆT、CˆT 分别是模型中斜率和季 节因素在时间T的估计值,aˆT是以T为原点的常数项估计值
在时期T对未来第r时期的预测为:
Xˆ Tr [aˆT bˆT r]CˆTLr 在没有趋势变化的情况下预测方程为 Xˆ Tr aˆT • CˆTLr9
对预测方程 aˆT XT / CˆTL (1)(aˆT1 bˆT1)
aˆT 是对趋势值的估计.第一项 X T / CˆTL 是为从XT中消
除季节变动的影响,保留一个只含有长期趋势和随机变动 的样式。理论上,应该用 X T / CˆT 但此时当期的 CˆT 尚未估计 来,故只能用上一个周期的来替代。按照一次指数平滑的
原理,1 只要与 aˆT1 相乘即可,但对于具有趋势变化的时
间序列而言,这样处理会产生滞后偏差,因此给 aˆT 1 加上 一个趋势增量 bˆT 1 就可以克服滞后偏差,然后对 X T / CˆT 和 aˆT 1 bT 1 进行加权平均,以消除随机干扰,用以反映
4
40 43.13 0.909 0.987
用预测模型进行预测2006年的结果:
Xˆ T1 Xˆ 5 (43.13 0.909) 0.919 40.47
XˆT2 Xˆ 6 (43.13 20.909)0.969 43.55 XˆT3 Xˆ 7 (43.13 30.909)1.122 51.45
I1 0.2 36.5/ 39.5 0.8 0.897 0.902
据新的数据S1和I1,可以作出下列四个季度的预测:
Xˆ 2 S1 I 24 39.5 0.974 38.5 Xˆ 4 S1 I 44 39.5 1.000 39.5
Xˆ 3 S1 I34 39.51.128 44.6 Xˆ 5 S1 I 54 39.50.902 35.6
此式是季节性一次指数平滑法的预测方程
5
例如:已知某商品销售量受季节因素影响,并且该商品 只有05年的季度销售量数据,分别为35,38,44和39万件
用年平均销售量作为初使平滑值S0: S0=(35+38+44+39)/4+39.
用各季度的季节性比率作为初使平滑值I0t即: I01=35/39=0.897 I02=38/39=0.974,
2
的时间序列数据.
对于一次指数平滑公式
ST
XT I TL
(1 )ST 1
之所以用IT-L去除XT ,而没有用IT .是因为在计算平滑值ST
时, 还尚未知道时期T 的季节比率IT,也就是说,要在ST 计
算出来后,才能计算出IT .故这里只能用IT-L的值(以前相同
时期的值)来代替.
用季节调节因子IT-L 去除XT ,其目的是从XT 中消除季节 性波动.这种调节可用下列性质来说明:当T-L时期的值大
Xˆ T4 Xˆ 8 (43.13 4 0.909) 0.987 4615.16
已知某企业2007至2009年销售资料分别为30、 18、21、27、36、24、23、32、45、29、32万元, 试预测未来4个季度的销售额。若获得2009年第四季 度的实际销售资料为40 万元,试预测未来4个 季度的销售额。取第一年的资料计算初始值,三个参 数分别为0.2、0.1、0.1
Cˆ03 44/ 39.25 1.121
Cˆ 04
39/ 39.25
0.994 13
指数平滑过程从05年第一季度开始,取
0.3 0.2 0.1 则
aˆ1 0.3X1 / I01 (1 0.3)(aˆ0 bˆ0 ) 0.3 38/ 0.917 0.7(39.25 1) 40.61
对参数估计值 aˆT、bˆT、CˆT 的指数平滑运算,需要初始指
数平滑值 aˆ0、bˆ0、C0 和L个 Cˆ 0K(K=1、2、3…L),如果
存在历史数据,我们可用不同的方法计算这些初始指数平
滑值。比较简单的方法是,用L个时期的时间序列数据,aˆ 0
取该时间序列的平均数,bˆ0 取该时序每期变化量的平均数
列公式: IT X T / ST (1 )IT L
式中,IT类似一个季节性指数.该指数可由数列的本期 指标值XT 除以数列的本期单重平滑值ST算出,即XT与ST 的 比值.如果XT 大于ST ,这个比值大于1;如果XT小于ST ,这 个比值就小于1.对比理解这种方法和季节性指数I的作用
具有重要意义的是,要认识到ST 是一个数列的平滑值或平 均值, 其中不再含有季节性因素在内.但是数据值XT 却含 有季节性的因素。必须明白.XT 包含着数列中的一些随机 成分。为了修复这种随机成分,I的方程式用加权于新计
Cˆ0K 可以用季节比率代替。
例如,有时序的季节数据X1,X2,X3,X4,则:
aˆ0 (X1 X 2 X 3 X 4 ) / 4 X
bˆ0 [(X2 X1) (X3 X2 ) (X4 X3)]/ 3
Cˆ01 X1 / X,C02 X2 / X,C03 X3 / X,C04 X4 / X 12
分离趋势的趋势方程;其次找出季节变动对预测对
象的影响,即分离季节影响;最后将趋势方程与季
节影响因素合并,得到能够描述时间序列总体发展
规律的预测模型,并用于预测。
1
第一节 季节性水平滑法
即季节性一次性指数平滑法.一次指数平滑法适用于预 测变化比较平稳,没有明显季节变动和趋势变动的经济变 量(即水平型的经济变量)。但是许多经济变量既表现为 水平型变化又受季节波动的影响。若用此法预测这种受季 节因素影响的经济变量,就不能取得较好的预测效果。
于季节平均值时,IT-L大于1或100%.用大于1或100%的数 去除XT ,将得到小于原值XT的值.其减的百分数恰好等于 T-L 期间的值高于平均值的百分比.相反的调整发生在季
节调整因子小于1或100%的情况下。
3
为了建立预测模型和使用平滑式ST的平滑过程连续进行 需要用一次指数平滑法计算数据IT-L的值,因此我们用下
7
第二节 季节性趋势平滑模型
这一节介绍的两个季节性平滑模型可用于预测呈线性趋 势变化并受季节因素影响的经济变量. 根据季节因素影响 经济变量的形式,我们假设两个季节性模型,一次指数平 滑法用来计算模型中的参数估计值。
一、积性季节模型型
积性季节模型模型形式为: X t (at btt)Ct t
例题
某商场某种商品的销售资料为04、05年分别是 36、38、44、39、38、41、49、40万元.用04年 据计算初始指数平滑值:
aˆ0 (36 38 44 39) / 4 39.25
bˆ0 [(38 36) (44 38) (39 44)]/3 1
Cˆ01 36/ 39.25 0.917 Cˆ02 38/ 39.25 0.968
解决这个问题的办法之一,是对时序数据进行处理:把季
节波动因素同变量的水平变化过程分开,使处理后的序列数
据只反应水平变化过程,然后用一次指数平滑法进行预测。
ST
XT I TL
(1 )ST 1
L是季节波动的周期长度(例如月数或季数);I 是季节调节因子,它
可以是季节比率,或季节指数,IT-L是只反应季节波动的数据. 如果用 IT-L去除对应时期的原时间序列数据, 其结果就是只反应水平化过程
第四章 时季节性指数平滑法法
含有季节变动的时序,用数学方法拟合其演变规
律并进行预测是相当复杂的. 但, 如果我们能够设法
从时序中分离出长期趋势, 并找出季节变动的规律,
将二者结合起来预测.就可以使问题得到简化, 也能
够达到预测精度的要求。
基于这种设想,季节变动预测法方的基本思路是
首先找到描述整个时序总体发展趋势的数学模型即
当得到06年一季度销售量的实际数据X1为36.5万件时,设 0.3 由 ST XT / STL (1)ST1 ,可计算出新的指数平滑值S1
S1 0.336.5/ 0.897 / ST (1 )ITL
可计算出06年第一季度的季节性比率I1:
长期趋势。
10
对预测方程 bˆT (aˆT aˆT1) (1 )bˆT1
量是bˆ合T是理对的趋,势但增由量于的随估机计干。扰用因差素值的aˆ存T 在aˆT,1 还表应示该趋对势这的个增