统计预测与决策-第五章-时间序列平滑法-
时间序列平滑预测法原理

时间序列平滑预测法原理时间序列平滑预测法是一种常用的预测方法,用于分析和预测时间序列中的趋势和季节性变化。
它基于时间序列中的历史数据,通过对数据进行平滑处理,来推断未来的趋势和变化。
时间序列平滑预测法的基本原理是利用历史数据中的趋势和季节性变化规律,对未来的数据进行预测。
其核心思想是将时间序列中的噪声和随机波动平滑掉,使得数据的变化趋势更加明显和稳定。
在时间序列平滑预测法中,常用的方法包括移动平均法和指数平滑法。
移动平均法是一种简单的平滑方法,它通过计算时间序列中一段时间内的均值来平滑数据。
移动平均法可以平滑掉数据的随机波动,使得数据的趋势更加明显。
移动平均法的核心思想是将多个时间点的数据进行平均,然后将平均值作为预测值。
移动平均法的窗口大小可以根据实际情况来确定,一般选择较小的窗口可以更敏感地反映数据的变化趋势。
指数平滑法是一种基于指数加权的平滑方法,它通过对历史数据进行加权平均来预测未来的数据。
指数平滑法的核心思想是对历史数据进行加权处理,使得近期的数据具有更高的权重。
指数平滑法的优势在于对于不同时间点的数据赋予不同的权重,可以更好地反映数据的变化趋势。
指数平滑法通常需要选择一个平滑系数,该系数决定了近期数据的权重大小,一般情况下,较大的平滑系数可以更快地反应数据的变化趋势。
除了移动平均法和指数平滑法,还有其他一些时间序列平滑预测方法,如加权移动平均法、自适应平滑法等。
这些方法都是基于时间序列平滑的原理,通过对历史数据进行加权平均或其他平滑处理,来预测未来数据的变化趋势。
时间序列平滑预测法在实际应用中有广泛的应用。
它可以用于经济领域的市场预测、销售预测等,也可以用于气象领域的天气预测、水文预测等。
时间序列平滑预测法可以帮助我们更好地理解和预测数据的变化趋势,为决策提供参考和依据。
总结起来,时间序列平滑预测法是一种基于历史数据的预测方法,通过对数据进行平滑处理,来推断未来的趋势和变化。
它可以通过移动平均法、指数平滑法等方法来实现。
统计预测与决策

统计预测与决策问题: 敏感性分析及其步骤敏感性分析:在决策过程中,分析概率值变化对最优方案选择所产生的影响大小和方向,以及概率变化引起方案变化的临界点。
敏感性分析的步骤:(1)????? 求出在保持最优方案稳定的前提下,自然状态概率所容许的变动范围;(2)????? 衡量用于预测和估算这些自然状态概率的方法,其精度是否能保证所得概率值在此允许的误差范围内变动;(3)????? 判断所做决策的可靠性;问题: 厂长(经理)评判意见法的优缺点优点:(1)预测迅速、及时和经济;(2)可发挥机体的智慧,使预测结果比较准确可靠;(3)无需大量的统计资料更适用于对不可控因素较多的产品进行预测;?(4)如果市场情况发生变化,可立即进行修正;缺点:(1)预测结果易受到主观因素影响;(2)预测结果一般化;问题: 经济时间序列的变化影响有长期趋势因素、季节变动因素、周期变动因素、不规则变动因素等。
问题: 一元线性回归模型进行检验的指标主要有标准误差、相关系数、可决系数???。
问题: 损益矩阵组一般由三部分组成:?可行方案;?自然状态及其发生的概率;?各种行动方案的可能结果。
把以上三部分内容在一个表上表现出来,该表就称为损益矩阵表。
问题: 统计决策的原则应当遵循以下基本原则:(1)可靠性原则决策必须建立在大量的准确、及时和完整的信息资料基础上。
(2)可行性原则拟定行动方案时,必须从实际出发认真进行可行性分析。
(3)效益最佳原则即通过各方案的分析比较,所选定的行动方案应具有较明显的经济性。
(4)合理性原则决策的直接目的是选出合理的方案。
上面介绍的只是统计决策的基本原则,除此之外,还有民主性原则、开拓性原则等。
问题: 统计决策具备的条件?必须具备四个基本条件:(1)决策目标必须明确;(2)存在两个以上的行动方案;(3)每个行动方案的效果必须是可以计算的;(4)能够预测出影响决策目标的但决策者无法控制的各种情况以及它们发生的概率。
时间序列平滑预测法

时间序列平滑预测法时间序列平滑预测法是一种常用的预测模型,通过对历史数据进行平滑处理,找出数据中的趋势和周期性变化,并基于这些特征进行未来值的预测。
时间序列平滑预测法适用于各种领域的预测问题,如销售量、股票价格、气温等。
其中,最常见的时间序列平滑预测法包括移动平均法和指数平滑法。
移动平均法是一种基于数据的滚动平均值进行预测的方法。
它通过将数据序列中的每个值与其前一段时间内的几个值进行平均,来得到一个平滑的预测值。
这种方法适用于数据变化比较平稳的情况,能够较好地捕捉到数据的趋势。
指数平滑法是一种基于加权平均进行预测的方法。
它通过对数据序列中的每个值加权,更加重视较近期的值,来得到一个平滑的预测值。
这种方法适用于数据变化比较有规律的情况,能够较好地捕捉到数据的周期性变化。
在进行时间序列平滑预测时,我们首先需要对历史数据进行平滑处理,以消除可能存在的噪声和异常值。
然后,根据数据的趋势和周期性变化,选择合适的平滑方法进行预测。
最后,通过比较预测结果和实际值,评估模型的准确性,并对模型进行调整和优化。
时间序列平滑预测法具有较好的稳定性和可解释性,能够较好地预测未来值。
但是,它也存在一些限制,如对数据的假设性要求较高,对异常值的敏感性较大等。
因此,在实际应用中,我们需要根据具体问题选择合适的模型,并结合其他方法进行预测。
总之,时间序列平滑预测法是一种常用的预测模型,通过对历史数据进行平滑处理,能够较好地预测未来值。
它具有较好的稳定性和可解释性,并在各个领域得到广泛应用。
通过不断改进和优化,时间序列平滑预测法有望在未来的预测中发挥更大的作用。
时间序列平滑预测法是一种常用的预测模型,它通过对历史数据进行平滑处理来预测未来值。
在实际应用中,时间序列平滑预测法可以帮助企业和个人做出更准确的决策,并规划未来的发展方向。
一种常见的时间序列平滑预测方法是移动平均法。
移动平均法通过计算一定时间段内数据的平均值来平滑数据。
这种方法可以消除短期内的噪声和波动,从而更好地揭示出数据的趋势和长期变化。
时间序列平滑预测法概述

时间序列平滑预测法概述时间序列平滑预测方法有很多种,常见的方法包括移动平均法、指数平滑法和季节分解法等。
不同的方法适用于不同的时间序列数据,根据数据的特点选择合适的方法可以提高预测的准确性。
移动平均法是最简单的一种平滑预测方法,它通过计算一定时间窗口内的数据平均值来平滑数据。
移动平均法的优点是计算简单,适用于较为稳定的时间序列数据。
然而,移动平均法的缺点是对数据的滞后性响应较慢,无法有效地适应数据的变动。
指数平滑法是一种适用于非常态时间序列的平滑预测方法。
指数平滑法通过对数据加权平均,每一个数据点的权重是前一个数据点权重的乘积,权重随时间变化指数递减。
指数平滑法的优点是对数据变动能够更快做出响应,适用于较为波动的时间序列。
然而,指数平滑法的缺点是对于季节性变动较为敏感,容易受到突发事件的影响。
季节分解法是一种用于处理季节性时间序列的平滑预测方法。
季节分解法将时间序列数据分解为趋势、季节和残差三个部分,分别进行分析和预测。
季节分解法的优点是能够更好地提取数据的季节性规律,对于季节性较为显著的数据预测效果较好。
然而,季节分解法的缺点是对于季节性不明显的数据预测效果较差。
除了上述方法之外,时间序列平滑预测还可以结合其他方法,如回归分析、神经网络等,以进一步提高预测的准确性。
回归分析可以运用于时间序列中的趋势分析,通过建立趋势线的方程进行预测。
神经网络模型则可以通过学习历史数据的模式进行预测,适用于复杂的时间序列预测问题。
总之,时间序列平滑预测是一种重要的数据分析和预测方法,可以帮助企业和个人更好地了解和预测数据的趋势性和季节性。
选择合适的平滑预测方法对于提高预测准确性至关重要,同时结合其他方法可以进一步提高预测的能力。
在时间序列平滑预测中,移动平均法是一种最简单、直观的方法。
它通过计算一定时间窗口内的数据平均值来平滑数据,窗口的大小越大,平滑效果越明显。
移动平均法的优点是计算简单,适用于较为稳定的时间序列数据。
统计决策与预测教学大纲

《统计预测与决策》课程教学大纲课程代码:090542040课程英文名称:Statistical Forecasting and Decision Making课程总学时:48讲课:48实验:0上机:0适用专业:应用统计学大纲编写(修订)时间:2017.6一、大纲使用说明(一)课程的地位及教学目标本课程是应用统计学专业的一门专业课,通过本课程的学习,可以使学生掌握统计学预测及决策的求解原理和方法技巧;通过原理介绍、算法讲解、案例分析等,使学生建立起利用统计学的基本方法进行预测及决策的能力;使学生初步掌握将实际问题抽象成统计模型并进行模拟、决策方案和预测结果的方法,提高学生解决实际问题的能力;通过运用统计学软件^NPSS、SAS 等)"使学生具备能用计算机软件对各类预测方法及决策模型进行求解和对求解结果进行简单分析的能力。
(二)知识、能力及技能方面的基本要求1.基本知识:要求学生掌握预测及决策思想及课程中各基本模型的基本概念及基本原理;定性预测、回归预测及灰色预测等基本模型的功能特点以及不确定性决策、多目标决策的求解方法。
2.基本能力:培养学生逻辑推理能力和抽象思维能力;根据实际问题抽象出适当的决策模型的能力;运用预测与决策思想和方法分析、解决实际问题的能力和创新思维与应用能力。
3.基本技能:使学生获得预测与决策的基本运算技能;运用计算机软件求解基本模型和分析结果的技能。
(三)实施说明1.本大纲主要依据应用统计学专业2017版教学计划、应用统计学专业建设和特色发展规划和沈阳理工大学编写本科教学大纲的有关规定及全国通用《统计预测与决策教学大纲》并根据我校实际情况进行编写的;2.教师在授课过程中可以根据实际情况酌情安排各部分的学时,课时分配表仅供参考;3.教师在授课过程中对内容不相关的部分可以自行安排讲授顺序;4.本课程建议采用课堂讲授、讨论、多媒体教学和实际问题的分析解决相结合的多种手段开展教学。
第五讲 时间序列平滑预测法 ppt课件

3个月移动平均预测值
— — — 405 412 469 467 461 452 469 456 430 419
5个月移动平均预测值
— — — — — 437 439 452 466 473 444 444 448 12
解:分别取N=3和N=5,按预测公式:
yˆt1
yt
yt 1 3
yt2
yˆt1
yt
这个预测值偏低,可以修正。其方法是:先计
算各年预测值与实际值的相对误差,例如1982
年为: 6.66 6.24 6.31%
2020/3/29
6.66
20
将相对误差列于上表中,再计算总的平均相对 误差:
1
yˆ t yt
100%
1
52.89 58.44
100%
9.50%
由于总预测值的平均值比实际值低9.50%,所 以可将1989年的预测值修正为 :
yt yˆt
—
—
n=5
yˆ t
yt yˆt
—
—
11.1
—
—
—
—
10.4
10.83
0.43
—
—
11.2
10.77
0.43
—
—
12
10.9
1.1
10.82
1.18
11.8
11.2
0.6
11.1
0.7
11.5
11.67
0.17
11.3
0.2
11.9
11.77
0.13
11.38
0.52
12
11.73
0.27
yt 1
yt2 5
统计预测与决策练习题

统计预测与决策练习题第⼀章统计预测概述⼀、单项选择题8、统计预测的研究对象是()A、经济现象的数值B、宏观市场C、微观市场D、经济未来变化趋势答:A⼆、多项选择题4、定量预测⽅法⼤致可以分为()A、回归预测法B、相互影响分析法C、时间序列预测法D、情景预测法E、领先指标法答:AC三、名词解释2、统计预测答:即如何利⽤科学的统计⽅法对事物的未来发展进⾏定量推测,并计算概率置信区间。
四、简答题1、试述统计预测与经济预测的联系和区别。
答:两者的主要联系是:①它们都以经济现象的数值作为其研究的对象;②它们都直接或间接地为宏观和微观的市场预测、管理决策、制定政策和检查政策等提供信息;③统计预测为经济定量预测提供所需的统计⽅法论。
两者的主要区别是:①从研究的⾓度看,统计预测和经济预测都以经济现象的数值作为其研究对象,但着眼点不同。
前者属于⽅法论研究,其研究的结果表现为预测⽅法的完善程度;后者则是对实际经济现象进⾏预测,是⼀种实质性预测,其结果表现为对某种经济现象的未来发展做出判断;②从研究的领域来看,经济预测是研究经济领域中的问题,⽽统计预测则被⼴泛的应⽤于⼈类活动的各个领域。
第⼆章定性预测法⼀、单项选择题3、()需要⼈们根据经验或预感对所预测的事件事先估算⼀个主观概率。
A 德尔菲法B 主观概率法C 情景分析法D 销售⼈员预测法答:B⼆、多项选择题2、主观概率法的预测步骤有:A 准备相关资料B 编制主观概率表C 确定专家⼈选D 汇总整理E 判断预测答:A B D E三、名词解释2、主观概率答:是⼈们对根据某⼏次经验结果所作的主观判断的量度。
四、简答题1、定型预测有什么特点?它和定量预测有什么区别和联系?答:定型预测的特点在于:(1)着重对事物发展的性质进⾏预测,主要凭借⼈的经验以及分析能⼒;(2)着重对事物发展的趋势、⽅向和重⼤转折点进⾏预测。
定型预测和定量预测的区别和联系在于:定性预测的优点在于:注重于事物发展在性质⽅⾯的预测,具有较⼤的灵活性,易于充分发挥⼈的主观能动作⽤,且简单的迅速,省时省费⽤。
统计预测和决策(第四版)

2178 2222 2000
2189 2244 2044
2200 2278 2111
2211 2311 2133
2222 2333 2156
2233 2356 2178
2244 2400 2200
2156 2200 2222 2289 2311 2356 2400 2433 2489
2000 2056 2067 2100 2133 2167 2200 2222 2278
650 400
500
650
3
400
600
800 500
700
800 500
700
800
4
750
900
1500 600
750 1500 500
600
1250
5
100
200
350 220
400
500 300
500
600
6
300
500
750 300
500
750 300
600
750
7
250
300
400 250
第八章 干预分析模型预测法
第十七章 多目标决策法
第一章 统 计 预 测 概 述
第一节 统计预测的概念和作用 第二节 统计预测方法的分类和选择 第三节 统计预测的原则和步骤
回总目录
第一节 统计预测的概念和作用
一、统计预测的概念
• 预测就是根据过去和现在估计未来,预测未来。统 计预测属于预测方法研究范畴,即如何利用科学的 统计方法对事物的未来发展进行定量推测,并计算 概率置信区间。
计算机
只需要因变量的历史 资料,但制定并检查 模型规格很费时
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可以看出,它是一种加权平均,权数为α,它不再需要保留很 多历史数据,只需本期的观察值xt和上期对本期的预测值Ft。
18
把基本公式展开:
Ft+1= αxt+(1-α)Ft = αxt+(1-α)[αxt-1+(1-α)Ft-1 ] = αxt+α(1-α)xt-1+(1-α)2 Ft-1 =… = αxt +α(1-α)xt-1+ α(1-α)2 xt-2 + … + α(1-α)n xt-n
4
第一节 一次移动平均法
5
一、基本原理及步骤
所谓“移动平均”是指每当得到一个最近时期的数据, 就立即把它当做有效数据,而把最老的那个时间的数 据剔除掉,重新计算出新的平均值用它来进行下一期 的预测。
6
二、公式
设时间序列为x1,x2,....一次移动平均法可以表示为:
F t 1xtxt 1...xtN 1/NN 1tN t 1xi
22
某组员月话费额:
Ft+1= αxt +(1- α) Ft α=0.1→F3=0.1×80.58+(1-0.1)×76.61=76.61
α=0.3→F3=0.3×80.58+(1-0.3)×76.61=77.80
α=0.9→F3=0.9×80.58+(1-0.9)×76.61=80.18
23
(1)平滑常数α=0.1 MSE=1/5∑et2 =28.9256
式中:xt 为最新观察值 Ft+1 为下一期预测值
7
二、优缺点
• 优点:计算简单 • 缺点:1.要保留的历史数据较多
2.只能用于平稳时间序列 3.N的大小不容易确定
8
三、注意项
1.一次移动平均法只能用于平稳时间序列,即经济变量在某一 值上下波动或缓慢升降是预测效果比较好,因为,时间序列 的的基本特性发生变化时,一次移动平均法不能很快的适应 这种变化。因此,移动平均法只能用于短期预测,因为在短 期情况下,时间序列通常具有平稳特征。
2.N的选择问题: 当数据的随机因素较小时→选用小的N→有利于跟踪数据的 变化,减少预测值的滞后期数,反应灵敏。 当数据的随机因素较大时→选用大的N→有利于较大限度的 平滑由随机性所带来的严重偏差。
即:N越小反应越灵敏,N越大平滑效果越好
9
一次移动平均法应用举例—— 股市中的移动平均线
10
11
Part 1
(2)平滑常数α=0.3 MSE=1/5 ∑et2 =28.9863
(3)平滑常数α=0.9 MSE=1/5 ∑et2 =34.4553
显然α=0.1所对应的均方差最小,所以选定0.1为平滑常数 则
F7 =α×x6 +(1-α)×F6 =0.1×88.07+0.9×76.87 =76.99 (元)
24
其中:m为预测超前期数
14
使用移动平均法进行预测的局限性
1.计算移动平均必须具有N个过去观察值,必须存储大量数
据. 2.N个过去观察值中每一个权数都相等,早于(t-N+1)期的
观察值的权数等于0,而实际上往往是最新观察值含更多 信息,应具有更大权重。
15
16
Part 1 Part 2
第二节 一次指数平滑法
13
二、公式
Stxtxt1xt N 2...xtN1
StStSt 1StN 2...StN 1
at StStSt2StSt
bt N21StSt
Ftmat btm
这里需要注意一点:
线性二次移动平均法并不是用二 次移动平均值直接进行预测,而 是在二次移动平均的基础上建立 线性模型,然后用模型进行预测。
时间序列平滑预测法
小组成员
张良瑮 邢媛 宗建佳 李奕龙
1
2
时间序列平滑预测是指用平均的方 法,把时间序列中的随机波动剔除 掉,使序列变得比较平滑,以反映 出其基本轨迹,并结合一定的模型 进行预测。
3
本章目录
• 第一节:一次移动平均法 • 第二节:一次指数平滑法 • 第三节:线性二次移动平均法 • 第四节:线性二次指数平滑法 • 第五节:二次曲线指数平滑法 • 第六节:温特线性与季节性指数平滑法
Part 3
第三节
线性二次移动平均法
12
一、基本原理
• 一次移动平均来预测一组具有趋势的数据时,预测值(估 计值)往往高于或低于实际值
线性增加的时间序列→偏低 线性减小的时间序列→偏高
• 为了避免这种滞后误差,发展了线性二次移动平均法。即 在对实际值进行一次移动平均的基础上,再进行一次移动 平均。
可见:随着时间向前的推移,各期的的权重不是相同的,
而是按指数规律递减,这也是指数平滑法的由来。 19
二、关于α值的影响
某商场销售额如表.预测11月份的销售额:
万
300
α = 0.9
α = 0.5
200
α = 0.1
100
t
0
可见:α取值较大时,预测值能较快反应时间序列的实际变 化情况,当α较小时,预测值对时间序列反应比较慢,但较 为平滑。
Part 1
第四节
Part 4
线性二次指数平滑法
25
26
布朗单一参数线性指数平滑法
一、基本原理
布朗单一参数线性指数平滑法,其基本原理与线性 二次移动平均法相似 ,当趋势存在时,一次和二次平滑 值都滞后于实际值,将一次和二次平滑值之差加在一次平 滑值上,则可对趋势进行修正。
27
二、公式
平滑公式为: St(1) =αxt + (1-α) St-1(1) St(2) =αSt(1) + (1-α)St-1(2)
20
三、有问题。问题之一便是力
图找到最佳的α值,以使均方差MSE最小,从而得到最精
准的预测值。 均方差MSE的公式推导:
1.et= xt - Ft 2.MSE=1/n-k+1 ∑(xt- Ft)2 3.MSE=1/n-k+1 ∑et2
21
一次指数平滑法应用实例—— 在消费预测中的应用
17
一、基本原理及公式
公式其实就是由一次移动平均法演变而来的: Ft+1= —1n (xt+xt-1+ … + xt-n+1) Ft = —1n(xt-1+xt-2 + …+ xt-n )
→ Ft+1= —1n xt + Ft - —1n xt-n → Ft+1= —1n xt +(1- —1n )Ft 用α代替 —1n ,即α在0和1之间,则公式变为