高频变压器--设计与制作
高频变压器设计的五个步骤

变压器的设计过程包括五个步骤:①确定原副边匝数比;为了提高高频变压器的利用率,减小开关管的电流,降低输出整流二极管的反向电压,减小损耗和降低成本,高频变压器的原副边变比应尽量大一些.为了在任意输入电压时能够得到所要求的电压,变压器的变比应按最低输入电压选择.选择副边的最大占空比为 ,则可计算出副边电压最小值为: ,式中, 为输出电压最大值, 为输出整流二极管的通态压降, 为滤波电感上的直流压降.原副边的变比为:②确定原边和副边的匝数;首先选择磁芯.为了减小铁损,根据开关频率 ,参考磁芯材料手册,可确定最高工作磁密、磁芯的有效导磁截面积、窗口面积 .则变压器副边匝数为: .根据副边匝数和变比,可计算原边匝数为③确定绕组的导线线径;在选用导线线径时,要考虑导线的集肤效应.所谓集肤效应,是指当导线中流过交流电流时,导线横截面上的电流分布不均匀,中间部分电流密度小,边缘部分电流密度大,使导线的有效导电面积减小,电阻增加.在工频条件下,集肤效应影响较小,而在高频时影响较大.导线有效导电面积的减小一般采用穿透深度来表示.所谓穿透深度,是指电流密度下降到导线表面电流密度的0.368(即: )时的径向深度. ,式中, , 为导线的磁导率,铜的相对磁导率为 ,即:铜的磁导率为真空中的磁导率 , 为导线的电导率,铜的电导率为 .为了有效地利用导线,减小集肤效应的影响,一般要求导线的线径小于两倍的穿透深度,即 .如果要求绕组的线径大于由穿透深度所决定的最大线径时,可采用小线径的导线多股并绕或采用扁而宽的铜皮来绕制,铜皮的厚度要小于两倍的穿透深度(4)确定绕组的导线股数绕组的导线股数决定于绕组中流过的最大有效值电流和导线线径.在考虑集肤效应确定导线的线径后,我们来计算绕组中流过的最大有效值电流.原边绕组的导线股数:变压器原边电流有效值最大值 ,那么原边绕组的导线股数 (式中,J 为导线的电流密度,一般取J=3~5 , 为每根导线的导电面积.).副边绕组的导电股数:①全桥方式:变压器只有一个副边绕组,根据变压器原副边电流关系,副边的电流有效值最大值为: ;②半波方式:变压器有两个副边绕组,每个负载绕组分别提供半个周期的负载电流,因此其有效值为 ( 为输出电流最大值).因此副边绕组的导线股数为(5)核算窗口面积在计算出变压器的原副边匝数、导线线径及股数后,必须核算磁芯的窗口面积是否能够绕得下或是否窗口过大.如果窗口面积太小,说明磁芯太小,要选择大一点的磁芯;如果窗口面积过大,说明磁芯太大,可选择小一些的磁芯.重新选择磁芯后,再重新计算,直到所选磁芯基本合适为止。
高频变压器制作标准

高频变压器制作标准高频变压器是一种能够将输入的电压转换为不同电压输出的电器元件。
在现代电子设备中,高频变压器被广泛应用于各种电源和通信设备中。
为了确保高频变压器的性能稳定和安全可靠,制作过程中需要遵循一定的标准和规范。
本文将介绍高频变压器制作的一般标准,以供参考。
首先,高频变压器的制作需要选择合适的材料。
在选材时,需要考虑材料的介电常数、磁导率、损耗等因素,以确保高频变压器具有良好的电磁性能。
常见的高频变压器材料包括硅钢片、铜线、绝缘材料等。
这些材料的选择对于高频变压器的性能有着重要的影响。
其次,高频变压器的制作需要严格控制工艺流程。
在制作过程中,需要确保绕线的匝数、绝缘层的厚度、铁芯的包覆等工艺参数符合设计要求。
特别是在绕线过程中,需要保证匝间绝缘良好,绕线均匀紧密,以减小电磁损耗和焦耳热。
此外,还需要注意绕线的接线方式和焊接工艺,确保接触良好、可靠。
另外,高频变压器的制作还需要进行严格的测试和检验。
在制作完成后,需要进行绝缘电阻测试、匝间电阻测试、耐压测试等,以确保高频变压器在使用过程中不会出现绝缘击穿、匝间短路等故障。
同时,还需要进行磁通泄漏测试、温升测试等,以验证高频变压器的磁性能和热特性。
最后,高频变压器的制作需要符合相关的标准和规范。
在国内,高频变压器的制作需要符合《高频变压器制作通用技术条件》(GB/T 15288-94)等国家标准。
而在国际上,高频变压器的制作需要符合IEC等国际电工委员会的标准。
综上所述,高频变压器的制作需要选择合适的材料,严格控制工艺流程,进行严格的测试和检验,并符合相关的标准和规范。
只有在严格遵循这些标准和规范的前提下,才能制作出性能稳定、安全可靠的高频变压器,满足现代电子设备对于电源和通信的需求。
希望本文能为高频变压器制作提供一些参考和帮助。
高频变压器设计规范

高频变压器设计规范目录1.目的 (2)2.适用范围 (2)3.引用/参考标准或资料 (2)4.术语及其定义 (2)5.规范要求 (2)6.附录 (12)1.目的为了实现高频变压器设计的标准化,为我司工程师在设计变压器过程中提供参考,特制订此规范。
2.适用范围本规范适用于公司所有正激变压器及反激变压器的设计。
3.引用/参考标准或资料无。
4.术语及其定义正激变压器:因其初级线圈被直流电压激励时,次级线圈正好有功率输出而得名。
反激变压器:又称单端反激式变压器或Buck-Boost转换器。
因其输出端在原边绕组断开电源时获得能量故而得名。
5.规范要求5.1高频变压器磁芯材料与几何机构在大多数开关电源的高频变压器中,常用的软磁材料有铁氧体,铁粉芯,恒导合金,非晶态合金及硅钢片。
主要应用软磁材料四个特性:磁导率高、矫顽力小及磁滞回线狭窄、电阻率高、具有较高饱和磁感应强度。
现我司高频变压器通常采用锰锌铁氧体材料。
磁芯厂家都生产了一系列不同材质的磁芯,各厂家有自己的命名规范。
以常用的PC40(TDK命名规范)材质为例,东磁表示为DMR40,天通则表示为TP4,实际性能差异几乎可忽略不计。
通常我们关注的磁芯参数主要有初始磁导率,饱和磁通密度Bs,剩磁Br,矫顽力Hc,功耗Pv,居里温度Tc,在高频变压器的设计以及日后应用过程中,这些参数往往起到非常重要的作用。
图1所示各种磁芯的几何形状有EE型、ETD型、PQ型等多种。
EE型、ETD型、PQ型也是我司高频变压器设计时通常采用的磁芯结构。
每种规格磁芯对应多种尺寸可供选择。
一般每种类型及尺寸的磁芯,其对应的骨架是一定的,变动一般在于pin数和pin针间距的不同,设计者可根据实际应用需求选择,也可以联系骨架厂商进行开模定制。
图5.1 各种几何结构的变压器磁芯图1 磁芯的几何形状5.2高频变压器常用材料介绍上节主要介绍了高频变压器的磁芯特性及结构,除此以外,要构成一个完整的高频变压器,主要材料还有:导线材料,压敏胶带,骨架材料。
高频变压器设计与参数设计

高频变压器设计与参数设计高频变压器设计与参数设计是一项重要的技术,它能够帮助电子设备充分发挥性能。
高频变压器是指使用高频信号来改变交流电压的变压器,它通常用在微波炉、通信设备、打印机和医疗设备等领域,并且也用于高频功率转换、无线电、太阳能应用等等。
高频变压器的设计涉及到许多因素,包括电气特性,例如变压器的电压比、额定电流、变压器的绝缘耐压、损耗和过载能力。
同时,还必须考虑到变压器尺寸大小、重量、成本和可靠性等机械特性。
这些特性都会影响变压器的性能,从而影响其最终的性能表现。
在设计高频变压器时,首先应考虑变压器的工作频率。
一般来说,高频变压器的工作频率范围在1kHz~100MHz 之间,而且高频变压器的工作频率越高,其尺寸越小,耗散越低,性能也越好。
随后,应该考虑高频变压器的结构设计,采用的线圈数目,线圈的绕组方式,芯股的结构,冷却方式和绝缘材料等。
其中,线圈绕制方式和线圈的绕组方式是影响高频变压器的主要要素,它们会影响变压器的额定输出功率、输出纹波、温升和其他电气特性。
此外,还必须考虑到变压器的电压比以及母线电压。
电压比是指输出电压与输入电压之间的比率,它影响变压器的输出功率。
母线电压是指用于变压器的输入电压,它会影响变压器的最大输出功率,而且也会影响变压器的可靠性。
另外,在设计高频变压器时还应考虑变压器的外壳结构,这不仅影响变压器的重量和体积,还会影响变压器的热效应。
外壳结构应考虑到变压器的散热性能,以及变压器内部温度的分布情况等。
最后,需要重点考虑变压器的绝缘系统。
绝缘系统是高频变压器的核心部件,它具有高的绝缘强度和耐温性能,可以有效防止电路受到外界环境的干扰,也可以提高变压器的可靠性和安全性。
总之,高频变压器的设计与参数设计是一项复杂的工作,从上述内容可以看出,在设计高频变压器时,需要考虑变压器的电气特性、机械特性、工作频率、结构设计、电压比和母线电压、外壳结构以及绝缘系统等多个方面。
最终,变压器的设计与参数设计都是为了满足应用需求,并且有效地提高变压器的性能,以及提高变压器的可靠性和安全性。
高频变压器设计

5高频率的功率变压器THE HIGH-FREQUENCY POWER TRANSFORMER5-0概论(INTRODUCTION)很多科学家认为磁性元件的设计是一种“高深的技术”,其实这乃是一种最重的错误观念。
磁性元件的设计乃为精密的科学,而那些所有正确的基本电磁定律,乃由以前的科学家们所研究发展出来,如Maxwell, Ampere , Oersted ,与Gauss等人。
本章主要目的就是介绍基本的磁学定律,而且为了实际的电磁元件设计,如线圈与变压器,我们将以简单的,合逻辑的,有条理的方式来深入浅出介绍磁性与电性之间存在的关系。
5-1电磁的原理(PRINCIPLES OF ELECTROMAONETISM)考虑如图5-1所示的简单电路,此由电压源V,开关S与负载L,组成一个空气线圈(air coil)的电路,如果在某些情况下,开关S被关闭(closed),则会有电流I产生经由线上流至负载,当电流通过线圈时,就会有磁场被建立起来,如图中所示,连接于线圈之间所产生的磁场,此乃为称之为磁通量(flux),而磁场中的磁力线可称之为磁通链(flux linkages)。
图5-1流经空气线圈的电流I会有磁通量的产生图5-2 铁磁材料棒置于线圈之内会产生较多或较强的磁通量然而,在此线圈中的磁通量并不会很大,如果我们在线圈中加入磁性材料(铁磁材料)棒,则会有额外的磁场被感应产生,因此,也就会有更多的磁通量被产生,如图5-2所示。
而磁通链将沿着磁棒前进,并经由空气传导路径形成一回路,如果铁磁铁心(ferromagnetic core )以此种方式构成并取代了磁棒,则磁通就会呈现一连续的路径,且磁场将形成于铁心之内,因此所感应的磁场就会较强大,如图5-3所示。
图5-3 连续的铁磁性铁心会限制所有的磁通量于铁心内并有很强的磁场产生在磁场上某一点所测量的磁通聚集程度,我们称之为磁通量密度(magnetic flux density )或是磁感应(magnetic induction),以符号B 来表示。
高频变压器设计

高频变压器设计单端反激式开关电源中,高频变压器的设计是设计的核心。
高频变压器的磁芯一般用锰锌铁氧体,EE 型和EI 型,近年来,我国引进仿制了汤姆逊和TDK 公司技术开发出PC30,PC40高磁导率,高密度几个品种。
一、 计算公式单端反激式开关电源是以电感储能方式工作,反激式公式推导: 首先要计算出整流后的输入电压的最大值和最小值,如交流输入电压AC V (160~242V ),窄限范围;AC V (85~265V ),宽限范围。
整流后直流电压DC V =1.4*AC V (224~338V )窄限范围;DC V =1.4AC V (119~371V ),宽限范围。
整流后直流纹波电压和整流桥压降一般取20V ,和滤波电容有关。
(1)初级峰值电流p I集电极电压上升率p in p cI V L t = (c t 电流从0上升到集电极电流峰值作用时间)取max1c ft D =min max**p p in L I f V D =公式中,min in V : 是最低直流输入电压,V ; p L :变压器初级电感量,H ;f :开关频率,Hz ;输出功率等于存储在每个周期内的能量乘以工作频率。
21***2out p p P L I f =经进一步简化,就可以得到变压器初级电流峰值为min max2**outp c in P I I V D ==(2)初级电感量p L因为电感量*V S H I =(max D S f= ;1V*1S1mH=1A ) min max p L *in p V D I f=(3)关于最小占空比min D 和最大占空比max D最小占空比和最大占空比的设计可根据输入电压变化范围和负载情况合理决定,在输入电压比较高的情况下,如400VDC ,max D 可选0.25以下;在输入电压比较低的情况下,如110VDC , max D 可选0.45以下;max minin in V K V =;maxmin max max (1)*D D D K D =-+(4)磁芯的选择磁芯输出功率和磁芯截面积的经验关系式为(0.1~e A ≈对于磁芯EI16~EI40,系数一般按0.1~0.15计算。
高频变压器设计

基於LED照明電源的單級PFC高頻變壓器設計詳細步驟由於LED照明電源要求:民用照明PF值必需大於0.7,商業照明必需大於0.9。
對於10~70W的LED驅動電源,一般採用單級PFC來設計。
即節省空間又節約成本。
接下來我們來探討一下單級PFC高頻變壓器設計。
以一個60W的實例來進行講解:輸入條件:電壓範圍:176~265Vac 50/60HzPF>0.95THD<25%效率ef〉0.87輸出條件:輸出電壓:48V輸出電流:1.28A第一步:選擇ic 和磁芯:Ic用士蘭的SA7527,輸出帶准諧振,效率做到0.87應該沒有問題。
按功率來選擇磁芯,根據以下公式:Po=100*Fs*VePo:輸出功率;100:常數;Fs:開關頻率;Ve:磁芯體積。
在這裡,Po=V o*Io=48*1.28=61.44;工作頻率選擇:50000Hz;則:V e=Po/(100*50000)=61.4/(100*50000)=12280 mmmPQ3230的Ve值為:11970.00mmm,這裡由於是調頻方式工作。
完全可以滿足需求。
可以代入公式去看看實際需要的工作頻率為:51295Hz。
第二步:計算初級電感量。
最小直流輸入電壓:VDmin=176*1.414=249V。
最大直流輸入電壓:VDmax=265*1.414=375V。
最大輸入功率:Pinmax=Po/ef=61.4/0.9=68.3W(設計變壓器時稍微取得比總效率高一點)。
最大占空比的選擇: 寬電壓一般選擇小於0.5,窄電壓一般選擇在0.3左右。
考慮到MOS管的耐壓,一般不要選擇大於0.5 ,220V供電時選擇0.3比較合適。
在這裡選擇:Dmax=0.327。
最大輸入電流: Iinmax=Pin/Vinmin=68.3/176=0.39 A最大輸入峰值電流:Iinmaxp=Iin*1.414=0.39*1.414=0.55AMOS管最大峰值電流:Imosmax=2*Iinmaxp/Dmax=2*0.55/0.327=3.36A初級電感量:Lp= Dmax^2*Vin_min/(2*Iin_max*fs_min)*10^3=0.327*0.327*176/(2*0.39*50000)*1000=482.55 uH取500uH。
高频变压器的设计方法

高频变压器设计方法高频变压器的设计包括:线圈参数的设计,磁芯材料的选择,磁芯结构的选择,磁芯参数的设计,组装结构的选择等内容。
下面对高频变压器线圈参数的计算与选择、磁芯材料的选择、磁芯结构的选择、磁芯参数的设计和组装结构的选择进行详细介绍。
(1) 高频变压器线圈参数的计算与选择高频变压器的线圈参数包括:匝数、导线截面(直径)、导线形式、绕组排列和绝缘安排。
原绕组匝数根据外加激磁电压或者原绕组激磁电感(储存能量)来决定,匝数不能过多也不能过少。
如果匝数过多,会增加漏感和绕线工时;如果匝数过少,在外加激磁电压比较高时,有可能使匝间电压降和层间电压降增大,而必须加强绝缘[5]。
副绕组匝数由输出电压决定。
导线截面(直径)决定于绕组的电流密度。
还要注意的是导线截面(直径)的大小还与漏感有关。
高频变压器的绕组排列形式有:①如果原绕组电压高,副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组排列形式,这样有利于原绕组对磁芯的绝缘安排;②如果要增加原和副绕组之间耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的绕组排列形式,这样有利于减少漏感。
另外,当原绕组为高压绕组时,匝数不能太少,否则,匝间或者层间电压相差大,会引起局部短路。
对于绝缘安排,首先要注意使用的电磁线和绝缘件的绝缘材料等级要与磁芯和绕组允许的工作温度相匹配。
等级低,满足不了耐热要求,等级过高,会增加不必要的材料成本。
其次,对在圆柱形磁路上绕线的线圈,最好采用线圈骨架,既可以保证绝缘,又可以简化绕线工艺。
另外,线圈最外层和最里层,高压和低压绕组之间都要加强绝缘。
如果一般绝缘只垫一层绝缘薄膜,加强绝缘应垫2~3层绝缘薄膜。
(2) 高频变压器磁芯材料的选择高频变压器磁芯一般使用软磁材料。
软磁材料有较高磁导率,低的矫顽力,高的电阻率。
磁导率高,在一定线圈匝数时,通过不大的激磁电流就能有较高的磁感应强度,线圈就能承受较高的外加电压,因此在输出功率一定的情况下,可减轻磁芯体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2变压器磁芯的选择与工作点的确定2.1 磁芯材料的选择从变压器的性能指标要求可知,传统的薄带硅钢已很难满足变压器在频率、使用环境方面的设计要求。
磁芯的材料只有从坡莫合金、铁氧体材料、钴基非晶态合金和超微晶合金几种材料中来考虑。
坡莫合金、钴基非晶态价格高,约为铁氧体材料的数倍,而饱和磁感应强度B s也不是很高,且加工工艺复杂。
考虑到我们所要求的电源输出功率并不高,大约为30W,因此,综合几种材料的性能比较,我们还是选择了饱和磁感应强度B s较高,温度稳定性好,价格低廉,加工方便的性价比较低的锌锰铁氧体材料,并选以此材料作为框架的EI28来绕制本例中的脉冲变压器。
2.2工作点的确定根据相关资料,EC35输出功率为50W,饱和磁感应强度大约在2000Gs左右。
买来的磁芯,由于厂家提供的磁感应强度月,值并不准确,可用图2所提供的方式粗略测试一下。
将调压器接至原线圈,用示波器观察副线圈输出电压波形。
将原线圈的输入电压由小到大慢慢升高,直到示波器显示的波形发生奇变。
此时,磁芯已饱和,根据公式:U=4.44f NΦm可推知在工频时的Φm值。
要求不高时,可根据测算出的Φm,粗略估算出原线圈的1匝数,。
图2 工作点测试示意图3 变压器主要参数的计算本例中的变换器采用单端反激式工作方式,单端反激变换器在小功率开关电源设计中应用非常广泛,且多路输出较方便。
单端反激电源的工作模式有两种:电流连续模式和电流断续模式。
前者适用于较小功率,副边二极管存在没有反向恢复的问题,但MOS管的峰值电流相对较大;后者MOS管的峰值电流相对较小,但存在副边二极管的反向恢复问题,需要给二极管加吸收电路。
这两种工作模式可根据实际需求来选择,本文采用了后者。
设计变压器时大多需要考虑下面问题:变换器频率f(H2);初级电压U1(V),次级电压U2(V);次级电流i2(A);绕组线路参数n1、,n2;温升τ(℃);绕组相对电压降u;环境温度τHJ(℃);绝缘材料密度γ(g/cm3)z1)根据变压器的输出功率选取铁芯,所选取的铁芯的户,值应等于或大于给定值。
2)绕组每伏匝数(1)S是铁芯的截面积;k T是窗口的填充系数;T3)初级绕组电势E1=U1(1-) (2)4)初级绕组匝数W1=W0E l (3)5)次级绕组电势E2i=U2i (1+) (4)6)次级绕组匝数W2i=W0E2i (5)7)初级绕组电流(6)8)次级绕组电流(7)其中,n1、n2:分别是初级绕组和次级绕组的每层匝数。
9)初级绕组线径(8)10)次级绕组线径(9)其中,j是电流密度。
详细的变压器设计方法与计算相当复杂,本文参照经验公式,依据下面的步骤设计了本例转换器中的高频变压器。
3.1 确定变压器的变比里,初级线圈中的电流心便从零开始线性假定初级线圈的初始电流为零,那么,在开关管的导通期tON增长到峰值I1P3.3 计算初级绕组圈数N1为初级绕组的最小电感L1根据输出功率P的大小,选用适当的磁芯,其形状用环形、EI形或罐形均可,本例采用EI28,该类型的铁芯在f=50k Hz时,功率可达到60W,在f=100kHz时,输出功率可达到90W。
式中I—初级线圈峰值电流,A;lpL—初级电感,H;1S—磁芯截面积,mm;2B—磁芯最大磁通密度,T。
m3.4 计算次级绕组圈数N2即±12V分别绕5匝,5V绕3匝。
3.5 反馈绕组N的估算3反馈绕组匝数的确定,要求既能保证开关元件的饱和导通又不至于造成过大损耗。
根据UC3842的要求,反馈绕组的输出电压应在13V左右。
因此,3.6 导线线径的选取根据输入输出的估算,初线线圈的平均电流值应该允许达到2A。
1)初级绕组初级绕组的线径可选d=0.80mm,其截面积为0.5027mm2的圆铜线。
2)次级绕组次级绕组的线径可根据各组输出电流的大小,利用原级相同线径采用多股并绕的办法解决。
为了方便线圈绕制,也可选用线径较粗的导线。
由于工作频率较高,应考虑集肤效应的影响。
3.7 线圈绕制与绝缘绕制开关变压器最重要的问题是想办法使初、次级线圈紧密地耦合在一起,这样可以减小变压器漏感,因为漏感过大,将会造成较大的尖峰脉冲,从而击穿开关管。
因此,在绕制高频变压器线圈时,应尽量使初、次级线圈之间的距离近些。
具体可采用以下方法:(1)双线并绕法将初、次级线圈的漆包线合起来并绕,即所谓双线并绕。
这样初、次级线间距离最小,可使漏感减小到最小值。
但这种绕法不好绕制,同时两线间的耐压值较低。
(2)逐层间绕法为克服并绕法耐压低、绕制困难的缺点,用初、次级分层间绕法,即1、3、5行奇数层绕初级绕组,2、4、6等偶数层绕次级绕组。
这种绕法仍可保持初、次级间的耦合,又可在初、次级间垫绝缘纸,以提高绝缘程度。
(3)夹层式绕法把次级绕组绕在初级绕组的中间,初级分两次绕。
这种绕法只在初级绕组中多一个接头,工艺简单,便于批量生产。
本例中,为减小分布参数的影响,初级采用双线并绕连接的结构,次级采用分段绕制,串联相接的方式,即所谓堆叠绕法。
降低绕组间的电压差,提高变压器的可靠性。
在变压器的绝缘方面,线圈绝缘应尽量选用抗电强度高、介质损耗低的复合纤维绝缘纸,提高初、次级之间的绝缘强度和抗电晕能力,本例中,因为不涉及高压,绝缘问题不必特殊考虑。
4 结束语绕制脉冲变压器是制作开关电源的重要工作,也是设计与制作过程中消耗大量时间和主要精力的工作。
变压器做得好,整个设计与制作工作就完成了70%以上。
做得不好,可能就会出现停振、啸叫或输出电压不稳、负载能力不高等现象。
在变压器的温升<35℃,绕制良好的脉冲变压器的工作效率可达到90%以上,且波形质量优异,电性能参数稳定。
在100k Hz的使用条件下,脉冲变压器的体积可以大大减小。
绕制变压器时,要尽最大的努力保证以下几点:(1)即使输入电压最大,主开关器件导通时间最长,也不至于使变压器的磁芯饱和;(2)初级线圈与次级线圈的耦合要好,漏电感要小;(3)高频开关变压器会因集肤效应导致电线的电阻值增大,因而要减小电流密度。
通常,工作时的最大磁通密度取决于次级线圈。
(12)(4)一般来说,采用铁氧体磁芯E128时,要把B m控制在3kGs以下。
高频平板变压器的原理与设计[注]摘要:运行在高频的常规变换变压器存在着漏电感大,匝间电容量大,趋肤效应、邻近效应严重,磁芯有局部过热点等问题。
一种新型变压器,高频平板变压器已开发出来,它能减小漏电感和匝间电容,能消除常规变压器存在的磁芯局部过热点,能使趋肤效应、邻近效应等问题得以改善,它具有很高的功率密度、很高的效率、很低的电磁干扰和简易价廉等优点。
关键词:平板变压器原边电感漏感趋肤效应邻近效应1引言变压器一直是电源设备和装置,缩小体积、提高功率密度、实现模块化的一只拦路虎。
虽然高频变换技术引入电源后,可以甩掉体积庞大的工频变压器,但还需使用铁氧体磁芯的高频变压器。
铁氧体磁芯高频变压器的体积虽比工频变压器小,但离开模块化的要求还相差很远。
它不但体积还嫌大,而且它的发热量,漏电感都不小。
因此近几年来,许多专家、学者、工程师一直在研究解决这个问题的办法。
高频平板变压器的研制开发成功,就使变压器技术发生一个飞跃。
它不但能使变压器的体积缩小很多,而且还能使变压器内部的温升很低、漏电感很小,效率可做到99.6%,成本比一般同功率的变压器低一半。
它可用于单端正、反激,半桥,全桥和推挽变换器中作AC/DC和DC/DC变换器用。
它对低电压、大电流的变换器特别适用。
所以用它来做当代计算机电源特别合适。
2运行在高频情况下常规变换变压器存在的问题(1)漏电感(简称漏感)理想的变压器(完全耦合的变压器)原边绕组产生的磁通应全部穿过副边绕组,没有任何损失和泄漏。
但实际上常规的变换变压器不可能实现没有任何损失和泄漏。
原边绕组产生的磁通不可能全部穿过副边绕组。
非耦合部分磁通就在绕组或导体中有它自己的电感,存贮在这个“电感”中的能量不和主功率变压器电路相耦合。
这种电感我们称之为“漏感”。
理想变换器对绝缘的要求和为了要得到很低的电磁干扰(EMI)而需要很紧的电磁耦合以减小漏感的要求,是相互矛盾的。
当变压器不通电(转向脱离电源或开关处于关断期间)时,漏感存贮的能量要释放出来形成明显的噪音。
在示波器上能看到此噪音的高频尖峰脉冲波形。
高频尖峰脉冲波形的幅值Uspike和漏感Lleak与电流相对时间变化率的乘积成正比。
即:|Uspike|=Lleakdi/dt(1)当工作频率升高,电流相对时间的变化率也就增加。
漏感的影响将更严重。
漏感的影响和变换器的开关速度成正比。
漏感产生过高的尖峰脉冲会损坏变换图1常规变换变压器和平板变压器示意图(a)常规变换变压器(b)平板变压器器中的功率器件并形成明显的电磁干扰(EMI)。
为了降低漏感产生的尖峰脉冲幅值Uspike,而在变换器电路中必须加入缓冲网络。
但缓冲网络的加入,会增大变换器电路的损耗。
使变换器电路随工作频率提高,损耗增加,效率降低。
(2)绕组间电容当变压器的绕组是多层绕组时,则顶层绕组和底层绕组之间就有电位差。
两个导体之间有电位差,就存在电容。
这个电容就称为“绕组间电容”。
当工作在高频时,这个电容会以惊人的速率进行充电和放电。
电容充电和放电过程中会产生损耗。
在给定的时间内,它充电和放电的次数愈多,损耗就愈大。
(3)趋肤效应(见前面黄健聪文章)(4)邻近效应(见前面黄健聪文章)(5)局部过热点常规的变换变压器工作在高频时,其磁芯中部会有局部过热点。
因此,为了减小热效应,常规变换变压器的工作频率提高时,就必须相应地减小其磁通密度,增大其体积。
这就使得无法用它去做高功率密度的电源。
对于低输出电压理想型变换器来说,它的降压比是很高的。
用常规变换变压器时,通常1匝输出绕组,大约需要32匝原边绕组。
这样,原边绕组就需多层布置,因而漏感和绕组间电容大、趋肤效应和邻近效应严重等不利因素在变换变压器中都存在。
3常规变换变压器和平板变压器比较常规变换变压器通常是由单磁芯多原边绕组组成,而平板变压器是由单匝(或几匝)原边绕组和多磁芯组成。
这些磁芯都装有单匝的副边绕组并封装成模块,如图1所示。
(1)常规变换变压器由于它的原边绕组匝数多,所以漏感比较大,而平板变压器单匝(或几匝)原边绕组和单匝的副边绕组耦合很紧,所以漏感很小。
30A平板变压器的漏感仅 2.0nH。
所以把它用在快速开关电路中时,不但损耗很小,而且还能减轻电路中其它部件承受的应力。
(2)平板变压器的频率特性比常规变换变压器好。
平板变压器可工作在(100~500)kHz频率之间。
(3)平板变压器能直接紧贴底板固定,所以它的散热条件很好。
这种专用变压器是一种体积很小而又具有很大表面积的元件。
所以它不存在局部过热点的问题。