七年级数学第四章立体图形与平面图形(简单三视图)

合集下载

人教版七年级上册数学第四章知识点总结与复习课件

人教版七年级上册数学第四章知识点总结与复习课件

应用格式:
C是线段AB的中点,
AC =BC =1/2AB AB =2AC =2BC
A
C
B
5.有关线段的基本事实 两点之间线段最短
三、角 1.角的定义 (1)有公共端点的两条射线组成的图形,叫做角 (2)角也可以看做由一条射线绕着它的端点旋转所形成的 图形
2.角的度量 度、分、秒的互化 1°=60′,1′=60″ 1″=(1/60)′,1′=(1/60)°
A'
D
C
F
N
M
B'
A
E
B
解:由折纸过程可知, EM平分∠BEB' , EN平分∠AEA'.
所以有∠MEB'=1/2∠BEB',∠NEA'=1/2∠AEA'. 因 ∠BEB'+∠AEA'=180°,
所以有∠NEM=∠NEA'+∠MEB' =1/2∠AEA'+1/2∠BEB' =1/2(∠AEA'+∠BEB') =90°.
M A N C
∵ON是∠AOC的平分线,OM是∠BOC的平分线,
∴∠COM=1/2∠BOC=1/2×140°=70°,
∠CON=1/2∠AOC=1/2×50°=25°,
∴∠MON=∠COM-∠CON=70°-25°=45°;
(2)当∠AOC=α时, ∠MON等于多少度? B
(2)∠BOC=∠AOB+∠AOC=90°+α,
人教版七年级数学上 教学课件
第四章 图形初步认识
知识点总结与复习
要点梳理
考点讲练
当堂练习
课堂小结
要点梳理
一、几何图形 1.立体图形与平面图形 (1)立体图形的各部分不都在同一平面内,如

第四章 几何图形初步章节复习(课件)七年级数学上册教材配套教学课件(人教版)

第四章 几何图形初步章节复习(课件)七年级数学上册教材配套教学课件(人教版)


=17°+6.6′
6.6

°
60


=17+
=5719′12″
【点睛】按1°=60′,1′=60″,先把度化成分,再把分化成秒.
(小数化整
=17.11.
数)
1
1
【点睛】按1″= ′,1′= °先把秒化成分,再把分化成度.
60
60
(整数化小数)
2
2
∴MN=CM+CN=4+3=7(cm).
A
M
C
N
B
(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的
长度吗?并说明理由;
1
猜想:MN= acm.
2
A
M
C
N
B
证明:同(1)可得
11CM= AC,C= BC,22
1
1
1
1
∴MN=CM+CN= AC+ BC= (AC+BC)= a(cm).
经过两点有一条直线,并且只有一条直线.
2.直线、射线、线段的联系与区别
3.基本作图
(1)作一线段等于已知线段;
(2)利用尺规作图作一条线段等于两条线段的和、差.
4.线段的中点
C是线段AB的中点,
1
AC=BC= AB,
2
AB=2AC=2BC.
A
C
B
5. 有关线段的基本事实 两点之间,线段最短.
6.连接两点的线段的长度,叫做这两点间的距离.
5
的中点,求DE的长.
3
解:∵AC=15cm,CB= AC,
5
3
∴CB= ×15=9cm,

立体图形与平面图形(2)__学科信息:数学-人教版-七年级上

立体图形与平面图形(2)__学科信息:数学-人教版-七年级上
人教版本七年级上册第四单元第二课立体图 形与平面图形
立体图形与平面图形(2)
, . , .
三视图与展开图
只不 缘识 身庐 在山 此真 山面 中目
人教版本七年级上册第四单元第二课 立体图形与平面图形
远横 近看 题 高 成苏西 低 岭轼林 各侧 壁 不成 同峰
三视图与展开图
探究:从不同方向看 立体图形
三视图与展开图
活动一
人教版本七年级上册第四单元第二课 立体图形与平面图形
把下面的立体图形展开,看 它的平面展开图是什么。
三视图与展开图
人教版本七年级上册第四单元第二课 立体图形与平面图形
棱柱
展开
三视图与展开图
人教版本七年级上册第四单元第二课 立体图形与平面图形
圆锥
展开
三视图与展开图
人教版本七年级上册第四单元第二课 立体图形与平面图形
本节课的收获
1.从不同方向看立体图形:主视图, 左视图,俯视图
2. 立体图形的展开图
人教版本七年级上册第四单元第二课 立体图形与平面图形
俯视图
左视图
主视图
三视图与展开图
人教版本七年级上册第四单元第二课 立体图形与平面图形
左视图
俯视图 主视图
三视图与展开图
人教版本七年级上册第四单元第二课 立体图形与平面图形
俯视图
左视图
主视图
三视图与展开图
人教版本七年级上册第四单元第二课 立体图形与平面图形
从你所在的位置看这组几何体,看到的是什么 样子?能否把你所看到的样子画下来?
三视图与展开图
人教版本七年级上册第四单元第二课 立体图形与平面图形
立体图形和平面图形的转化:
从正面看
从 左 面 看

人教版七年级数学上册第四章《几何图形初步》知识点汇总

人教版七年级数学上册第四章《几何图形初步》知识点汇总

⎧⎨⎩⎧⎨⎩人教版七年级数学上册第四章《几何图形初步》知识点汇总一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形平面图形:三角形、四边形、圆等.主(正)视图---------从正面看;2、几何体的三视图 侧(左)视图-----从左面边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线AB(BA)射线AB线段a线段AB(BA)作法叙述作直线AB作直线a 作射线AB作线段a作线段AB、连接AB延长叙述不能延长反向延长射线AB延长线段AB反向延长线段BA 2、直线的性质经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=AB ,AB=2AM=2BM.126、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系 (1)点在直线上; (2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ; ; ; .α∠β∠ABC ∠3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法 (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形: 符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等. 同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.。

七年级数学上册第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时几何图形课件新版新人教版

七年级数学上册第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时几何图形课件新版新人教版

仅供学习交流!
答案:
学前温故
新课早知
2. 立体图形 和 平面图形 是两类不同的几何图形,且立体 图形的各部分不都在 同一平面 内,平面图形的各部分都在 同一平面 内. 3.下图中的平面图形有长方形、直角梯形、圆 .
常见几何图形的识别 【例题】 下图中哪些图形是立体图形,哪些图形是平面图形?分 别说出它们的名称.
第四章
几何图形初步
4.1
几何图形
4.1.1
立体图形与平面图形
第1课时
几何图形
学前温故
新课早知
小学里认识的平面图 形: 三角形 、 正方形 、 长方形 、 平行四边形 、 梯形 等;立体图 圆 、 形: 正方体 、 长方体 、 圆柱 、 圆锥 、 球 .
学前温故
新课早知
1.把下列物体与其相似的图形连接起来.
分析①是由6个面组成的,所以它是一个立体图形,是一个正方体. ②是由1个面组成的,是一个平面图形,是长方形. ③是由1个面组成的,是一个平面图形,是三角形. ④是由3个面组成的,2个平面1个曲面,是一个立体图形,是圆柱. ⑤是由1个曲面组成的,是一个立体图形,是球. ⑥是由1个曲面和1个平面组成的,是一个立体图形,是圆锥. ⑦是由4个平面组成的,是一个立体图形,是棱锥. 解:①④⑤⑥⑦是立体图形,名称分别为正方体、圆柱、球、圆 锥、三棱锥;②③是平面图形,名称分别为长方形、三角形.
1
2
3
4
5
1.下列图形都是平面图形的一组是( C ) A.三角形、圆、球、圆锥 B.点、线、面、体 C.角、三角形、四边形、圆 D.点、相交线、线段、圆柱
1
2
3
4
5
2.在下面四个物体中,最接近圆柱的是(

人教版七年级数学第四章《几何图形初步》知识点汇总

人教版七年级数学第四章《几何图形初步》知识点汇总

人教版七年级数学第四章《几何图形初步》知识点汇总七年级数学期末复第四章《几何图形初步》知识点汇总1.几何图形①定义:几何图形是从实物中抽象出来的各种图形。

②分类:几何图形分为平面图形和立体图形。

③平面图形:图形所表示的各个部分都在同一平面内,如直线、三角形等。

④立体图形:图形所表示的各个部分不在同一平面内,如圆柱体。

2.常见的立体图形①柱体:A棱柱,B圆柱。

②椎体:A棱锥,B圆锥,球体等。

3.立体图形的三视图从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、左视图),这样就可以把立体图形转化为平面图形。

①会观察小正方体堆积图形画出三视图。

②会根据三视图知道堆积的小正方体的个数。

4.立体图形的展开图①圆柱的平面展开图是矩形。

②圆锥的平面展开图是扇形。

③ n棱柱的侧面展开图是n个形,n棱柱有个底面,都是n边形,n棱柱的平面展开图是多边形。

④ n棱锥的侧面展开图是n个形,n棱锥有个底面,是n 边形,n棱锥的平面展开图是多边形。

⑤正方体的展开图共分四类。

①掌握在正方体展开图中找相对面的方法。

②会根据展开图中的图案判断是哪个图形的展开图。

5.点、线、面、体几何图形的组成:由点、线、面、体组成。

点是构成图形的基本元素,点动成线,线动成面,面动成体。

6.直线①点与直线的位置关系:第一种关系:点在直线上,或者说直线经过点;第二种关系:点在直线外,或者说直线不经过点。

②直线公理:经过两点有且只有一条直线(简称:两点确定一条直线)。

7.直线与直线的位置关系①同一平面内,两条直线的位置关系分为平行和相交。

②当两条不同的直线相交时,我们就称这两条直线相交,这个点叫做它们的交点。

8.射线①表示方法:端点字母必须写在前。

②判断两条射线是同一条射线的方法:它们有一个公共端点,并且在这个公共端点的一侧的点相同。

9.线段①基本性质:线段是有限长的直线段,有两个端点。

②两点之间的距离是线段的长度。

最新人教版七年级数学上册《第四章 几何图形初步》优质PPT公开课件

最新人教版七年级数学上册《第四章 几何图形初步》优质PPT公开课件
首页
有些立体图形是由一些平面图形围成的, 将它们的表面适当剪开,可以展成平面图形. 这样的平面图形称为相应立体图形的展开图.
首页
二、合作探究
探究点一 立体图形的三视图
将正方体的表面适当剪开,看看它的展开图是怎样 的结构,并画出示意图. 比一比,看哪一组得到的结果多!
一四一型
二三一型
共有11种基本情况
谢谢观赏!
再见!
4.1.2 点、线、面、体
一、情景引入 二、合作探究 三、课堂小结
提出 问题
知识 要点
典例 精析
巩固 训练
探究点一 点线面体的概念与关系
四、课后作业
学习目标
1. 进一步认识点、线、面、体的概念。 2.明确点、线、面、体之间的关系。
一、情景导入

首页

首页
欣赏
线
首页
线
首页
点动成线
首页
首页
直角三角形绕一直角边旋 转成圆锥体
长方形绕一边旋转 成圆柱体
首页
知识要点
点线面体的关系:
点动成—— 线 线动成—— 面 面动成—— 体
体是由面围成 面与面相交成线 线与线相交成点
(动态)
(静态)
首页
典例精析
把下面第一行的平面图形绕线旋转一周,便能形 成第二行的某个几何体,请用虚线连一连:
圆柱体
圆锥体
球体
问题2:你能举出一些在日常生活中形状与上述几何 体类似的物体吗?
首页
正方体
长方体
圆柱体
球体
圆锥体
首页
问题3:你能把下列几何图形分成两类吗?并要说出理由.
(1)
(2)
(3)
(4)

人教版七年级上册数学第四章4.1.1立体图形与平面图形

人教版七年级上册数学第四章4.1.1立体图形与平面图形

下面各图中包含哪些简单的平面图形?请再 举出一些平面图形的例子.
长方形、圆、三角形、正方形……
立体图形和平面图形是同一类图形吗?它们 之间有什么联系?
1 立体图形与平面图形是两类不同的几何 图形,但它们是互相联系的.
2 立体图形中某些部分是平面图形,如正方 体的每个面都是正方形.
1.如图,说出下图中 的一些物体的形状所 对应的立体图形.
正方体、长方体、球、圆柱体.
2.你能给右图中的两个 图形起个名吗?并说明 它们由哪些平面图形构 成? 雪人.由三角形、圆和线段组成;三毛.由线 段、圆、三角形、正方形组成.
1.观察下列图形,再写上相应名称.
正方体
长方体
圆柱
圆锥
五棱锥
四棱柱
圆台
三棱台
2.用六根火柴棒,你能组成四个大小一 样的三角形吗?若可能,简述你的做法; 若不能,请简要说明理由.
2 不是所有的立体图形都可以展开,如球 就不能展开.
1.下列图形中可以作为一个正方体的展开 图的是(C ).
小结
从正面看 从左面看 从上面看
谢谢观看
从正面看 从左面看 从上面看
对于一些立体图形的问题,常把它们转化为平面图形
来研究和处理,通常画出从 正 面、 左 面、上
面看的平面图形来表示相应的立体图形.
分别从正面、左面、上面观察这个长方体,看一 看各能得到什么平面图形?
从正面看 从左面看 从上面看
分别从正面、左面、上面看圆柱、圆锥、球,各能 得到什么平面图形?
第四章 几何图形初步
4.1 几何图形
4.1.1 立体图形与平面图形
第1课时 认识几何图形 R·七年级上册
几何图形的定义
不同的物质具有不同的性质. 思考 几何的研究内容是什么?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

左面
上面
想 一 想 ?
下面三视图是表示哪个几何体?
A
B
C
D
试一试
1. 淘气
笑笑
下面哪一幅图是淘气看到的?(画√)

试一试
2.
他们看到的是哪一面?连一连.
试一试 3.看一看,说一说.
(2)
下面哪幅图是淘气看到的?哪幅图是笑笑看到的?
中考聚焦(2004贵阳市)
3.棱长是1cm的小立方体组成如图所示的几何体,那么这个几何 体的表面积是( A ) (A)36cm2 (B)33cm2 (C)30cm2 (D)27cm2
变式:若在地面摆成如图的形式, 把露在表面的都涂上油漆,被涂 的总面积是多少?
探究 【探究】
1、如右图是由几个小立方体所 搭几何体的俯视图,小正方形 中的数字表示在该位置小正方 体的个数。 你能摆出这个几何体吗? 试画出这个几何体的主 视图与左视图。 主视图: 左视图:
2 1
1
2
2 不用摆出这个几何体,你能画出这个 几何体的主视图与左视图吗?
4.1.1 立体图形与平面图形 (第2课时)
题 西 林 壁 ---苏轼 横看成岭侧成峰,远近高低各不同. 不识庐山真面目,只缘身在此山中.
想一想: “横看成岭侧成峰” 一句中,蕴含了怎样的数学道理?
对于一些立体图形的问题,常把它们转化为平面图形 来研究和处理.从不同方向看立体图形,往往会得到不同形 状的平面图形.在建筑、工程等设计中,也常常用从不同方 向看到的平面图形来表示立体图形. 这是一个工件的立体图,设计师们常常画出从不同方 向看它得到的平面图形来表示它.
俯视图
四棱锥
主视图
左视图
俯视图
主视图 三 视 图 左视图 俯视图
说出圆锥、球的三视图各是什么图形.

主视图 左视图 俯视图
主视图
左视图
俯视图
提示:可见棱应画为实线形线段;不可见棱应 画为虚线形线段.
从 正 面 看 从 左 面 看
从 上 面 看
练习:如图,右面三幅图分别是从哪个方向看 这个棱柱得到的?
上面
正面
左面
正四棱台
正视图
侧视图
俯视图
探究:右图是一个 由 9 个正方体组成的立 体图形,分别从正面、 左面、上面观察这个图 形,各能得到什么平面 图形?
正面
左面
上面
分别从正面、左面、上面看一个由若干个正方体组成的立 体图形,得到的平面图形如下图所示,你能搭出这个立体图形吗? 动手试试看!
正面
1.下图是由小立方体堆积的几何体的三视图,它 共由几个立方体组成? 提示:在俯视图上 用标注法解决 10个 变式:
主视图 左视图 俯视图
俯视图 2.下图是由小立方体堆积的几何体的主视图和左 视图,它最少共由几个立方体组成?
9个
小结
这节课我们主要学习了从不同方向看立体图形得到平面图形, 回顾学习过程,谈一谈自己有哪些学习成果.
思考方法
1
2
2 主视图:
先根据俯视图确定主视图有 再根据数字确定每列的方块有
列, 个,
主视图有 3 列,第一列的方块有 2 个, 第二列的方块有 2 个,第三列的方块有 1 个, 左视图有 2 列, 第一列的方块有 2 个, 第二列的方块有 2 个,
左视பைடு நூலகம்:
如图,下列图形是用几个小立方体木块所搭的几何体 从上面看到的平面图形,小正方形中点数字表示该位 置小立方体木块的个数,画出相应几何体的主视图和 左视图.
作业
教科书习题4.1第 4 题.
基本几何体的三视图
★主视图(正视图)——从正面看到的图 ★左视图——从左面看到的图 ★俯视图——从上面看到的图 从上面看
从左面看
主视图 左视图
从正面看
俯视图
例1:分别从正面、左面、上面观察这个长 方体,看一看各能得到什么平面图形?
从正面看
从左面看
从上面看
正方体
主视图
左视图
俯视图
圆柱
主视图 左视图
相关文档
最新文档