七年级数学立体图形试题
人教版七年级数学上册 第四章 几何初步 立体图形 重点题型专练

几何初步立体图形重点题型专练一、选择题(3'⨯10= 30') 1.给出以下四种说法,其中说法正确的是()(1)矩形绕着它的一条边旋转一周,形成圆柱 (2)梯形绕着它的下底旋转一周,形成圆柱(3)直角三角形绕着它的一条直角边旋转一周,形成圆锥(4)直角梯形绕着垂直于底边的腰旋转一周,形成圆锥 A .(1)(2) B.(1) (3) C.(2) (3) D.(2) (4)2.将长方形截去一个角,剩余几个角()A.三个角B.四个角C.五个角D.不能确定3.一个几何体由一些小正方体摆成,其主视图与左视图如图所示,其俯视图不可能是()A.主视图左视图4.如下图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是() AB C D ....5.一个几何体的三视图如图所示,则这个几何体是() A B C D6.有一个无盖的正方体纸盒,正面标有字母“M ”,沿图中粗线将其剪开展成平面图形,这个图形是()A B C D7.如图是正方体的平面展开图,每个面都标注了数字,那么围成正方体后位于3对面的数是()A.1B.2C.5D.68. 两个同样大小的正方形状的积木每个正方体上相对的两个面上写的数之和都等于-1,现将两个正方体并列放置,看得见的五个面上的数字如图所示,则看不见的七个面上的数的和等于()A.-21B.-19C.-5D.-19. 如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是()10.小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方平展开图可能是()A B C D答题区:(3'⨯10= 30')二、填空题(4'⨯10= 40')1.图2-1是两个立方体的展开图,请你写出这两个立方体图形的名称.2.一个正方体盒子的展开图如图2-3所示,如果要把它粘成一个正方体,那么与点A重合的点是.12345678910 A.C.D.B.颜色 红 黄 蓝 白 紫 绿 花的数量1234563.一个用小立方块搭成的几何体的主视图和左视图都是图2-4,这个小几何体中小立方 块最少有 块,最多有 块. 12 3x y图2-454. 能展开成如图所示的几何体的是. 4题5.若要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,x=_ ,y=_.6.立方体木块的六个面分别标有数字1、2、3、4、5、6,如图,是从不同方向观察 这个立方体木块看到的数字情况,数字1和5对面的数字的和是 .7.展览厅内要用相同的正方体木块搭成一个三视图如图的展台,则此展台共需这样的 正方体 块.7题8题8.正方体的每组对面上的数都互为相反数,其表面展开图如图,则在A 、B 、C 三个面上的数依次是.9.一个圆柱体的侧面展开图的边为4πcm 的正方形,则它的表面积为.10.把正方体的6个面分别涂上不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况如上表:现将上述大小相同,颜色、花朵分布完全一样的正方体拼成一个并排放置的长方体如图,则长方体下底面共有花朵.黄 紫 红 蓝 红白红白黄图10填空题答题区(4'⨯10= 40')1、2、3、4、5、6、7、8、9、10、。
【中小学资料】七年级数学上册 4.2 立体图形的视图 4.2.2 由视图到立体图形跟踪训练(含解析)(新版)华东

4.2.2由视图到立体图形一.选择题(共8小题)1.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.4个B.5个C.6个D.7个2.若图是由几个相同的小正方体搭成的几何体的主视图和俯视图,则搭成这个几何体的小正方体的个数最少是()A. 6 B.8 C.10 D.123.一个几何体的三视图如图所示,这个几何体是()A.棱柱B.圆柱C.圆锥D.球4.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥5.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图()A.B.C.D.6.某几何体的三视图如图所示,这个几何体是()A.圆柱B.三棱柱 C 长方体D.圆锥7.如图是由5个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的主视图是()A.B. C.D.8.已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.球D.棱柱二.填空题(共6小题)9.一个几何体,是由许多规格相同的小正方体堆积而成的,其正视图、左视图如图所示,要摆成这样的图形,最少需用_________ 个正方体.10.如图是一个几何体的三个视图,则这个几何体的表面积为_________ .(结果保留π)11.一个由大小相同的正方体构成的几何体的三视图如图,这个几何体是由_________ 个正方体组成的.12如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_________ .13.如图,一个几何体是由大小相同的小正方体焊接而成,其主视图、俯视图、左视图都是“田”字形,则焊接该几何体所需小正方体的个数最少为_________ .14.由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是_________ .三.解答题(共6小题)15.某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图,如图,请你按照三视图确定制作每个密封罐所需钢板的面积.(单位:毫米)16.某物体的三视图如图:(1)此物体是什么体;(2)求此物体的全面积.17.右图是一个立体图形的三视图,请写出这个立体图形的名称,并计算这个立体图形的体积.(结果保留π)18.如图是一个几何体的三视图,其中主视图、左视图都是腰为13cm,底为10cm的等腰三角形,求这个几何体的体积.19.有一些大小相同的小正方体组成的简单几何体,从不同方向看到的平面图形如图所示,请你猜一猜组成这个几何体的小正方体的个数.20.如图是由几个棱长为1cm的小立方块搭成的几何体从上往下看的平面图形,小立方块中的数字表示该位置上小立方块的个数,求出这个几何体的体积.第四章图形的初步认识4.2.2由视图到立体图形参考答案与试题解析一.选择题(共8小题)1.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.4个B.5个C.6个D.7个考点:由三视图判断几何体.分析:根据给出的几何体,通过动手操作,观察可得答案为4,也可以根据画三视图的方法,发挥空间想象能力,直接想象出每个位置正方体的数目,再加上来.解答:解:由三视图可得,需要的小正方体的数目:1+2+1=4.如图:故选:A.点评:本题考查了几何体的三视图及空间想象能力.2.若图是由几个相同的小正方体搭成的几何体的主视图和俯视图,则搭成这个几何体的小正方体的个数最少是()A. 6 B.8 C.10 D.12考点:由三视图判断几何体.专题:几何图形问题.分析:根据主视图以及俯视图,可得出共有2行,根据俯视图可得出该几何体由2列组成,故可得出小正方体最少块数.解答:解:综合主视图和俯视图,底层最少有4个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是6个.故选A.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.3.一个几何体的三视图如图所示,这个几何体是()A.棱柱B.圆柱C.圆锥D.球考点:由三视图判断几何体.分析:根据三视图确定该几何体是圆柱体.解答:解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是圆可判断出该几何体为圆柱.故选:B.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及对立体图形的认识.4.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这个几何体应该是圆锥,故选:D.点评:主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.5.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图()A.B.C.D.考点:由三视图判断几何体.分析:根据三视图想象立体图形,从主视图可以看出左边的一列有两个,左视图可以看出左边的一列后面一行有两个,俯视图中右边的一列有两排,综合起来可得解.解答:解:从主视图可以看出左边的一列有两个,右边的两列只有一个;从左视图可以看出左边的一列后面一行有两个,右边的一列只有一个;从俯视图可以看出右边的一列有两排,右边的两列只有一排(第二排).故选:A.点评:本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.6.某几何体的三视图如图所示,这个几何体是()A.圆柱B.三棱柱C.长方体D.圆锥考点:由三视图判断几何体.专题:常规题型.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为长方形可得为长方体.故选:C.点评:本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间的想象能力.7.如图是由5个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的主视图是()A.B. C.D.考点:由三视图判断几何体;简单组合体的三视图.分析:先细心观察原立体图形中正方体的位置关系,从正面看去,一共三列,左边有1竖列,中间有2竖列,右边是1竖列,结合四个选项选出答案.解答:解:从正面看去,一共三列,左边有1竖列,中间有2竖列,右边是1竖列.故选:B.点评:本题考查了由三视图判断几何体及简单组合体的三视图,重点考查几何体的三视图及空间想象能力.8.已知一个几何体的三视图如图所示,则该几何体是()A.圆柱B.圆锥C.球D.棱柱考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,从而得出答案.解答:解:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆柱.故选:A.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.二.填空题(共6小题)9.一个几何体,是由许多规格相同的小正方体堆积而成的,其正视图、左视图如图所示,要摆成这样的图形,最少需用7 个正方体.考点:由三视图判断几何体.分析:根据主视图、左视图是分别从物体正面、左面看,所得到的图形,结合本题进行分析即可.解答:解:根据三视图可得:第二层有2个小正方块,根据主视图和左视图可得第一层最少有5个正方体,故最少需用7块正方体;故答案为7.点评:此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“主视图疯狂盖,左视图拆违章”就更容易得到答案.10.如图是一个几何体的三个视图,则这个几何体的表面积为24π.(结果保留π)考点:由三视图判断几何体;几何体的表面积.分析:根据三视图正视图以及左视图都为矩形,底面是圆形,则可想象出这是一个圆柱体.表面积=侧面积+底面积×2.解答:解:∵圆柱的直径为4,高为4,∴表面积=2π×(×4)×4+π×(×4)2×2=24π.故答案为:24π.点评:考查了由三视图判断几何体和几何体的表面积,本题难点是确定几何体的形状,关键是找到等量关系里相应的量.11.一个由大小相同的正方体构成的几何体的三视图如图,这个几何体是由 4 个正方体组成的.考点:由三视图判断几何体.分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.解答:解:综合三视图,我们可得出,这个几何体的底层应该有3个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为3+1=4个,故答案为:4.点评:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.12.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是72 .考点:由三视图判断几何体.专题:压轴题.分析:根据主视图与左视图得出长方体的边长,再利用图形的体积得出它的高,进而得出表面积.解答:解:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是36,∴设高为h,则6×2×h=36,解得:h=3,∴它的表面积是:2×3×2+2×6×2+3×6×2=72.故答案为:72.点评:此题主要考查了利用三视图判断几何体的边长,得出图形的高是解题关键.13.如图,一个几何体是由大小相同的小正方体焊接而成,其主视图、俯视图、左视图都是“田”字形,则焊接该几何体所需小正方体的个数最少为4个.考点:由三视图判断几何体.分析:主视图、俯视图、左视图是分别从物体正面、上面、左面看所得到的图形.解答:解:利用一个几何体是由大小相同的小正方体焊接而成,综合主视图、俯视图、左视图,底层最少有2个小立方体,第二层最少有2个小立方体,因此搭成这个几何体的小正方体的个数最少是4个.故答案为:4个.点评:本题考查由三视图判断几何体,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.14.由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是4或5或6或7 .考点:由三视图判断几何体.分析:易得这个几何体共有2层,由左视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.解答:解:由题中所给出的主视图知物体共三列,且左侧一列高两层,右侧一列最高一层;由左视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多7块.故答案为:4或5或6或7.点评:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.三.解答题(共6小题)15.某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图,如图,请你按照三视图确定制作每个密封罐所需钢板的面积.(单位:毫米)考点:由三视图判断几何体;圆柱的计算.分析:首先利用几何体的三视图确定该几何体的形状,然后计算其表面积.解答:解:由三视图可知茶叶罐的形状为圆柱体,并且茶叶罐的底面直径2R为100毫米,高H为150毫米,∵每个密封罐所需钢板的面积即为该圆柱体的表面积,∴S表面积=2πR2+2πRH=2π×502+2π×50×150=20000π(毫米2).答:制作每个密封罐所需钢板的面积为20000π毫米2.点评:此题主要考查了由三视图确定几何体和求几何体的面积与体积,难点是找到等量关系里相应的量.16.某物体的三视图如图:(1)此物体是什么体;(2)求此物体的全面积.考点:由三视图判断几何体.专题:数形结合.分析:考查立体图形的三视图,圆柱的全面积的求法及公式的应用.解答:解:(1)根据三视图的知识,主视图以及左视图都为矩形,俯视图是一个圆,故可判断出该几何体为圆柱.(2分)(2)根据圆柱的全面积公式可得,20π×40+2×π×102=1000π(6分).点评:注意立体图形三视图的看法,圆柱的全面积的计算.17.右图是一个立体图形的三视图,请写出这个立体图形的名称,并计算这个立体图形的体积.(结果保留π)考点:由三视图判断几何体.专题:几何图形问题;压轴题.分析:从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱.由三视图可以圆柱的半径,长和高,易求体积.解答:解:该立体图形为圆柱,∵圆柱的底面半径r=5,高h=10,∴圆柱的体积V=πr2h=π×52×10=250π(立方单位).答:所以立体图形的体积为250π立方单位.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积×高.18.如图是一个几何体的三视图,其中主视图、左视图都是腰为13cm,底为10cm的等腰三角形,求这个几何体的体积.考点:由三视图判断几何体.分析:由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥,求出圆锥的高,然后根据圆锥的体积公式求解即可.解答:解:由三视图可知此几何体是圆锥,依题意知母线长l=13,底面半径r=5,所以底面上的高h=,∴圆锥的体积=πr2•h==100π.点评:本题主要考查三视图的知识和圆锥体积的计算,解决此类图的关键是由三视图得到立体图形.19.有一些大小相同的小正方体组成的简单几何体,从不同方向看到的平面图形如图所示,请你猜一猜组成这个几何体的小正方体的个数.考点:由三视图判断几何体.分析:根据三视图的知识,该几何体共有两列三行组成,底面有5个正方体,第二层有最少2个最多4个,第三层有1个,相加即可求解.解答:解:该几何体共有两列三行组成,底面有5个正方体,第二层有最少2个最多4个,第三层有1个,5+2+1=8(个),5+4+1=10(个).答:组成这个几何体的小正方体的个数是8个或9个或10个.点评:本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.20.如图是由几个棱长为1cm的小立方块搭成的几何体从上往下看的平面图形,小立方块中的数字表示该位置上小立方块的个数,求出这个几何体的体积.考点:由三视图判断几何体.分析:先根据正方体的体积公式:V=l3,计算出一个正方体的体积,再数出几何体中小立方块的个数,相乘即可求解.解答:解:(1×1×1)×(3+4+2+1)=1×10=10(cm3)答:这个几何体的体积是10cm3.点评:考查了由三视图判断几何体,关键是熟悉正方体的体积公式,得到几何体中小立方块的个数.。
立体图形的表面展开图 课时练习-2022-2023学年 华东师大版七年级数学上册

4.3立体图形的表面展开图(附解析)一、单选题(共10个小题)1.如图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是()A.B.C.D.2.图1、图2中的正方形的大小相同,将图1的正方形放在图2中的①、②、③、④的某个位置,与实线中的正方形所组成的图形能围成正方体的位置是()A.①B.②C.③D.④3.图中不是正方体的表面展开图的是()A.B.C.D.4.小红制做了一个正方体玩具,其展开图如图所示,原正方体中与“全”字所在的面上标的字相对的字应是()A.全B.国C.明D.城5.一个正方体的相对的表面上所标的数都是互为相反数的两个数,如图是这个正方体的表面展开图,那么图中x的值是()A.-8 B.-3 C.-2 D.36.如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()A.4 B.6 C.12 D.157.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.8.把一个底面半径是5厘米,高10厘米的圆柱底面分成许多相等的扇形(如下图),切开后,再拼起来,得到一个近似的长方体.拼成后这个长方体的表面积与原来的圆柱体表面积相比,结果().A.不变B.变小C.变大9.下列图形不能作为一个三棱柱的展开图的是()A. B. C.D.10.如图是某正方体的展开图,在顶点处标有数字,当把它折成正方体时,与4重合的数字是()A.9和13B.2和9C.1和13D.2和8二、填空题(共10个小题)11.如图是一个长方体的展开图,如果A面在底面,那么_______面在上面.12.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则3x+2y的值为__________.13.如果五棱柱的底面边长都是2 cm,侧棱长都是4 cm,那么它所有棱长的和是_______ cm,它的侧面展开图的面积是________ cm2.14.如图是一个长方体的表面展开图,其中四边形ABCD是正方形,根据图中标注的数据可求得原长方体的积是_______.15.如图可以沿线折叠成一个带数字的立方体,每三个带数字的面交于立方体的一个顶点,则相交于一个顶点的三个面上的数字之和最小是________.16.在下图的网格中选择一个涂上阴影,使全部阴影图形经折叠后能够形成一个正方体,一共有________种不同的涂法.17.如图①是边长为2的六个小正方形组成的图形,它可以围成如图②所示的正方体,则图①中小正方形的顶点A,B在围成的正方体上的距离是_____.18.一个长方体包装盒展开后如图所示(单位:cm),则其容积为__________cm3.19.如图①是一个小正方体的侧面展开图,小正方体从如图②所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,这时小正方体朝上面的字是__________.20.如图,将3个同样的正方体重叠放置在桌面上,每个正方体的6个面上分别写有-3、-2、-1、1、2、3,相对的两面上写的数字互为相反数,现在有5个面的数字无论从哪个角度都看不到,这5个看不到的面上数字的乘积是________.三、解答题(共3个小题)21.如图所示的是一个正方体的展开图,它的每一个面上都写有一个自然数,并且相对的两个面的两个数字之和相等,求2a b c +-的值.22.把一个正方体的六个面分别标上字母A ,B ,C ,D ,E ,F 并展开如图所示,已知:2243A x xy y =-+ ,2232C x xy y =--,()12B C A =-,若正方体相对的两个面上的多项式的和都相等,试用含x ,y 的代数式表示多项式D ,并求当x =-1,y =-2时,多项式D 的值.23.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(画出一种情况即可)(3)小明说:他剪的所有棱中,最短的一条棱长为a,最长的一条棱是最短的一条棱的5倍.已知纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是88cm,求a的值及长方体纸盒的体积.4.3立体图形的表面展开图解析1.【答案】A【详解】解:A、折叠后才能围成一个正方体,故本选项符合题意;B、含有“田”字形,,故本选项不符合题意;C、折叠后有一行两个面无法折起来,而且都缺个面,折叠后才不能围成一个正方体,故本选项不符合题意;D、含有“田”字形,折叠后才不能围成一个正方体,故本选项不符合题意;故选:A2.【答案】C【详解】解:将图1的正方形放在图2中的①、②、④的位置出现重叠的面,所以不能围成正方体,只有放在图2中的③的位置,能围成正方体.故选:C.3.【答案】B【详解】解:A、符合一四一型,是正方体的表面展开图,则此项不符合题意;B、不符合正方体的展开图的几种模型图,不是正方体的表面展开图,则此项符合题意;C、符合三三型,是正方体的表面展开图,则此项不符合题意;D、符合二二二型,是正方体的表面展开图,则此项不符合题意;故选:B.4.【答案】C【详解】解:由正方体的展开图特点可得:与“全”字所在的面相对的面上标的字应是“明”.故选:C.5.【答案】D【详解】解:根据正方体表面展开图的特征可知,“-3”与“x”的面是相对的面,“y”与“8”的面是相对的面,“-2”与“2”的面是相对的面,相对的表面上所标的数是互为相反数,x=3,故选:D.6.【答案】B【详解】观察图形可知长方体盒子的长=3,宽=2,高=1,∴盒子的容积=3×2×1=6,故选:B.7.【答案】D【详解】根据展开图,可得空心圆与一个实心圆的面是相对的,只与一个实心圆面相邻,A、B、C都不符合题意,只有D符合题意,故选D.8.【答案】C【详解】解:把圆柱的底面平均分成许多相等的扇形后,拼成近似的长方体,切割前后表面积增加了两个以圆柱的高和底面半径为边长的长方形的面的面积, 即拼成后这个长方体的表面积变大.故选:C .9.【答案】A【详解】解:由图形可知作为一个三棱柱的展开图有B 、C 、D ;故不能作为一个三棱柱的展开图的是:A ;故选:A .10.【答案】D【详解】解:当把这个平面图形折成正方体时,与4重合的数字是2、8.故选:D .11.【答案】C【详解】解:由展开图可知,A 和C 相对,B 和D 相对,E 和F 相对,如果A 面在底面,那么C 面在上面.故答案为:C .12.【答案】-1【详解】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“5”与“23x -”是相对面,“y ”与“x ”是相对面,“-2”与“2”是相对面,∵相对的面上的数字或代数式互为相反数,∴2350x -+=,0x y +=,解得1x =-,1y =,∴32321x y +=-+=-.故答案为:-1.13.【答案】 40 40【详解】解:由题意,得棱长和为2×5×2+4×5=40, 侧面积为2×4×5=40. 故答案为:40,40.14.【答案】316cm ##16立方厘米【详解】解:根据题意得:原长方体的宽的4倍等于8cm,原长方体的高与长的和为6cm,∴原长方体的宽为82cm4=,∵四边形ABCD是正方形,∴原长方体的长等于2×2=4cm,∴原长方体的高等于6-4=2cm,∴原长方体的积是342216cm⨯⨯=.故答案为:316cm15.【答案】7【详解】解:观察图形的特点,动手折一折会更准确,知带数字1,2,4的面交于立方体的一个顶点,且和是最小的为7,故答案为:7.16.【答案】4【详解】如图,由四种不同的涂法.故答案为4.17.【答案】2【详解】解:将图①折成正方体后点A和点B为同一条棱的两个端点,故AB=2.故答案为:2.18.【答案】6000【详解】解:由题意可得,该长方体的高为:42﹣32=10(cm),宽为:32﹣10=20(cm),长为:(70﹣10)÷2=30(cm),故其容积为:30×20×10=6000(cm 3), 故答案为:6000.19.【答案】路【详解】解:由图1可知:“国”和“兴”是对面,“梦”和“中”是对面,“复”和“路”是对面, 再由图2可知,1、2、3、4、5分别对应的面是“兴”、“梦”、“中”、“兴”、“复”, 所以第5格朝上的字是“路”.所以答案是路.20.【答案】36【详解】最下面的正方体中,-3对面是3,-1对面是1,故上下两个面的数是2和-2, 中间正方体中,1对面是-1,-2对面是2,故上下两个面的数是3和-3,最上面的正方体中,2对面是-2,3对面是-3,1-对面是1,故无论从哪个角度都看不到的5个面的数字分别是2,-2,3,-3,1,∴它们的乘积是()()2233136⨯-⨯⨯-⨯=,故答案为:36.21.【答案】-2【详解】解:因为相对的两个面的两个数字之和相等,所以845a b c +=+=+,所以3a c -=-,1b c -=,所以2312a b c a c b c +-=-+-=-+=-.22.【答案】22374x xy y -+,5【详解】解:由图形可知A 与C 是相对的面,B 与D 是相对的面,由题意得:B +D =A +C ,∴D =(A +C )-B=(A +C )-()12C A - 1122A C C A =+-+ 3122A C =+ 222231(43)(32)22x xy y x xy y =-++--2222393162222x xy y x xy y =-++-- 22374x xy y =-+,当x =-1,y =-2时,23(1)7(1)(2)4D =⨯--⨯-⨯-+ 2(2)⨯-=5. 23.【答案】(1)8;(2)见解析;(3)2,200cm 3【详解】(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为a cm ,则长与宽相等为5a cm , ∵长方体纸盒所有棱长的和是88cm ,∴4(a +5a +5a )=88,解得a =2,∴这个长方体纸盒的体积为2×10×10=200(cm 3).。
4.2立体图形的视图 (解析版)-2020-2021学年七年级数学上册课时同步练(华师大版)

第4章图形的初步认识4.2 立体图形的视图一、选择题:1.如图,是由大小一样的小立方块摆成的立体图形的三视图,则摆成这个立体图形所需的小立方块的个数为()A.3B.4C.5D.6【答案】A【解析】解:由俯视图易得最底层有2个正方体,第二层有1个正方体,那么共有2+1=3个正方体组成.故选:A.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.2.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.【答案】C【解析】解:A、主视图是第一层三个小正方形,第二层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,故A错误;B、主视图是第一层两个小正方形,第二层中间一个小正方形,第三层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故B错误;C、主视图是第一层两个小正方形,第二层左边一个小正方形,左视图是第一层两个小正方形,第二层左边一个小正方形,故C正确;D、主视图是第一层两个小正方形,第二层右边一个小正方形,左视图是第一层一个小正方形,第二层左边一个小正方形,故D错误;故选:C.【点睛】此题考查的是三视图,掌握主视图和左视图的定义是解题关键.3.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个【答案】B【解析】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;①球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;①圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;①圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B①【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.如图所示,用小立方块搭一几何体,从正面看(主视图)和从上面(俯视图)看得到的图形如图所示,这样的几何体最多有()个立方块A.9B.13C.11D.14【答案】B【解析】解:搭这样的几何体最多需要6+5+2=13个小正方体,故答案选B.【点睛】本题主要考查了三视图的相关知识,解题的关键是读懂题意,熟练掌握和灵活运用三视图.5.如图所示的几何体是由几个大小相同的小正方体搭成的,将正方体①移走后,从左面看到的图形是()A.B.C.D.【答案】B【解析】解:将正方体①移走后,新几何体的三视图与原几何体的三视图相比,主视图和左视图都没有发生改变.故选:B.【点睛】此题主要考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题关键.二、填空题:6.如图是由若干个棱长为1的小正方体堆砌而成的几何体,那么这个几何体露在外面的面积是_____.【答案】23【解析】解:(5+3)×2+5+2=23,故答案为:23.【点睛】此题主要考查几何体的三视图,正确理解三视图的概念是解题关键.7.如图是某几何体从三个方向看到的图形,则这个几何体是__________.【答案】圆锥【解析】解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个圆,∴此几何体为圆锥.故答案为:圆锥.【点睛】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.8.已知10个棱长为m的小正方体组成如图所示的几何体,则这个几何体的表面积是_________.【答案】36m 2【解析】如图所示:一共有10个小正方体构成表面共有2×(1+2+3)+2×(1+2+3)+2×(1+2+3)=36个正方形,因为小正方体的棱长为m ,所以每个小正方形的面积为:m 2.所以这个几何体的表面积36m 2故答案为:36 m 2.【点睛】本题主要考查组合体的表面积,解决这类题的关键是明确该几何体是由哪些特殊的几何体构成的,它们的内在联系是什么:几何体的表面积是所有围成几何体的表面面积之和.9.如图是一个包装盒的三视图,则这个包装盒的体积是___3cm (结果保留)【答案】2000π.【解析】由图知此包装盒是圆柱体,底面圆的直径是20cm ,高是20cm , ∴220()2020002ππ⨯⨯=(3cm ),故填:2000 .【点睛】此题考查由三视图得到立体图形,会观察三视图得到立体图形的具体形状是解题的关键.10.一个几何体是由许多规格相同的小正方体堆积而成的,其主视图、左视图如图所示,要摆成这样的几何体,至少需用_______个正方体,最多需用_______个正方体;【答案】611【解析】由题意可知,第一层最少需用4个正方体,第二层需用2个正方体,至少需用6个正方体;如下图第一层最多用9个正方体,第二层最多用2个正方体,最多需用11个正方体.【点睛】此题主要考查三视图,熟练掌握,即可解题.三、解答题:11.分析图中几何体,请在下面的网格图中画出该几何体分别从正面、左面及上面所看到的形状图.【答案】见解析【解析】解:如图.【点睛】本题考查三视图的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.12.如图是由几个小正方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,请你这个几何体的主视图和左视图.【答案】答案见解析【解析】根据已知图形可得到;【点睛】本题主要考查了三视图的知识点,准确分析画图是解题的关键.13.(1)如图①是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图名称;(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14)【答案】(1)主,俯;(2)207.36cm2【解析】解:(1)如图所示:;故答案为:主,俯;(2)组合几何体的表面积=2×(8×5+8×2+5×2)+4×π×6=2×66+24×3.14=207.36(cm2).【点睛】本题考查了几何体的三视图和几何体表面积的计算,正确理解题意、熟练掌握基本知识是关键.14.由几个相同的正方体堆成的几何体的主视图和俯视图如图所示,(1)这样的几何体最少需要个小正方体,最多需要小正方体;(2)请画出这个几何体在用小正方体最少情况下的所有可能的左视图.【答案】(1)6,8;(2)见解析【解析】解:(1)∵俯视图中有5个正方形,∴最底层有5个正方体;∵主视图第二层有1个正方形,∴几何体第二层最多有3个正方体,最少有1个正方体,∴最多需要小正方体8个,最少有几何体5+1=6;故答案为:6,8;(2)这个几何体所用小正方体最少情况下的所有可能的左视图如图所示:【点睛】此题考查由三视图判断几何体;用到的知识点为:俯视图中正方形的个数即为几何体最底层正方体的个数.15.如图,在平整的地面上,10个完全相同的棱长为2cm的小正方体堆成一个几何体.(1)画出从左面看和从上面看的形状图.(2)如果在这个几何体的表面(不含底面)喷上黄色的漆,这个几何体喷漆的面积是多少cm2.【答案】(1)画图见解析;(2)这个几何体喷漆的面积是128cm2.【解析】(1)从左面看,有3列小正方形,数目分别为3,2,1;从上面看,有3列小正方形,数目分别为3,2,1;∴左视图与俯视图如下:(2)∵前面,后面,左面,右面,上面的小正方形的个数为6、6、7、7、6,∴(6+6+7+7+6)×(2×2)=128cm2.答:这个几何体喷漆的面积是128cm2.【点睛】本题考查几何体的三视图画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.注意涂色面积指组成几何体的外表面积.16.如图所示的几何体,其俯视图是()A.B.C.D.【答案】C【解析】解:从几何体上面看,共2层,底层2个小正方形,上层是3个小正方形,左齐.故选:C.【点睛】本题考查几何体的三视图,属于中考常考基础题型.17.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是________(结果保留 ).【答案】24π cm²【解析】解:先由三视图确定该几何体是圆柱体,底面半径是4÷2=2cm,高是6cm,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:2π×2=4π(cm),∴这个圆柱的侧面积是4π×6=24π(cm²)①故答案为:24π cm²①【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.。
人教版七年级数学4.1.1-立体图形与平面图形习题

•DCBAC BA5 题图4.1.1 立体图形和平面图形1.将下列各展开图与立体图形连线。
四棱锥 三棱柱 正方体 长方体 2.长方体共有( )个面.A .8B .6C .5D .4 3.六棱柱共有( )条棱.A .16B .17C .18D .20 4.下列说法,不正确的是( )A .圆锥和圆柱的底面都是圆B .棱锥底面边数与侧棱数相等C .棱柱的上、下底面是形状、大小相同的多边形D .长方体是四棱柱,四棱柱是长方体 5.物体的形状如图所示,则此物体的俯视图是( )6.甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,甲说他看到 的是“6”,乙说他看到的是“”,丙说他看到的是“”,丁说他看到的是“9”,则下列说法正确 的是( )A .甲在丁的对面,乙在甲的左边,丙在丁的右边;B .丙在乙的对面,丙的左边是甲,右边是乙;C .甲在乙的对面,甲的右边是丙,左边是丁;D .甲在丁的对面,乙在甲的右边,丙在丁的右边。
7.由四个大小相同的小正方体搭成的几何体的左视图如图所示,则这个几何体的搭法不能是( )8.由若干个相同的小正方体搭成的几何体的俯视图如图,各小方格内的数字表示叠在该层位置的小正方体的个数,则这个几何体的左视图是( )9.将如图所示的Rt △ABC 绕直角边AC 旋转一周,所得几何体的主视图是( )A B C B''D 3 12A B C D10.如图,小强拿一张正方形的纸,沿虚线对折一次得图②,再对折一次得图③,然后用剪刀沿图③中的虚线剪去一个角,再打开后的形状是()11.下列图形哪些是正方体的展开图()A.(1)(2)(3) B.(2)(3(4) C.(1)(3)(4) D.(1)(2)(4)12.如图所示,是正方体纸盒的展开图,若在其中的三个正方形A,B,C内分别填上适当的数,使它们折成正方体后相对的面上的两个数互为相反数,则填入正方形A,B,C的三个数依次是()A.1,-2,0 B.0,-2,1 C.-2,0,1 D.-2,1,013.在正方体的六个面上分别涂上红、黄、蓝、白、黑、绿六种颜色,现有涂色方式完全相同的四个正方体,如图拼成一个长方体,请判断涂红、黄、白三种颜色的对面分别涂着哪一种颜色?14.如图,已知一个正方体的六个面上分别写着六个连续的整数,且每两个相对面上的两个数的和都相等,图中所能看到的数是16,19和20,求这6个整数的和。
人教版七年级上册数学 第四章 几何图形初步 习题

第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时认识立体图形与平面图形基础题知识点1 认识立体图形1.(丽水中考)下列图形中,属于立体图形的是(C)A B C D2.下列物体中,最接近圆柱的是(C)3.下面几何体中,既不是柱体,又不是锥体的是(C)4.请写出图中的立体图形的名称.(1)圆柱;(2)三棱柱;(3)三棱锥;(4)圆锥.5.如图,把下列物体和与其相似的立体图形连接起来.解:如图.知识点2 认识平面图形6.以下图形中,不是平面图形的是(C)A.线段B.角C.圆锥D.圆7.【关注社会生活】如图是交通禁止驶入标志,组成这个标志的几何图形有(A)A.圆、长方形B.圆、线段C.球、长方形D.球、线段8.如图所示的是一座房子的平面图,组成这幅图的几何图形有(C)A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形9.如图是由平面图形正方形和半圆构成的.10.下图中包含哪些简单的平面图形?解:图中包含圆、正方形、长方形、三角形、平行四边形.易错点忽视柱体上、下底面“平行且相等”这一条件而致错11.如图所示的立体图形中,不是柱体的是(D)中档题12.下列几何图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱,其中立体图形有m个,平面图形有n 个,则m-n的值为(D)A.3B.2C.1D.013.如图,用简单的平面图形画出三位携手同行的小人物,请你仔细观察,图中三角形有4个,圆有6个.14.在如图所示的图形中,柱体有①②③⑦,锥体有⑤⑥,球体有④.15.指出图中各物体是由哪些立体图形组成的.解:(1)由正方体、圆柱、圆锥组成.(2)由圆柱、长方体、三棱柱组成.(3)由五棱柱、球组成.16.如图,有7种图形,请你选用这7种图形中的若干种(不少于两种)构造一幅画,并用一句话说明你的构想是什么?举例:如图,左框中就是一个符合要求的图案,请你在右框中画出一个与这个不同的图案,并加以说明.一辆汽车解:答案不唯一,略.综合题17.【注重动手操作】动手剪拼:下边的三幅图都是不规则图形,你能把它们各剪一刀,分成两部分,然后拼成正方形吗?试试看. 解:如图.第2课时立体图形与平面图形的相互转化基础题知识点1 从不同的方向观察立体图形1.(绍兴中考)如图的几何体是由五个相同的小立方体搭成,它从正面看到的平面图形是(A)A B C D2.有一种圆柱体茶叶筒如图所示,从正面看得到的平面图形是(D)3.如图所示的几何体,从左面看得到的平面图形是(B)A B C D4.如图是小李书桌上放的一本书,从上往下看得到的平面图形是(A)A B C D5.图中的两个圆柱体底面半径相同而高度不同,关于从不同的方向看这两个圆柱体得到的平面图形,说法正确的是(B)A.从正面看得到的平面图形相同B.从上面看得到的平面图形相同C.从左面看得到的平面图形相同D.从各个方向看得到的平面图形都相同6.下列几何体中,从正面、上面、左面观察都是相同图形的是(C)A.圆柱B.三棱柱C.球D.长方体知识点2 立体图形的展开图7.如图所示的立体图形,它的展开图是(C)A B C D8.(常州中考)下列图形中,是圆锥的侧面展开图的是(B)9.(陕西中考)如图是一个几何体的表面展开图,则该几何体是(C)A.正方体B.长方体C.三棱柱D.四棱锥10.(无锡中考)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是(C)中档题11.(广安中考)如图所示的几何体,从上面看得到的平面图形是(D)12.(龙东中考)由几个相同的小正方体搭成的一个几何体如图所示,从正面看这个几何体得到的平面图形是(A)13.(绵阳中考)把图中的三棱柱展开,所得到的展开图是(B)14.(教材P123习题T10变式)(河南中考)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是(D)A.厉B.害C.了D.我15.(连云港中考)由6个大小相同的正方体搭成的几何体如图所示,比较它从三个不同方向看到的平面图形的面积,则(C)A.一样大B.从正面看到的平面图形的面积最小C.从左面看到的平面图形的面积最小D.从上面看到的平面图形的面积最小16.如图是由一些相同的小正方体搭成的几何体从三个不同方向看到的图形,搭成这个几何体的小正方体的个数是4.17.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子,试问共有4种添加方法.综合题18.如图是一个长方体的展开图,每一面上都标注了字母(标字母的面是外表面),根据要求回答问题:(1)如果D面在长方体的左面,那么F面在哪里?(2)B面和哪个面是相对的面?(3)如果C面在前面,从上面看是D面,那么左面是哪个面?(4)如果B面在后面,从左面看是D面,那么前面是哪个面?(5)如果A面在右面,从下面看是F面,那么B面在哪里?解:(1)右面.(2)E面.(3)B面.(4)E面.(5)后面.小专题(十一)正方体的展开与折叠——教材P122习题T7、P123习题T10的变式与应用类型1 判断正方体的展开图教材母题:(教材P122习题T7)如图,这些图形都是正方体的展开图吗?如果不能确定,折一折,试一试.你还能再画出一些正方体的展开图吗?解:第一排第3个图不能,其余都能折成正方体.正方体的展开图可总结为如下图所示“一四一”“二三一”“三三”“二二二”四种类型,共11种情况. 1.一四一型2.二三一型3.三三型4.二二二型若小正方形摆成的平面图形呈“”“”“”型,则不能折成正方体.若出现“”型,则另两面必须在两侧.1.(长春中考)下列图形中,可以是正方体表面展开图的是(D)A B C D2.将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去(序号)(D)A.1或2或3B.3或4或5C.4或5或6D.1或2或6类型2 找正方体的相对面或相邻面3.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是(C)A.中B.考C.顺D.利4.如图,该平面展开图按虚线折叠成正方体后,相对面上两个数之和为7,则x+y的值是(C)A.7B.8C.9D.104.1.2 点、线、面、体基础题知识点1 点、线、面、体1.面与面相交,形成的是(B)A.点B.线C.面D.体2.下雨时汽车的雨刷把玻璃上的雨水刷干净,这属于的实际运用是(B)A.点动成线B.线动成面C.面动成体D.都不对3.下面现象能说明“面动成体”的是(A)A.旋转一扇门,门运动的痕迹B.扔一块小石子,小石子在空中飞行的路线C.天空划过一道流星D.时钟秒针旋转时扫过的痕迹4.长方体有6个面,12条棱,8个顶点;圆柱有3个面,其中有2个平面,1个曲面.5.如图所示的是一个棱柱,请问:(1)这个棱柱由几个面围成?各面的交线有几条?它们是直的还是曲的?(2)这个棱柱的底面和侧面各是什么形状?(3)该棱柱有几个顶点?解:(1)这个棱柱由5个面围成,各面的交线有9条,它们是直的.(2)棱柱的底面是三角形,侧面是长方形.(3)有6个顶点.知识点2 由平面图形旋转而成的立体图形6.(长沙中考)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是(D)7.【易错】现有一个长为4 cm,宽为3 cm的长方形,绕它的一边旋转一周,得到的几何体的体积是36π cm3或48π cm3.中档题8.(教材P120练习T2变式)将下面平面图形绕直线l旋转一周,可得到如图所示立体图形的是(B)A B C D9.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是(B)A.五棱柱B.六棱柱C.七棱柱D.八棱柱10.下面图1是正方体木块,若用不同的方法,把它切去一块,可以得到如图2、图3、图4、图5不同形状的木块.图1 图2 图3 图4 图5(1)我们知道,图1的正方体木块有8个顶点,12条棱,6个面.请你观察,将图2、图3、图4、图5中木块的顶点数a、棱数b、面数c填入下表:图顶点数a 棱数b 面数c1 8 12 62 6 9 53 8 12 64 8 13 75 10 15 7(2)观察这张表,请你归纳出上述各种木块的顶点数a、棱数b、面数c之间的数量关系,这种数量关系是:a+c -b=2(用含a,b,c的一个等式表示).4.2 直线、射线、线段第1课时直线、射线、线段基础题知识点1 直线1.下列可近似看作直线的是(D)A.绷紧的琴弦B.探照灯射出的光线C.孙悟空的金箍棒D.太阳光线2.下列图示中,直线表示方法正确的有(D)A.①②③④B.①②C.②④D.①④3.如图,下列说法错误的是(D)A.点P为直线AB外一点B.直线AB不经过点PC.直线AB与直线BA是同一条直线D.点P在直线AB上4.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明经过一点可以画无数条直线;用两个钉子把细木条钉在木板上,就能固定细木条,这说明两点确定一条直线.5.如图,完成下列填空:(1)直线a经过点A,C,但不经过点B,D;(2)点B在直线 b上,在直线 a外;(3)点A既在直线a上,又在直线b上.知识点2 射线6.(教材P126练习T1变式)如图所示,A,B,C是同一直线上的三点,下面说法正确的是(C)A.射线AB与射线BA是同一条射线B.射线AB与射线BC是同一条射线C.射线AB与射线AC是同一条射线D.射线BA与射线BC是同一条射线7.如图,能用O,A,B,C中的两个字母表示的不同射线有7条.知识点3 线段8.下列表示线段的方法中,正确的是(B)A.线段AB.线段ABC.线段abD.线段Ab9.按语句“画出线段PQ的延长线”,画图正确的是(A)10.(柳州中考)如图,在直线l上有A,B,C三点,则图中线段共有(C)A.1条B.2条C.3条D.4条11.如图,直线有多少条?把它们分别表示出来;线段有多少条?把它们分别表示出来;射线有多少条?可以表示的射线有多少条?把它们表示出来.解:直线有3条,分别为直线AB,直线AC,直线BC;线段有6条,分别为线段AB,线段AC,线段AD,线段BD,线段CD,线段BC;射线有14条,可以表示的射线有8条,分别为射线AB,射线AC,射线BA,射线BC,射线CA,射线CB,射线DB,射线DC.易错点三个点的位置不确定,考虑不周全12.平面上有三个点,可以确定直线的条数是1条或3条.中档题13.如图,对于直线AB,线段CD,射线EF,其中能相交的是(B)14.下列关于作图的语句中,一定正确的是(D)A.画直线AB=10 cmB.画射线OB=10 cmC.已知A,B,C三点,过这三点画一条直线D.画线段OB=10 cm15.延长线段AB到点C,下列说法中正确的是(B)A.点C在线段AB上B.点C在直线AB上C.点C不在直线AB上D.点C在直线AB的延长线上16.如图,下列叙述不正确的是(C)A.点O不在直线AC上B.图中共有5条线段C.射线AB与射线BC是指同一条射线D.直线AB与直线CA是指同一条直线17.(教材P126练习T2变式)如图,已知平面上四点A,B,C,D.(1)画直线AB,射线CD;(2)画射线AD,连接BC;(3)直线AB与射线CD相交于点E;(4)连接AC,BD相交于点F.解:如图所示.18.如图,已知数轴上的原点为O,点A表示3,点B表示-1,回答下列问题:(1)数轴在原点O左边的部分(包括原点)是一条什么线?怎样表示?(2)射线OB上的点表示什么数?(3)数轴上表示不大于3且不小于-1的数的部分是什么图形?怎样表示?解:(1)是一条射线,表示为射线OB.(2)负数和零(非正数).(3)线段,表示为线段AB.19.【易错】往返于甲、乙两地的客车,中途有三个站(如图).其中每两站的票价不同.问:(1)有多少种不同的票价?(2)要准备多少种车票?解:根据线段的定义:可知图中的线段有AC,AD,AE,AB,CD,CE,CB,DE,DB,EB,共10条. (1)有10种不同的票价.(2)因车票需要考虑方向性,如“A→C”与“C→A”票价相同,但方向不同,故需要准备20种车票. 综合题 20.如图:(1)试验观察:如果每过两点可以画一条直线,那么: 第①组最多可以画3条直线; 第②组最多可以画6条直线; 第③组最多可以画10条直线; (2)探索归纳:如果平面上有n (n≥3)个点,且任意3个点均不在一条直线上,那么最多可以画n (n -1)2条直线;(用含n 的式子表示) (3)解决问题:某班45名同学在毕业后的一次聚会中,如果每两人握1次手问好,那么共握990次手.第2课时 比较线段的长短基础题 知识点1 用尺规作一条线段等于已知线段 1.尺规作图的工具是 (D )A.刻度尺和圆规B.三角尺和圆规C.直尺和圆规D.没有刻度的直尺和圆规 2.已知:线段a ,b.求作:线段AB ,使得AB =a +2b. 小明给出了四个步骤: ①在射线AM 上画线段AP =a ; ②则线段AB =a +2b ;③在射线PM上画PQ=b,QB=b;④画射线AM.你认为正确的顺序是(B)A.①②③④B.④①③②C.④③①②D.④②①③3.如图,已知线段a,b,作一条线段使它等于2a+b.(要求:不写作法,保留作图痕迹)解:如图,AC即为所求线段.知识点2 线段的长短比较及和差4.如图所示,比较线段a和线段b的长度,结果正确的是(B)A.a>bB.a<bC.a=bD.无法比较5.七年级(1)班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条较长的绳子,请你为他们选择一种合适的方法(A)A.把两条大绳的一端对齐,然后同一方向上拉直两条大绳,另一端在外面的即为长绳B.把两条绳子接在一起C.把两条绳子重合,观察另一端情况D.没有办法挑选6.如图,在三角形ABC中,比较线段AC和AB长短的方法可行的有(C)①凭感觉估计;②用直尺度量出AB和AC的长度;③用圆规将线段AB叠放到线段AC上,观察点B的位置;④沿点A 折叠,使AB 和AC 重合,观察点B 的位置.A.1个B.2个C.3个D.4个知识点3 线段的中点及等分点7.如图,点B 在线段AC 上,下列式子中:①AB=12AC ;②AB=BC ;③AC=2AB ;④AB+BC =AC ,其中能表示点B 是线段AC 的中点的有(C )A.1个B.2个C.3个D.4个 8.如图,点O 是线段AB 的中点,点C 在线段OB 上,AC =6,CB =3,则OC 的长等于(C )A.0.5B.1C.1.5D.29.如图,点C 在线段AB 上,点D 是线段AC 的中点,点C 是线段BD 的四等分点.若CB =2,则线段AB 的长为(C )A.6B.10C.14D.18 10.如图,点C 是线段AB 上的点,点D 是线段BC 的中点.(1)若AB =10,AC =6,求CD 的长; (2)若AC =30,BD =10,求AB 的长. 解:(1)因为点D 是线段BC 的中点, 所以CD =12BC.因为AB =10,AC =6, 所以BC =AB -AC =10-6=4. 所以CD =12BC =2.(2)因为点D 是线段BC 的中点, 所以BC =2BD. 因为BD =10, 所以BC =2×10=20. 因为AB =AC +BC , 所以AB =30+20=50.易错点 由于点的位置不确定而出现漏解11.已知A ,B ,C 是直线MN 上的点,若AC =8 cm ,BC =6 cm ,点D 是AC 的中点,则BD 的长等于10 cm 或2 cm. 中档题12.已知线段AB =2 cm ,延长AB 到点C ,使BC =AB ,再延长BA 到点D ,使BD =2AB ,则线段DC 的长为(C ) A.4 cm B.5 cm C.6 cm D.2 cm13.【易错】已知点A ,B ,C 在同一条直线上,点M ,N 分别是AB ,AC 的中点.如果AB =10 cm ,AC =8 cm ,那么线段MN 的长度为(D )A.6 cmB.9 cmC.3 cm 或6 cmD.1 cm 或9 cm14.如图,C ,D 是线段AB 上的点,若AB =8,CD =2,则图中以A ,C ,D ,B 为端点的所有线段的长度之和等于(D )A.24B.22C.20D.2615.如图,点C ,D ,E 都在线段AB 上,已知AD =BC ,点E 是线段AB 的中点,则CE =DE.(填“>”“<”或“=”)16.如图,点M 是线段AB 的中点,点C 在线段AB 上,且AC =4 cm ,点N 是AC 的中点,MN =3 cm ,求线段CM 和AB 的长.解:因为点N 是AC 的中点,AC =4 cm , 所以NC =12AC =12×4=2(cm ).因为MN =3 cm ,所以CM =MN -NC =3-2=1(cm ). 所以AM =AC +CM =4+1=5(cm ). 因为点M 是AB 的中点, 所以AB =2AM =2×5=10(cm ).17.如图,已知线段AB =20 cm ,点M 是线段AB 的中点,点C 是AB 延长线上一点,AC =3BC ,点D 是线段BA 延长线上一点,AD =12AB.(1)求线段BC 的长; (2)求线段DC 的长;(3)点M 还是哪些线段的中点?解:(1)因为AC =AB +BC ,AC =3BC , 所以3BC =AB +BC ,即AB =2BC. 因为AB =20 cm , 所以BC =10 cm.(2)因为AD =12AB ,AB =20 cm ,所以AD =10 cm.所以DC =AD +AB +BC =10+20+10=40(cm ). (3)因为点M 是线段AB 的中点, 所以AM =MB =10 cm. 所以DM =20 cm ,MC =20 cm. 所以点M 还是线段DC 的中点. 综合题18.已知线段AB 上有两点P ,Q ,点P 将AB 分成两部分,AP∶PB=2∶3,点Q 将AB 也分成两部分,AQ∶QB=4∶1,且PQ =3 cm.求AP ,QB 的长. 解:画出图形,如图:设AP =2x cm ,PB =3x cm ,则AB =5x cm. 因为AQ∶QB=4∶1, 所以AQ =4x cm ,QB =x cm. 所以PQ =PB -QB =2x cm. 因为PQ =3 cm , 所以2x =3. 所以x =1.5.所以AP =3 cm ,QB =1.5 cm.第3课时关于线段的基本事实及两点间的距离基础题知识点1 关于线段的基本事实1.(随州中考改编)某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是(A)A.两点之间,线段最短B.两点确定一条直线C.直线比曲线短D.经过一点有无数条直线2.【关注社会生活】下面现象,可以用两点之间线段最短来解释的是(D)A.平板弹墨线B.建筑工人砌墙C.会场把茶杯摆直D.弯河道改直3.如图,A,B是公路l两旁的两个村庄,若两村要在公路上合修一个汽车站P,使它到A,B两村的距离之和最小,试在l上标注出点P的位置,并说明理由.解:点P的位置如图所示.作法:连接AB交直线l于点P,则P点即为汽车站位置.理由:两点之间,线段最短.知识点2 两点间的距离4.(滨州中考)若数轴上点A,B分别表示数2,-2,则A,B两点之间的距离可表示为(B)A.2+(-2)B.2-(-2)C.(-2)+2D.(-2)-25.如图,线段AB=8 cm,延长AB到点C.若线段BC的长是AB长的一半,则A,C两点之间的距离为(D)A.4 cmB.6 cmC.8 cmD.12 cm中档题6.(新疆中考)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线(B)A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B7.已知A,B,C为直线l上的三点,线段AB=9 cm,BC=1 cm,那么A,C两点间的距离是(D)A.8 cmB.9 cmC.10 cmD.8 cm或10 cm8.如图,平面上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水池P的位置,使它与4个村庄的距离之和最小.解:连接AC,BD的交点即为P点的位置,如图.综合题9.(教材P130习题T11变式)如图所示,有一个圆柱形纸筒,一只虫子在点B处,一只蜘蛛在点A处,蜘蛛沿着纸筒表面准备偷袭虫子,那么蜘蛛想要最快地捉住虫子,应怎样走?解:如图所示,蜘蛛沿线段AB爬行,能最快地捉住虫子.小专题(十二)线段的计算类型1 中点问题(整体思想)【例】 如图,点C 在线段AB 上,点M ,N 分别是AC ,BC 的中点.(1)若AC =9 cm ,CB =6 cm ,则线段MN 的长为152cm ;(2)若AC =a cm ,CB =b cm ,则线段MN 的长为a +b2cm ;(3)若AB =m cm ,求线段MN 的长度;(4)若点C 为线段AB 上任意一点,且AB =n cm ,其他条件不变,你能猜想MN 的长度吗?并用一句简洁的话描述你发现的结论.解:(3)因为点M ,N 分别是AC ,BC 的中点, 所以MC =12AC ,CN =12BC.又因为MN =MC +CN ,所以MN =12(AC +BC )=12AB =m2 cm.(4)猜想:MN =12AB =n2cm.结论:若点C 为线段AB 上一点,且点M ,N 分别是AC ,BC 的中点,则MN =12AB.【变式1】 若MN =k cm ,求线段AB 的长. 解:因为点M 是AC 的中点, 所以CM =12AC.因为点N 是BC 的中点, 所以CN =12BC.所以MN =CM +CN =12(AC +BC )=12AB.所以AB =2MN =2k cm.【变式2】 若将例题中的“点C 在线段AB 上”改为“点C 在线段AB 的延长线上”,其他条件不变,(3)中结论还成立吗?请画出图形,写出你的结论,并说明理由. 解:MN =m2cm 成立.当点C 在线段AB 的延长线上时,如图.因为点M ,N 分别是AC ,BC 的中点,所以MC =12AC ,CN =12BC.又因为MN =MC -CN ,所以MN =12(AC -BC )=12AB =m2 cm.如图,只要点C 在线段AB 所在直线上,点M ,N 分别是AC ,BC 的中点,那么MN =12AB.图1 图2 图31.如图,C 是线段AB 上一点,M 是AB 的中点,N 是AC 的中点.若AB =8 cm ,AC =3.2 cm ,则线段MN 的长为2.4cm.2.如图,已知点C ,D 为线段AB 上顺次两点,M ,N 分别是AC ,BD 的中点.(1)若AB =24,CD =10,求MN 的长;(2)若AB =a ,CD =b ,请用含a ,b 的式子表示出MN 的长. 解:(1)因为AB =24,CD =10, 所以AC +DB =14.因为M ,N 分别为AC ,BD 的中点, 所以CM =12AC ,DN =12BD.所以MC +DN =12(AC +DB )=7.所以MN =MC +DN +CD =17. (2)因为AB =a ,CD =b , 所以AC +DB =a -b.所以MC +DN =12(AC +DB )=12(a -b ).所以MN =MC +DN +CD =12(a -b )+b =12(a +b ).类型2 直接计算3.如图,已知线段AB ,按下列要求完成画图和计算:(1)延长线段AB 到点C ,使BC =2AB ,取线段AC 的中点D ; (2)在(1)的条件下,如果AB =4,求线段BD 的长度. 解:(1)如图.(2)因为BC =2AB ,且AB =4, 所以BC =8.所以AC =AB +BC =8+4=12. 因为D 为AC 中点, 所以AD =12AC =6.所以BD =AD -AB =6-4=2.类型3 方程思想4.如图,已知B ,C 两点把线段AD 分成2∶5∶3三部分,点M 为AD 的中点,BM =6 cm ,求CM 和AD 的长.解:设AB =2x cm ,BC =5x cm ,CD =3x cm , 则AD =AB +BC +CD =10x cm. 因为M 是AD 的中点, 所以AM =MD =12AD =5x cm.所以BM =AM -AB =5x -2x =3x cm. 因为BM =6 cm , 所以3x =6.解得x =2.故CM =MD -CD =5x -3x =2x =2×2=4(cm ), AD =10x =10×2=20(cm ).5.如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB ,CD 的中点E ,F 之间的距离是10 cm ,求AB ,CD的长.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm. 因为点E ,F 分别为AB ,CD 的中点, 所以AE =12AB =1.5x cm ,CF =12CD =2x cm.所以EF =AC -AE -CF =6x -1.5x -2x =2.5x (cm ). 因为EF =10 cm , 所以2.5x =10.解得x =4. 所以AB =12 cm ,CD =16 cm.类型4 分类讨论思想6.已知线段AB =60 cm ,在直线AB 上画线段BC ,使BC =20 cm ,点D 是AC 的中点,求CD 的长度. 解:当点C 在线段AB 上时,如图1,图1CD =12AC =12(AB -BC )=12×(60-20)=12×40=20(cm ); 当点C 在线段AB 的延长线上时,如图2,图2CD =12AC =12(AB +BC )=12×(60+20)=12×80=40(cm ). 所以CD 的长度为20 cm 或40 cm.7.课间休息时小明拿两根木棒玩,小明说:“较短木棒AB 长40 cm ,较长木棒CD 长60 cm ,将它们的一端重合,放在同一条直线上,此时两根木棒的中点分别是点E 和点F ,则点E 和点F 间的距离是多少?你说对了我就给你玩.”聪明的你请帮小华求出此时两根木棒的中点E 和F 间的距离是多少?解:如图1,当AB 在CD 的左侧且点B 和点C 重合时,图1因为点E 是AB 的中点,所以BE =12AB =12×40=20(cm ).因为点F 是CD 的中点,所以CF =12CD =12×60=30(cm ).所以EF =BE +CF =20+30=50(cm ). 如图2,当AB 在CD 上且点B 和点C 重合时,图2因为点E 是AB 的中点,所以BE =12AB =12×40=20(cm ).因为点F 是CD 的中点,所以CF =12CD =12×60=30(cm ).所以EF =CF -BE =30-20=10(cm ).所以此时两根木棒的中点E 和F 间的距离是50 cm 或10 cm.类型5 动态问题8.如图,数轴上A ,B 两点对应的有理数分别为10和15,点P 从点A 出发,以每秒1个单位长度的速度沿数轴正方向运动,点Q 同时从原点O 出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t 秒.(1)当0<t <5时,用含t 的式子填空:BP =5-t ,AQ =10-2t ; (2)当t =2时,求PQ 的值;(3)【分类讨论思想】当PQ =12AB 时,求t 的值.解:(2)当t =2时,AP <5,点P 在线段AB 上;OQ <10,点Q 在线段OA 上,如图所示:此时PQ =OP -OQ =(OA +AP )-OQ =(10+t )-2t =10-t =8.(3)PQ =|OP -OQ|=|(OA +AP )-OQ|=|(10+t )-2t|=|10-t|. 因为PQ =12AB ,所以|10-t|=2.5. 解得t =7.5或t =12.5.4.3 角 4.3.1 角基础题知识点1 角的定义及表示方法 1.下列说法中,正确的是(C ) A.两条射线组成的图形叫做角B.有公共端点的两条线段组成的图形叫做角C.角可以看作是由一条射线绕着它的端点旋转而形成的图形D.角可以看作是由一条线段绕着它的端点旋转而形成的图形 2.图中角的表示方法正确的有(B )A.1个B.2个C.3个D.4个 3.如图所示,下列表示角的方法错误的是(D )A.∠1与∠AOB 表示同一个角B.∠β表示的是∠BOCC.图中共有三个角:∠AOB ,∠AOC,∠BOCD.∠AOC 也可用∠O 来表示4.如图,∠1,∠2表示的角用大写字母分别表示为∠ABC,∠BCN;∠A 也可表示为∠BAC,还可以表示为∠MAN .5.如图所示,能用一个字母表示的角有2个,以A 为顶点的角有3个,图中所有的角有7个(小于平角).知识点2 角的度量6.(厦门中考)1°等于(C )A.10′B.12′C.60′D.100′ 7.下列各角中,是钝角的是(B )A.14周角B.23平角C.平角D.14平角8.已知∠1=27°18′,∠2=27.18°,∠3=27.3°,则下列说法正确的是(A ) A.∠1=∠3 B.∠1=∠2 C.∠1<∠2 D.∠2=∠3 9.计算:(1)12′=0.2°或720″; (2)360″=0.1°或6′; (3)57.18°=57°10′48″. 知识点3 钟面角10.某校七年级在下午3:00开展“阳光体育”活动.下午3:00这一时刻,时钟上分针与时针所夹的小于平角的角等于90°.易错点1 角的概念辨析有误 11.下列说法正确的是(C ) A.平角就是一条直线 B.小于平角的是钝角C.平角的两条边在同一条直线上D.周角的终边与始边重合,所以周角的度数为0° 易错点2 角度换算时出错12.(1)把124.24°化为度、分、秒的形式为124°14′24″; (2)若把36°36′36″化成以度为单位,则结果为36.61°. 中档题13.下列各式中,角度互化正确的是(D ) A.63.5°=63°50′ B.23°12′36″=23.48° C.18°18′18″=18.33° D.22.25°=22°15′14.【易错】一个20°的角放在10倍的放大镜下看是(A ) A.20° B.2° C.200° D.无法判断 15.如图,点O 在直线AB 上,则在此图中小于平角的角有(B )A.4个B.5个C.6个D.7个16.如图,有下列说法:①∠ECG和∠C是同一个角;②∠OGF和∠OGB是同一个角;③∠DOF和∠EOG是同一个角;④∠ABC和∠ACB是同一个角.其中正确的有(B)A.1个B.2个C.3个D.4个17.(通辽中考)4点10分,时针与分针所夹的小于平角的角为(B)A.55°B.65°C.70°D.以上结论都不对18.如图,写出符合下列条件的角(图中所有的角均指小于平角的角).(1)能用一个大写字母表示的角;(2)以点A为顶点的角;(3)图中所有的角(可用简便方法表示).解:(1)∠B,∠C.(2)∠CAD,∠BAD,∠BAC.(3)∠C,∠B,∠1,∠2,∠3,∠4,∠CAB.19.爸爸问小明:“一个方桌有四个角,如果锯掉一个角,还剩几个角?”小明回答:“还剩3个角.”并画出了如下图形.小明回答正确吗?若不正确,请说明理由,并画出图形.解:不正确,理由:除小明这种画法外还有如下两种画法,所以还剩3个或4个或5个角.画图如下:【变式】 n 边形剪去一个角,还剩(n -1)或n 或(n +1)个角. 综合题20.【类比探究】有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点.如图所示,如果过角的顶点:(1)在角的内部作1条射线,那么图中一共有3个角; (2)在角的内部作2条射线,那么图中一共有6个角; (3)在角的内部作3条射线,那么图中一共有10个角;(4)在角的内部作n 条射线,那么图中一共有(n +2)(n +1)2个角.【变式】 以直线l 外一点P 为端点,向直线l 上的n (n>1)个点作射线,则以点P 为顶点,以这些射线为边的角(小于180°)的个数为n (n -1)2.(用含有n 的式子表示)。
2024年数学七年级上册立体几何基础练习题(含答案)

2024年数学七年级上册立体几何基础练习题(含答案)试题部分一、选择题:1. 下列哪个图形是正方体?()A. 长方体B. 正六面体C. 圆柱体D. 球体2. 一个长方体的长、宽、高分别为2cm、3cm、4cm,它的对角线长度是多少cm?()A. 5cmB. 6cmC. 7cmD. 9cm3. 下列哪个图形的表面积最小?()A. 正方体B. 长方体C. 球体D. 圆柱体4. 一个正方体的体积是64立方厘米,它的棱长是多少厘米?()A. 2cmB. 4cmC. 6cmD. 8cm5. 下列哪个图形有6个面?()A. 三棱锥B. 四棱锥C. 圆锥D. 球体6. 一个圆柱的底面半径为3cm,高为5cm,它的侧面积是多少平方厘米?()A. 45πcm²B. 54πcm²C. 75πcm²D. 90πcm²7. 下列哪个图形的体积最大?()A. 长方体(长、宽、高分别为2cm、3cm、4cm)B. 正方体(棱长为3cm)C. 球体(半径为2cm)D. 圆柱体(底面半径为2cm,高为3cm)8. 一个圆锥的底面半径为4cm,高为3cm,它的体积是多少立方厘米?()A. 48πcm³B. 64πcm³C. 72πcm³D. 96πcm³9. 下列哪个图形可以展开成一个长方形?()A. 正方体B. 球体C. 圆锥D. 圆柱体10. 一个正方体的棱长为x,它的表面积是多少?()A. 6x²B. 8x²C. 12x²D. 24x²二、判断题:1. 正方体的六个面都是正方形。
()2. 圆柱体的底面和顶面都是圆形。
()3. 球体的表面积和体积相等。
()4. 长方体的对角线长度等于其长、宽、高的和。
()5. 圆锥的体积等于底面积乘以高。
()6. 正方体的体积是棱长的三次方。
()7. 两个相同体积的正方体,它们的表面积也相同。
人教版七年级上第四章从不同的方向看物体及立体图形的展开与折叠(含答案)

7.某数学兴趣小组的同学探究用相同的小立方块搭成几何体的三视图及其变化规律,下面是他们画出的左视图与俯视图.由此可知,搭这个几何体时,最多需要的小立方块的个数是().
A.8B.9C.10D.11
二、解答题
8.图1是由7个小正方体(每个小正方体的棱长都是1)所堆成的几何体.请画出这个儿何体从正面、左面、上面三个方向看到的形状图;
14.24.
【详解】试题分析:长方体的左视图是一个矩形,因为它的面积为6,一边长为2,所以另一边长为3,从而得出长方体的高为3,因此长方体的体积等于2×4×3=24.故答案为24.
考点:由三视图判断几何体.
15.有
【分析】根据正方体展开图的性质即可求解.
【详解】解:由正方体的展开图可知,“☆”与“有”相对,“几”与“真”相对,“何”与“趣”相对.
10.如图是由10个大小相同的小立方体搭建的几何体,其中每个小立方体的棱长为1厘米.
(1)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图;
(2)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加个小正方体(直接填空).
11.如图,在 中, , , ,点 是 的中点,动点 从点 出发,以每秒 个单位长度的速度沿 运动.到点 停止.若设点 运动的时间是 秒( ).
人教版七年级上第四章
从不同的方向看物体及立体图形的展开与折叠
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.如图,根据三视图,这个立体图形的名称是()
A.长方体B.球体C.圆柱D.圆锥
2.如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、判断题:
1.柱体的上、下两个面一样大.()2.圆柱的侧面展开图是长方形.()3.球体不是多面体.()4.圆锥是多面体..()
5.长方体是多面体..()6.柱体都是多面体..()
7.棱柱侧面的形状可能是一个三角形()8.棱柱的每条棱长都相等. ()
二、选择题:
1、如图,下列图形()是柱体.
2、下面给出的图形中,绕虚线旋转一周能形成圆锥的是()
3、如下图,下列图形中有十四条棱的是()
4、圆锥的侧面展开图是________________.
5.长方体共有()个面.
A.8
B.6
C.5
D.4
6.六棱柱共有()条棱.
A.16
B.17
C.18
D.20
7.下列说法,不正确的是()
A、圆锥和圆柱的底面都是圆.
B、棱锥底面边数与侧棱数相等.
C、棱柱的上、下底面是形状、大小相同的多边形.
D、长方体是四棱柱,四棱柱是长方体.
8.长方体属于( )
A.棱锥
B.棱柱
C.圆柱
D.以上都不对
9.下列几何体中(如图)属于棱锥的是( )
(1) (2) (3) (4) (5) (6)
A.(1)(5)
B.(1)
C.(1)(5)(6)
D.(5)(6)
10.下列所讲述的物体,_______与圆锥的形状类似( )
A.香烟盒
B.铅笔
C.西瓜
D.烟囱帽
4. 如图(7)所示立体图形,是由____个面组成,面与面相交成____条线( )
A.3,6
B.4,5
C.4,6
D.5,7
(7) (8) (9)
5.面与面相交成________,线与线相交成___________.
6.机器零件中的六角螺母,圆筒形的易拉罐、足球、火柴盒、铅垂体中,•类似
于棱柱的物体有________,•类似于球体的物体有_________,••类似于圆锥
的物体有________,类似于圆柱的物体有__________.
7. 如图上图(8)的棱柱有_______个顶点,有_______条线,有________个面,
经过每个顶点有________条边.
8. 如图上图(9)所示图形绕图示的虚线旋转一周,(1)能形成______,•(•2)•
能形成________,(3)能形成_________.
三、填空题:
1、一个多面体有12条棱,6个顶点,则这个多面体是体。
2、把下列图形的名称填在括号
内:
3,正方体有个面,
个顶点,经过每个顶点有 条棱.这些棱的长度 (填相同或不同).棱长为acm 的正方体的表面积为 cm 2.
4,长方体有 个顶点, 条棱, 个面.
5,五棱柱是由 个面围成的,它有 个顶点,有 条棱.
6,一个六棱柱共有 条棱,如果六棱柱的底面边长都是2cm ,侧棱长都是
4cm ,那么它所有棱长的和是 cm.
7,如图所示的几何体是由一个正方体截去4
1后而形成的,这个几何体是由 个面围成的,其中正方形有 个,长方
形有 个.
8、长方体有 个顶点,经过每个顶点有 条棱, 共有 条棱。
9、一个七棱柱共有 个面, 条棱, 个顶点,形状和面 积完全相同的只有 个面.
10、正方体由 ____面围成的、有___个顶点、有____ 条棱。
11、点动成_____,线动成_____ , _____动成体.
12、如图4-5是一些具体的图形—三棱镜、方砖、帆布帐篷、笔筒、铅锤、粮囤、天文台,图4-6中是一些立体图形,找出与图4-6立体图形类似的图形。
四.连线题:
把图形与对应的图形名称用线连接起来。
五.解答题:
1、将图4-8中的几何体进行分类,并说明理由。