新课标高一数学同步测试(2)(集合)
2021-2022年高中数学 第一章《集合》 同步练习二 新人教B版必修1

2021-2022年高中数学 第一章《集合》 同步练习二 新人教B 版必修1分满:120分 时间:60分钟 一、选择题(每小题5分,共60分)1.(09辽宁卷理)已知集合M={x|-3<x ≤5},N={x|-5<x<5},则M ∩N=( ) (A) {x|-5<x <5} (B) {x|-3<x <5} (C) {x|-5<x ≤5} (D) {x|-3<x ≤5} 2.给出如下关系式 ① ②, ③④ ⑤ ⑥{a}{a},其中正确的是( )A 、①②④⑤B 、②③④⑤C 、②④⑤D 、②④⑤⑥ 3.设全集U =R ,集合,,则为( ) A . B . C . D . 4.(06安徽卷)设全集,集合,, 则等于( )A .B .C .D .5.设P ,Q 为两个非空集合,定义集合{,}P Q a b a P b Q +=+|∈∈, 若则中元素的个数是( )A. 9B. 8C. 7D. 6 6.(06湖北卷)集合P ={x 」x 2-16<0},Q ={x 」x =2n ,n Z },则PQ =( ) A.{-2,2} B.{-2,2,-4,4} C.{-2,0,2} D.{-2,2,0,-4,4} 7.(06辽宁卷)设集合,则满足的集合B 的个数是( )(A)1 (B)3 (C)4 (D)8 8.已知集合,集合,且则的值是( )A .1或2 B.2或4 C.2 D.1 9.已知集合M 中有3个真子集,已知集合N 中有7个真子集,那么的元素个数为( ) A 有5个元素 B 至多有5个元素 C 至少有5个元素 D 元素个数不确定 10.(09全国卷Ⅰ理)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB ,则集合 中的元素共有( )(A )3个 (B )4个 (C )5个 (D )6个11.(09浙江理)设,,,则( )A . B . C . D .12.设集合,,,则的取值范围是( )A .B .C .D .13.集合中至多有一个元素,求实数的取值范围14.(09重庆卷文)若是小于9的正整数,是奇数,是3的倍数,则 . 15.已知A={(x,y)|x+y-2=0},B={(x,y)|x-2y+4=0},C={(x,y)|y=3x+b},若(A ∩B)⊆C,则b= .16.已知集合,试用列举法表示集合=三、解答题(每小题10分,共40分。
新课标高一数学同步测试(2)第一章集合

高中数学学习材料 (灿若寒星 精心整理制作)新课标高一数学同步测试(2)第一章(集合)一、选择题: 1.方程组⎩⎨⎧=-=+02y x y x 的解构成的集合是( )A .{})1,1(B .{}1,1 C .)1,1( D .{}1 2.下面关于集合的表示正确的个数是( ) ①{}{}2,33,2≠;②{}{}1|1|),(=+==+y x y y x y x ; ③{}=>1|x x {}1|>y y ; ④{}{}1|1|=+==+y x y y x x ;A .0B .1C .2D .33.设全集{}R y x y x U ∈=,|),(,⎭⎬⎫⎩⎨⎧=--=123|),(x y y x M ,{}1|),(+≠=x y y x N ,那么)(M C U =⋂)(N C U ( )A .∅B .)}3,2{(C .)3,2(D .}1|),{(+≠x y y x4.下列关系正确的是( ) A .{}R x x y y ∈+=∈,|32πB .{}=),(b a {}),(a bC .{}1|),(22=-y x y x {}1)(|),(222=-y x y xD .{}∅==-∈02|2x R x5.已知集合A 中有10个元素,B 中有6个元素,全集U 有18个元素,∅≠⋂B A 。
设集合)(B A C U ⋃有x 个元素,则x 的取值范围是( )A .83≤≤x ,且N x ∈B .82≤≤x ,且N x ∈C .128≤≤x ,且N x ∈D .1510≤≤x ,且N x ∈6.已知集合⎭⎬⎫⎩⎨⎧∈+==Z m m x x M ,61|,⎭⎬⎫⎩⎨⎧∈-==Z n n x x N ,312|, ⎭⎬⎫⎩⎨⎧∈+==Z p p x x P ,612|,则P N M ,,的关系( )A .NM =P B .M P N = C .M N P D . N P M7.设全集{}7,6,5,4,3,2,1=U ,集合{}5,3,1=A ,集合{}5,3=B ,则( ) A .B A U ⋃= B .B A C U U ⋃=)( C .)(B C A U U ⋃=D .)()(B C A C U U U ⋃=8.已知{}5,53,22+-=a a M ,{}3,106,12+-=a a N ,且{}3,2=⋂N M ,则a 的值( )A .1或2B .2或4C .2D .19.满足{}b a N M ,=⋃的集合N M ,共有( ) A .7组 B .8组C .9组D .10组10.下列命题之中,U 为全集时,不正确的是( ) A .若∅=⋂B A ,则U B C A C U U =⋃)()(; B .若∅=⋂B A ,则∅=A 或∅=B ; C .若=⋃B A U ,则∅=⋂)()(B C A C U U ; D .若∅=⋃B A ,则∅==B A 。
新课标高一数学同步测试2—空间几何体

新课标高一数学同步测试2—空间几何体新课标高一数学同步测试(2)—1.1空间几何体本试卷分第Ⅰ卷和第Ⅱ卷两部分.共150分.第Ⅰ卷(选择题,共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.若一个几何体的三视图都是等腰三角形,则这个几何体可能是()A.圆锥B.正四棱锥C.正三棱锥D.正三棱台2.在一个侧置的正三棱锥容器内放入一个钢球,钢球恰与棱锥的四个面都接触,过棱锥的一条侧棱和高作截面,正确的截面图形是()A B C D3.下列说法正确的是().互相垂直的两条直线的直观图一定是互相垂A直的两条直线B .梯形的直观图可能是平行四边形C .矩形的直观图可能是梯形D .正方形的直观图可能是平行四边形 4.如右图所示,该直观图表示的平面图形为( )A .钝角三角形B .锐角三角形C .直角三角形D .正三角形 5.下列几种说法正确的个数是( ) ①相等的角在直观图中对应的角仍然相等②相等的线段在直观图中对应的线段仍然相等 ③平行的线段在直观图中对应的线段仍然平行 ④线段的中点在直观图中仍然是线段的中点 A .1 B .2 C .3 D .46.一个三角形在其直观图中对应一个边长为1正三角形,原三角形的面积为 ( )A .46 B .43 C .23D .267.哪个实例不是中心投影( ) A .工程图纸 B .小孔成像 C .相片 D .人的视觉8.关于斜二测画法画直观图说法不正确的是 ( )A .在实物图中取坐标系不同,所得的直观图有可能不同B .平行于坐标轴的线段在直观图中仍然平行于坐标轴C .平行于坐标轴的线段长度在直观图中仍然保持不变D.斜二测坐标系取的角可能是135°9.下列几种关于投影的说法不正确的是()A.平行投影的投影线是互相平行的B.中心投影的投影线是互相垂直的影C.线段上的点在中心投影下仍然在线段上D.平行的直线在中心投影中不平行10.说出下列三视图表示的几何体是()A.正六棱柱B.正六棱锥C.正六棱台D.正六边形第Ⅱ卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.平行投影与中心投影之间的区别是_____________;12.直观图(如右图)中,四边形O′A′B′C′为菱形且边长为2cm,则在xoy坐标中四边形ABCD 为_ ____,面积为______cm2.13.等腰梯形ABCD,上底边CD=1, 腰AD=CB=2, 下底AB=3,按平行于上、下底边取x轴,则直观图A′B′C′D′的面积为________.14.如图,一个广告气球被一束入射角为45°的平行光线照射,其投影是一个最长的弦长为5米的椭圆,则这个广告气球直径是米.三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).15.(12分)用斜二测画法作出边长为3cm、高4cm的矩形的直观图.16.(12分)画出下列空间几何体的三视图.①②17.(12分)说出下列三视图所表示的几何体:正视图侧视图俯视图18.(12分)将一个直三棱柱分割成三个三棱锥,试将这三个三棱锥分离.19.(14分)画正五棱柱的直观图,使底面边长为3cm侧棱长为5cm.20.(14分)根据给出的空间几何体的三视图,用斜二侧画法画出它的直观图.正视图 侧视图俯视图参考答案(二)一、CBDCB AACBA二、11.平行投影的投影线互相平行,而中心投影的投影线相交于一点;12.矩形、8; 13.1; 14.225. 三、15.分析探索:用统一的画图标准:斜二测画法,即在已知图形所在的空间中取水平平面,作X ′轴,Y ′轴使∠X ′O ′Y ′=45°,然后依据平行投影的有关性质逐一作图.解:(1)在已知ABCD 中取AB 、AD 所在边为X 轴与Y 轴,相交于O 点(O 与A 重合),画对应X ′轴,Y ′轴使∠X ′O ′Y ′=45°(2)在X ′轴上取 A ′,B ′使A ′B ′=AB ,在Y ′轴上取D ′,使A ′D ′=21AD ,过D ′作 D ′C ′平行X ′的直线,且等于A ′D ′长.(3)连 C ′B ′所得四边形A ′B ′C ′D ′ 就是矩形ABCD 的直观图。
高一数学集合测试题及答案

高一数学集合测试题及答案高一数学 集合 测试题一、选择题(每小题5分,共60分)1.下列八个关系式①{0}=φ ②φ=0 ③φ {φ} ④φ∈{φ} ⑤{0}⊇φ ⑥0∉φ ⑦φ≠{0} ⑧φ≠{φ}其中正确的个数( ) (A )4 (B )5 (C )6 (D )7 2.集合{1,2,3}的真子集共有( ) (A )5个 (B )6个 (C )7个 (D )8个3.集合A={xZk k x ∈=,2} B={Zk k x x ∈+=,12}C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有( )(A )(a+b )∈ A (B) (a+b) ∈B (C)(a+b)∈C (D) (a+b) ∈ A 、B 、C 任一个4.设A 、B 是全集U 的两个子集,且A ⊆B ,则下列式子成立的是( )(A )C U A ⊆C U B (B )C U A ⋃C U B=U (C )A ⋂C U B=φ (D )C U A ⋂B=φ 5.已知集合A={022≥-xx } B={0342≤+-x xx }则A B ⋃=( )(A )R (B ){12≥-≤x x x 或}(C ){21≥≤x x x 或} (D ){32≥≤x x x 或}6.设f (n )=2n +1(n ∈N),P ={1,2,3,4,≠⊂5},Q ={3,4,5,6,7},记P ∧={n ∈N|f (n )∈P },Q∧={n ∈N|f (n )∈Q },则(P ∧∩NðQ∧)∪(Q ∧∩NðP∧)=( )(A) {0,3} (B){1,2} (C) (3,4,5} (D){1,2,6,7}7.已知A={1,2,a 2-3a-1},B={1,3},A =⋂B {3,1}则a 等于( )(A )-4或1 (B )-1或4 (C )-1 (D )48.设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(C U A )⋃(C U B )=( ) (A ){0} (B ){0,1} (C ){0,1,4} (D ){0,1,2,3,4}10.设A={x 0152=+-∈px xZ },B={x 052=+-∈q x xZ },若A ⋃B={2,3,5},A 、B 分别为( )(A ){3,5}、{2,3} (B ){2,3}、{3,5}(C ){2,5}、{3,5} (D ){3,5}、{2,5}11.设一元二次方程ax 2+bx+c=0(a<0)的根的判别式042=-=∆ac b,则不等式ax 2+bx+c ≥0的解集为( )(A )R (B )φ(C ){a b x x 2-≠}(D ){ab2-} 12.已知P={04<<-m m },Q={012<--mx mxm ,对于一切∈x R 成立},则下列关系式中成立的是( ) 13.若M={Z n x n x ∈=,2},N={∈+=n x n x ,21Z},则M ⋂N 等于( )(A )φ (B ){φ} (C ){0} (D )Z14.已知集合则实数的取值范围是( ) A .B .C .[-1,2]D .15.设U={1,2,3,4,5},A ,B 为U 的子集,若A ⋂B={2},(C U A )⋂B={4},(C U A )⋂(C U B )={1,5},则下列结论正确的是( ) (A )3B A ∉∉3, (B )3B A ∈∉3, (C )3B A ∉∈3, (D )3B A ∈∈3,(A )P Q(B )Q P(C )P=Q (D )P ⋂Q=φ≠⊂≠⊂16. 设集合10,2A ⎡⎫=⎪⎢⎭⎣, 1,12B ⎡⎤=⎢⎥⎣⎦, 函数()()1,221,x x A f x x x B ⎧+∈⎪=⎨⎪-∈⎩,若0x A ∈,且()0f f x A ∈⎡⎤⎣⎦,则0x 的取值范围是( )A .10,4⎛⎤ ⎥⎦⎝B .11,42⎛⎤ ⎥⎦⎝C .11,42⎛⎫ ⎪⎝⎭D .30,8⎡⎤⎢⎥⎣⎦17. 在R 上定义运算e : 2a b ab a b =++e ,则满足()20x x -<e 的实数x 的取值范围为( )A. (0,2)B. (-1,2)C.()(),21,-∞-+∞U D. (-2,1) .18. 集合P={x|x 2=1},Q={x|mx=1},若QP ,则m 等于( )A .1B .-1C .1或-1D .0,1或-119.设全集U={(x,y )Ry x ∈,},集合M={(x,y )122=-+x y },N={(x,y)4-≠x y },那么(C U M )⋂(C U N )等于( )(A ){(2,-2)} (B ){(-2,2)}(C )φ (D )(C U N ) 20.不等式652+-x x <x 2-4的解集是( )(A ){x 2,2>-<x x 或} (B ){x 2>x }(C ){ x3>x } (D ){ x 2,32≠<<-x x 且}二、填空题1. 在直角坐标系中,坐标轴上的点的集合可表示为2. 若A={1,4,x},B={1,x 2}且A ⋂B=B ,则x= 3. 若A={x 01032<-+x x} B={x 丨3<x },全集U=R ,则A )(B CU⋃=4. 如果集合 中只有一个元素,则a 的值是 5. 集合{a,b,c}的所有子集是 真子集是 ;非空真子集是 6. 方程x 2-5x+6=0的解集可表示为方程组的解集可表示为⎩⎨⎧=-=+0231332y x y x 7.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 。
高一数学集合练习题 新课标 人教A版 必修一 试题

高一数学集合练习题1.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为 ( )A .1B .—1C .1或—1D .1或—1或02.设集合{}21<≤-=x x M ,{}0≤-=k x x N ,若MN M =,则k 的取值范围( )(A )(1,2)- (B )[2,)+∞ (C )(2,)+∞ (D)]2,1[-3.如图,U 是全集,M 、P 、S 是U 的3个子集,则阴影部分所表示的集合是 ( ) A 、 ()M P S B 、 ()M P S C 、 ()u M P C S D 、 ()u MP C S4.设{}022=+-=q px x x A ,{}05)2(62=++++=q x p x x B ,若⎭⎬⎫⎩⎨⎧=21B A ,则=B A ( )(A )⎭⎬⎫⎩⎨⎧-4,31,21 (B )⎭⎬⎫⎩⎨⎧-4,21 (C )⎭⎬⎫⎩⎨⎧31,21 (D)⎭⎬⎫⎩⎨⎧215.函数22232xy x x -=--的定义域为( ) A 、(],2-∞ B 、(],1-∞ C 、11,,222⎛⎫⎛⎤-∞ ⎪⎥⎝⎭⎝⎦ D 、11,,222⎛⎫⎛⎫-∞ ⎪ ⎪⎝⎭⎝⎭ 6. 设{}{}I a A a a =-=-+241222,,,,,若{}1I C A =-,则a=__________。
7.已知集合A ={1,2},B ={x x A ⊆},则集合B= . 8.已知集合{}{}A x y y xB x y y x ==-==()|()|,,,322那么集合AB =9.50名学生做的物理、化学两种实验,已知物理实验做的正确得有40人,化学实验做的正确的有31人,两种实验都做错的有4人,则这两种实验都做对的有 人.10.已知集合{}{}A a a d a dB a aq aq =++=,,,,,22,其中a ,d ,q R ∈,若A=B ,求q 的值。
(word版)高一数学集合练习题及答案

高一数学集合的练习题及答案一、、知点:本周主要学集合的初步知,包括集合的有关概念、集合的表示、集合之的关系及集合的运算等。
在行集合的运算要注意使用Venn。
本章知构集合的概念列法集合的表示法集合特征性描述法真子集包含关系子集相等集合与集合的关系交集集合的运算并集集1、集合的概念集合是集合中的不定的原始概念,教材中集合的概念行了描述性明:“一般地,把一些能确定的不同的象看成一个整体,就个整体是由些象的全体构成的集合〔或集〕〞。
理解句,把握4个关:象、确定的、不同的、整体。
象――即集合中的元素。
集合是由它的元素唯一确定的。
整体――集合不是研究某一一象的,它关注的是些象的全体。
确定的――集合元素确实定性――元素与集合的“附属〞关系。
不同的――集合元素的互异性。
2、有限集、无限集、空集的意有限集和无限集是非空集合来的。
我理解起来并不困。
我把不含有任何元素的集合叫做空集,做Φ。
理解它不妨思考一下“0与Φ〞及“Φ与{Φ}〞的关系。
几个常用数集N、N*、N+、Z、Q、R要牢。
3、集合的表示方法1〕列法的表示形式比容易掌握,并不是所有的集合都能用列法表示,同学需要知道能用列法表示的三种集合:①元素不太多的有限集,如{0,1,8}②元素多但呈一定的律的有限集,如{1,2,3,⋯,100}③呈一定律的无限集,如{1,2,3,⋯,n,⋯}●注意a与{a}的区●注意用列法表示集合,集合元素的“无序性〞。
2〕特征性描述法的关是把所研究的集合的“特征性〞找准,然后适当地表示出来就行了。
但关点也是点。
学多加就可以了。
另外,弄清“代表元素〞也是非常重要的。
如{x|y=x2},{y|y=x2},{〔x,y〕|y=x2}是三个不同的集合。
4、集合之的关系●注意区分“附属〞关系与“包含〞关系“附属〞关系是元素与集合之的关系。
“包含〞关系是集合与集合之间的关系。
掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“〞等符号,会用Venn图描述集合之间的关系是根本要求。
新课标高一数学同步测试第二章测试题及答案

新课标高一数学同步测试第二章测试题及答案新课标高一数学同步测试第二章测试一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.已知p>q>1,0A.B.C.D.2.已知(a,b,c是常数)的反函数,则()A.a=3,b=5,c=-2B.a=3,b=-2,c=5C.a=2,b=3,c=5D.a=2,b=-5,c=33.函数当x>2时恒有>1,则a的取值范围是()A.B.0C.D.4.函数f(x)的图象与函数g(x)=()x的图象关于直线y=x对称,则f(2x-x2)的单调减区间为()A.(-,1)B.1,+]C.(0,1)D.1,2]5.函数的值域是()A.,0)B.(,0C.(,0)D.,0]6.设g(x)为R上不恒等于0的奇函数,(a>0且a≠1)为偶函数,则常数b的值为()A.2B.1C.D.与a有关的值7.设f(x)=ax,g(x)=x,h(x)=logax,a满足loga(1-a2)>0,那么当x>1时必有()A.h(x)<g(x)<f(x)B.h(x)<f(x)<g(x)C.f(x)<g(x)<h(x)D.f(x)<h(x)<g(x)8.函数(a>0)的定义域是()A.[-a,a]B.[-a,0]∪(0,a)C.(0,a)D.[-a,0]9.lgx+lgy=2lg(x-2y),则的值的集合是()A.{1}B.{2}C.{1,0}D.{2,0}10.函数的图象是()二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.按以下法则建立函数f(x):对于任何实数x,函数f(x)的值都是3-x与x2-4x+3中的最大者,则函数f(x)的最小值等于.12.设函数,给出四个命题:①时,有成立;②﹥0时,方程,只有一个实数根;③的图象关于点(0,c)对称;④方程,至多有两个实数根.上述四个命题中所有正确的命题序号是。
新课标高一阶段测试题《集合》附答案

《集合》单元测试题一、选择题(每小题5分,共30分)1.S与T是两个非空集合,且S T,令Z=S∩T,则S∪Z为()(A)Z (B)T (C)Φ(D)S2.已知全集U={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么C U(A∩B)=()(A){3,4} (B){1,2,5,6} (C){1,2,3,4,5,6} (D)Φ3.已知全集u={1、2、3、4、5},A={1、5},B C U A,则集合B 的个数是()(A)5 (B) 6 (C) 7 (D)84.全集U=N 集合A={x|x=2n,n∈N},B={x|x=4n,n∈N}则()(A)U=A∪B (B)(C U A)⊆B (C)U= A∪C U B (D)C U A⊇C U B5.如图,阴影部分表示的集合是( )(A)B∩[C U (A∪C)] (B)(A∪B)∪(B∪C)(C)(A∪C) ∩( C U B) (D)[C U (A∩C)]∪B6.已知集合M有3个真子集,集合N有7个真子集,那么M∪N的元素个数为()(A)有5个元素(B)至多有5个元素(C)至少有5个元素(D)元素个数不能确定二、填空题(每小题5分,共20分)11.设I是全集,非空集合P、Q满足P Q I。
若含P、Q的一个运算表达式,使运算结果为空集Φ,则这个运算表达式可以是_________(只要求写出一个表达式)。
12.设非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},则能使A⊆A∩B成立的a值的集合为__________。
13.(1)、用适当的符号填空①若A={x|x²=x},—1_______A;②若B={x|x²+x - 6=0},则3______B;③若C={x|1≤x<10,x∈N},则8________C;④若D={x|-2< x<3,x∈Z},则1.5_______D.14.当{a,0,—1}={4,b,0}时,a=_________,b=_________.三、解答题(共50分)⊆1.(15分)知集合A={-1,a²+1,a²-3},B={-4,a-1,a+1},且A∩B={-2},求a的值.2.(15分)设U={x∈Z|0<x≤10},A={1,2,4,5,9},B={4,6,7,8,10},C={3,5,7},求A∩B,A∪B,(C U A)∩(C U B),(C U A)∪(C U B),(A∩B)∩C,(A∪B)∩C.3.(20分)已知集合A={x|a≤x≤a+3},B={x<-1或x>5}.(1) 若A∩B=Φ,求a的取值范围;(2) 若A∪B=R,求a的取值范围.附加题:(20分)某班考试中,语文、数学优秀的学生分别有30人、28人,语文、数学至少有一科优秀的学生有38人,求:(1) 语文、数学都优秀的学生人数;(2) 仅数学成绩优秀的学生人数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课标高一数学同步测试(2)—第一单元(集合)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填
在题后的括号内(每小题5分,共50分).
1.方程组2
0{
=+=-y x y x 的解构成的集合是 ( )
A .)}1,1{(
B .}1,1{
C .(1,1)
D .}1{
2.下面关于集合的表示正确的个数是
( )
①}2,3{}3,2{≠;
②}1|{}1|),{(=+==+y x y y x y x ; ③}1|{>x x =}1|{>y y ; ④}1|{}1|{=+==+y x y y x x ;
A .0
B .1
C .2
D .3
3.设全集},|),{(R y x y x U ∈=,}12
3
|
),{(=--=x y y x M ,}1|),{(+≠=x y y x N ,那么)(M C U ∩)(N C U =
( )
A .φ
B .{(2,3)}
C .(2,3)
D . }1|),{(+≠x y y x 4.下列关系正确的是
( )
A .},|{32
R x x y y ∈+=∈π B .)},{(b a =)},{(a b
C .}
1|),{(2
2
=-y x y x }1)(|),{(222=-y x y x
D .}02|{2=-∈x R x =φ
5.已知集合A 中有10个元素,B 中有6个元素,全集U 有18个元素,≠⋂B A φ。
设集合
)(B A C U ⋃有x 个元素,则x 的取值范围是 ( )
A .83≤≤x ,且N x ∈
B .82≤≤x ,且N x ∈
C .128≤≤x ,且N x ∈
D .1510≤≤x ,且N x ∈
6.已知集合 },61|{Z m m x x M ∈+==,},3
1
2|{Z n n x x N ∈-==,
=P x x |{+=2p },6
1
Z p ∈,则P N M ,,的关系
( )
A .N M =P
B .M P N =
C .M N P
D . N
P M
7.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则 ( )
A .
B A U ⋃= B . B A
C U U ⋃=)( C .)(B C A U U ⋃=
D .)()(B C A C U U U ⋃=
8.已知}5,53,2{2
+-=a a M ,}3,106,1{2
+-=a a N ,且}3,2{=⋂N M ,则a 的值( ) A .1或2 B .2或4 C .2 D .1 9.满足},{b a N M =⋃的集合N M ,共有 ( ) A .7组 B .8组 C .9组 D .10组 10.下列命题之中,U 为全集时,不正确的是
( )
A .若
B A ⋂= φ,则U B
C A C U U =⋃)()( B .若B A ⋂= φ,则A = φ或B = φ C .若B A ⋃= U ,则=⋂)()(B C A C U U φ
D .若B A ⋃= φ,则==B A φ
二、填空题:请把答案填在题中横线上(每小题6分,共24分).
11.若}4,3,2,2{-=A ,},|{2
A t t x x
B ∈==,用列举法表示B . 12.设集合}3|{2
x y y M -==,}12|{2
-==x y y N ,则=⋂N M . 13.含有三个实数的集合既可表示成}1,,
{a
b
a ,又可表示成}0,,{2
b a a +,则=+2004
2003b a .
14.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合
=N ,=⋂)(N C M U ,=⋃N M .
三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)数集A 满足条件:若1,≠∈a A a ,则A a
∈+11
. ①若2A ∈,则在A 中还有两个元素是什么; ②若A 为单元集,求出A 和a .
16.(12分)设}019|{2
2
=-+-=a ax x x A ,}065|{2
=+-=x x x B ,
}082|{2=-+=x x x C .
①B A ⋂=B A ⋃,求a 的值;
②φ
B A ⋂,且
C A ⋂=φ,求a 的值;
③B A ⋂=C A ⋂≠φ,求a 的值;
17.(12分)设集合}32,3,2{2
-+=a a U ,}2|,12{|-=a A ,}5{=A C U ,求实数a 的值.
18.(12分)已知全集}5,4,3,2,1{=U ,若U B A =⋃,≠⋂B A φ,}2,1{)(=⋂B C A U ,试
写出满足条件的A 、B 集合.
19.(14分)在某次数学竞赛中共有甲、乙、丙三题,共25人参加竞赛,每个同学至少选作一
题。
在所有没解出甲题的同学中,解出乙题的人数是解出丙题的人数的2倍;解出甲题的人数比余下的人数多1人;只解出一题的同学中,有一半没解出甲题,问共有多少同学解出乙题?
20.(14分)集合21,A A 满足21A A ⋃=A ,则称(21,A A )为集合A 的一种分拆,并规定:当
且仅当21A A =时,(21,A A )与(12,A A )为集合A 的同一种分拆,则集合A={c b a ,,}的不同分拆种数为多少?
参考答案(2)
一、ACBCA BCCCB
二、11.{4,9,16}; 12.{31|≤≤
-x x }; 13.-1; 14.03|{≤≤-=x x N 或}32≤≤x ;
}10|{)(<<=⋂x x N C M U ;13|{<≤-=⋃x x N M 或}32≤≤x
三、15. 解:①21-
和3
1; ②
}251{
+-=A (此时2
5
1+-=a )或
}251{
--=A (此时2
5
1--=a )。
16.解:①此时当且仅当B A =
,有韦达定理可得5=a 和6192=-a 同时成立,即5=a ;
②由于}3,2{=B ,}24{,-=C ,故只可能3A ∈。
此时01032
=--a a
,也即5=a 或2=a ,由①可得2=a 。
③此时只可能2A ∈,有01522
=--a a
,也即5=a 或3-=a ,由①可得3-=a 。
17.解:此时只可能5322
=-+a a
,易得2=a 或4-。
当2=a 时,}3,2{=A 符合题意。
当4-=a 时,}3,9{=A 不符合题意,舍去。
故2=a。
18.分析:U B
A =⋃且}2,1{)(=⋂
B
C A U ,所以{1,2}⊆A ,3∈B ,4∈B ,5∈B 且1∉B ,2∉B ;
但
≠⋂B A φ,故{1,2}
A ,于是{1,2}
A ⊆{1,2,3,4,5}。
19.分析:利用文氏图,见右图;
可得如下等式
25=++++++g f e d c b a ;
)(2f c f b +=+;1+++=g e d a ;
c b a +=;联立可得6=b 。
20.解:当1A =φ时,
2A =A,此时只有1种分拆;
当1A 为单元素集时,2A =1A C A 或A ,此时1A 有三种情况,故拆法为6种;
当
1A 为双元素集时,如1A ={b a ,},B=}{c 、},{c a 、},{c b 、},,{c b a ,此时1A 有三种情况,故拆法
为12种; 当
1A 为A 时,2A 可取A 的任何子集,此时2A 有8种情况,故拆法为8种;
总之,共27种拆法。
A a
B b
C c
d f
e g。