试验铁矿石900℃间接还原性能检测
铁矿石中铁含量的测定

70mL水中,冷却后加入15mL 浓H3PO4混匀。 • 4.甲基橙: 1 g·L-1。 • 5.二苯胺磺酸钠 2 g·L-1。
四.主要试剂和仪器
6.K2Cr2O7标准溶液
C(1/ 6K2Cr2O7 ) 0.05000mol L1
将K2Cr2O7在150~180℃干燥2h,置于干燥器中 冷却至室温。用指定质量称量法准确称取0.6127g K2Cr2O7于小烧杯中,加水溶解,定量转移至250 mL容量瓶中,加水稀释至刻度,摇匀。
四、实验步骤
1. 溶样:准确称取硫酸铁试样0.5~0.6g于250mL锥形瓶中,加
入2mL浓HCl ,用25mL水,盖上表面皿,(微热),溶解。 2. 还原:加入6.5mL浓HCl控制酸度(4.0mol·L-1),加热,加6 滴甲基橙,滴加100 g·L-1SnCl2还原Fe3+。溶液由橙变红,再慢慢 滴加50 g·L-1 SnCl2至溶液变为淡粉色,再摇几下直至粉色褪去, 立即用流水冷却。 3.滴定:加50mL蒸馏水,20mL硫磷混酸,4滴二苯胺磺酸钠, 立即用K2Cr2O7标准溶液滴定到稳定的紫红色为终点,平行测定3 次,计算试样中铁的含量(质量分数)。
2. 移取试样溶液25.00mL于锥形瓶中,加8mL浓HCl溶液, 加热近沸,加入6滴甲基橙,趁热边摇动锥形瓶边逐滴加 入100g·L-1 SnCl2还原Fe3+。溶液由橙变红,再慢慢滴加50 g·L-1 SnCl2至溶液变为淡粉色,再摇几下直至粉色褪 去。立即用流水冷却,加50mL蒸馏水,20mL硫磷混酸, 4滴二苯胺磺酸钠,立即用K2Cr2O7标准溶液滴定到稳定 的紫红色为终点,平行测定3次,计算矿石中铁的含量 (质量分数)。
铁矿(或铁粉)中全铁含量的测定

铁矿(或铁粉)中全铁含量的测定一、前言铁矿(或铁粉)中的全铁含量是制定冶金工艺流程、确定矿山开采方案和铁矿(或铁粉)定价的重要参数之一。
本文将介绍铁矿(或铁粉)中全铁含量的测定方法,包括化学分析法和物理分析法两种方法。
二、化学分析法1. 原理铁矿中的全铁含量可以通过溶解铁矿中的铁化合物,然后将样品中的铁转化为铁离子,用比色法或称重法测定铁离子浓度,进而计算样品中的全铁含量。
常用的铁化合物有氧化铁、碳酸铁、硫酸铁等。
2. 实验步骤(1)样品的制备取适量的样品,通过干燥、破碎和分析等操作将其制备成为均质的细粉末样品。
(2)溶解样品将样品加入到一个混合溶液中,混合溶液通常是由盐酸(或硝酸)和氢氧化钠(或氨水)混合而成。
在加入混合溶液期间,要慢慢地滴加,并且要不断搅拌,直到样品全部溶解。
(3)还原铁离子成为铁离子在样品溶液中加入亚硫酸钠,将Fe3+还原成Fe2+。
(4)测定铁离子的浓度用比色法或称重法测定样品中铁离子的浓度。
3. 注意事项(1)要保证样品制备的均质性,否则测定结果会出现误差。
(2)溶解样品的酸度要保持一致,通常为盐酸(或硝酸)质量分数为20%左右。
(3)亚硫酸钠可以还原多种离子,如铜离子、铅离子等,不同离子的浓度对还原铁离子的影响需要进行校正。
三、物理分析法物理分析法是通过磁滞回线测量铁矿(或铁粉)样品的磁性,从而测定样品中的全铁含量。
铁矿(或铁粉)具有一定磁性,随着铁含量的增加,磁滞回线的面积也随之增加,可以通过磁力计测量出来,从而计算出全铁含量。
(2)测定样品的磁性将样品放置在一个磁场中,测量样品的磁性强度和磁滞回线面积。
(3)计算全铁含量根据样品的磁性数据,使用标准曲线或计算公式计算出样品中的全铁含量。
(1)物理分析法需要测量样品的磁性数据,因此如果样品中存在其他磁性元素或矿物,需要进行校正。
四、总结铁矿(或铁粉)中的全铁含量是衡量矿品质的重要因素,可以通过化学分析法和物理分析法等技术手段进行测定。
铁矿石中全铁含量的测定实验报告

铁矿石中全铁含量的测定实验报告一、实验目的。
本实验旨在通过化学分析方法,测定铁矿石中全铁的含量,为矿石的质量评价和冶炼工艺提供依据。
二、实验原理。
本实验采用重量法测定铁矿石中全铁的含量。
首先将铁矿石样品进行干燥和研磨,然后用酸溶解铁矿石中的铁成为可溶性铁盐,并通过沉淀法将铁从其他金属离子中分离出来,最后用称量法测定得到的沉淀物的质量,从而计算出铁矿石中全铁的含量。
三、实验步骤。
1. 取一定质量的铁矿石样品,进行干燥和研磨处理,使其颗粒均匀细小。
2. 将处理后的铁矿石样品加入稀盐酸中,使其完全溶解,生成可溶性铁盐。
3. 将溶解后的样品溶液进行加热,使其中的铁盐转化成氢氧化铁沉淀。
4. 用氢氧化铵将溶液中的其他金属离子沉淀成氢氧化物,然后用过滤纸过滤得到沉淀物。
5. 将得到的沉淀物进行干燥、烧灼,然后用天平称量得到的沉淀物的质量。
6. 根据称量得到的沉淀物的质量,计算出铁矿石中全铁的含量。
四、实验数据与结果。
经过实验测定,得到铁矿石中全铁的含量为XX%。
五、实验分析与讨论。
本实验通过重量法测定了铁矿石中全铁的含量,结果表明……(根据实验结果进行分析和讨论)。
六、实验结论。
本实验通过化学分析方法,成功测定了铁矿石中全铁的含量,为矿石的质量评价和冶炼工艺提供了重要依据。
七、实验注意事项。
1. 实验操作过程中要注意安全,避免酸碱溶液的飞溅和腐蚀。
2. 实验中使用的仪器和设备要保持干净,避免杂质的干扰。
3. 实验过程中要严格按照步骤进行操作,避免操作失误导致实验结果的不准确性。
八、参考文献。
[1] XXX,XXX. 化学分析实验指导[M]. 北京,化学工业出版社,20XX.[2] XXX,XXX. 分析化学实验教程[M]. 北京,高等教育出版社,20XX.以上是本次实验的全部内容,希望对大家有所帮助。
铁矿粉烧结实验实验报告(3篇)

第1篇一、实验目的1. 研究不同铁矿粉的烧结基础特性,包括同化特性、液相流动特性、粘结相自身强度、铁酸钙生成特性及连晶特性。
2. 探讨铁矿粉烧结过程中的优化配矿原则,以改善烧结矿的质量和性能。
3. 评估烧结矿的物理和冶金性能,为实际生产提供理论依据。
二、实验材料与方法1. 实验材料:包钢常用的六种铁矿粉、还原剂、助熔剂等。
2. 实验设备:微型烧结炉、高温炉、X射线衍射仪、扫描电镜、磁化仪等。
3. 实验方法:1. 采用微型烧结法对六种铁矿粉进行烧结基础特性实验,包括同化特性、液相流动特性、粘结相自身强度、铁酸钙生成特性及连晶特性。
2. 分析不同铁矿粉烧结基础特性与烧结指标之间的关系,探讨优化配矿原则。
3. 测定烧结矿的物理和冶金性能,如抗压强度、还原度、软化温度等。
三、实验结果与分析1. 不同铁矿粉烧结基础特性分析:1. 同化特性:包钢白云鄂博含氟铁精矿具有最低的同化温度,有利于烧结过程。
2. 液相流动特性:包钢白云鄂博含氟铁精矿具有最强的液相流动性,有利于烧结矿的致密化。
3. 粘结相自身强度:包钢白云鄂博含氟铁精矿的粘结相自身强度较差,不利于烧结矿的强度。
4. 铁酸钙生成特性:包钢白云鄂博含氟铁精矿的铁酸钙生成能力较弱,不利于烧结矿的还原性能。
5. 连晶特性:包钢白云鄂博含氟铁精矿的连晶固结强度较好,有利于烧结矿的强度。
2. 优化配矿原则:1. 根据不同铁矿粉的烧结基础特性,选择合适的配矿比例,以提高烧结矿的质量和性能。
2. 在固定温度和碱度的条件下,液相流动性主要受矿石种类的影响,其次化学成分的影响大小为SiO2、MgO、Al2O3。
3. 铁酸钙生成能力受矿石种类的影响较大,化学成分的影响大小为SiO2、LOI、R2、Al2O3。
3. 烧结矿物理和冶金性能评估:1. 抗压强度:烧结矿的抗压强度应满足实际生产要求,本实验中烧结矿抗压强度达到80MPa以上。
2. 还原度:烧结矿的还原度应达到60%以上,本实验中烧结矿还原度达到65%。
项目一、氧化还原法测定铁矿石中铁含量

项目一氧化还原法测定铁矿石中铁含量1 概述氧化还原滴定法是以氧化还原反应为基础的滴定分析方法。
它不仅可以直接测定具有氧化性或还原性的物质,而且可以间接测定能与氧化剂或还原剂发生定量反应的非氧化、还原性物质。
根据使用不同的氧化剂或还原剂作标准滴定溶液,氧化还原滴定法可分为高锰酸钾法、重铬酸钾法、碘量法、溴酸盐法和铈量法等。
本学习包所介绍的是重铬酸钾法测定铁矿石中铁含量的方法。
2 知识部分2.1重铬酸钾氧化还原法的基本原理2.2重铬酸钾法的条件控制2.3分析结果计算3 能力部分3.1重铬酸钾法测定铁含量所用仪器3.2测定方法及终点判断3.3分析结果计算方法4 评价标准6h内完成测定,达到标准规定的允差,(相对平均偏差小于0.4%~0.6%)。
4.1 应知自测当您通过学习后,应能熟练掌握本专项能力所需的知识要求,并能正确完成学习包中的自测题(也可根据指导教师要求进行测试)。
4.2 操作考核您认为已能达到本专项能力的培训要求,即可参加专项能力的技能操作考核,考核成绩由监考教师认定。
在您参加考试之前,应先检查自己是否完成了下列学习任务:复习与本专项能力相关的模块。
学习并掌握本专项能力所需的知识,并通过自测。
能熟练使用本专项能力所需的仪器、试剂、设备,并能完成规定的测试任务。
5 重铬酸钾测定铁含量的原理重铬酸钾法是用K2Cr2O7作标准滴定溶液进行滴定的氧化还原滴定法。
重铬酸钾是一种常用的强氧化剂。
在酸性条件下与还原剂作用,被还原为绿色的三价的铬离子,其半反应为:如用重铬酸钾标准滴定溶液测定铁含量,则滴定反应式为:用K2Cr2O7滴定Fe2+时常采用二苯胺磺酸钠作指示剂。
6 氧化还原指示剂的选择氧化还原滴定所用的指示剂有三种:1.自身指示剂在氧化还原滴定中,利用本身的颜色变化以指示滴定终点的标准滴定溶液或被滴定物称为自身指示剂。
2.专属指示剂本身并不具有氧化还原性,但能与氧化剂或还原剂产生特殊颜色以确定滴定终点的试剂称为专属指示剂。
铁矿石中铁含量的测定

铁矿石中铁含量的测定
铁矿石中铁含量的测定方法有多种,常用的有以下几种:
1. 酸浸法:将铁矿石样品加入一定数量的酸中,通常使用浓盐酸或硫酸,将样品中的铁溶解出来,然后用分光光度法测定铁的浓度。
2. 氧化铁法:将样品煅烧成氧化铁,然后再加入一定数量的氯化铵和硫酸,将煅烧后的样品中的铁还原成亚铁离子,然后用硫代巴比妥酸作为指示剂,用滴定法测定亚铁离子的用量,从而计算出铁含量。
3. 直接测定法:直接用X射线衍射(XRD)进行分析,该技术可精确测定样品中的各种矿物成分,从而计算出铁含量。
4. 光谱法:通过对铁矿石样品进行原子吸收光谱分析(AAS)或原子荧光光谱分析(XRF)来测定铁的含量。
这些方法各有优缺点,选择适合的方法需要考虑样品的类型、含量范围、分析精度要求等因素。
铁矿石中铁含量的测定实验报告
铁矿石中铁含量的测定实验报告铁矿石中铁含量的测定实验报告引言:铁矿石是一种重要的矿石资源,其中的铁含量对于冶金工业具有重要意义。
本实验旨在通过化学方法测定铁矿石中的铁含量,并探讨实验过程中的一些关键因素。
实验方法:1. 样品制备:将铁矿石样品研磨成细粉,并通过筛网筛选出粒径均匀的样品。
2. 硫酸浸取:取一定量的样品加入硫酸中,进行浸取反应。
反应过程中,产生的二氧化硫气体需要充分排除,以免干扰后续的实验结果。
3. 过滤与洗涤:将浸取后的溶液过滤得到含有铁离子的滤液,然后用去离子水进行洗涤,以去除杂质。
4. 氨水沉淀:将滤液中的铁离子与氨水反应生成氢氧化铁沉淀。
反应后,通过离心将沉淀分离出来。
5. 灼烧:将沉淀转移到燃烧器中进行灼烧,使其转化为氧化铁。
6. 灼烧后的称量:将灼烧后的氧化铁沉淀进行称量,得到其质量。
7. 计算铁含量:根据氧化铁的质量与样品的质量之比,计算出铁矿石中铁的含量。
实验结果与讨论:通过实验操作,我们得到了一批铁矿石样品的铁含量数据。
根据实验结果,我们可以发现不同样品之间的铁含量存在差异。
这可能是由于不同的矿石来源、矿石矿物组成以及矿石加工过程等因素所致。
在实验过程中,我们还发现了一些关键因素对于测定结果的影响。
首先,样品制备的粒径均匀性对于实验结果的准确性有重要影响。
如果样品颗粒过大或过小,会导致反应速率变慢或反应不完全,从而影响后续的实验步骤。
其次,硫酸浸取过程中二氧化硫气体的排除也是一个关键步骤。
二氧化硫气体的存在会干扰后续的滤液处理,从而影响测定结果的准确性。
因此,在实验过程中应该充分注意排气操作。
最后,灼烧过程中的温度和时间也会对实验结果产生影响。
过低的温度或时间会导致氧化铁的转化不完全,而过高的温度或时间则会引起样品的过烧,从而影响测定结果的准确性。
结论:本实验通过化学方法测定了铁矿石中的铁含量,并探讨了实验过程中的一些关键因素。
实验结果表明,不同样品之间的铁含量存在差异,这可能与矿石来源、矿石矿物组成以及矿石加工过程等因素有关。
实验室中铁矿石的加工、检测及质量控制流程
4.2 在分析样品前首先用国家一级标准物质对采用的方法反复
检测,并且分别计算出其准确度和精密度。
TFe、MFe 采 用“GBW07271-GBW07276”6 个 标 样 ;S、P、
SiO2、CaO、MgO 等 采 用“GBW07218-GBW07223”6 个 标 样。现 将主要元素 (TFe、MFe) 检测标准物质结果计算的准确度和精密
M 管理及其他 anagement and other 实(辽宁省核工业地质二四一大队有限责任公司,辽宁 凤城 118100)
摘 要 :我国矿产资源丰富,岩石矿物的采样、加工、检测和开发利用是系统学科。国家对地质矿产实验室测试质量管理工作,
制定了相应的标准和规范,本文针对实验室中某批次铁矿石样品 23 种常用元素的检测及测试质量控制工作进行了详细论述。
(5)磷的分析流程 :称取适量的样品置于预先加有 6-8 克碳 酸钠 - 硝酸钾混合熔剂的瓷坩埚中,搅匀,再覆盖 1 克,移入高 温炉中,升至 400 度,保持 15 分钟,再升至 750 度保持 25 分钟, 取出冷却,用水浸取并洗净坩埚,加 10 滴酒精,加热时熔块完 全散开,冷却过滤于 100 毫升容量瓶中。分取适量的溶液于 100 毫升容量瓶中,加 1 滴酚酞用硝酸中和无色并过量 6 毫升,用水 稀释至 70 毫升,加 15 毫升钒钼酸铵显色剂,定容,摇匀。半小 时后在分光光度计上,以试剂空白为参比,用 3 厘米比色皿,在 420nm 处测量其吸光度。在工作曲线上查得相应磷量,并计算出 磷的含量。
磁选,将磁性矿物移入第三个烧杯中,磁性矿物和水加热浓缩至 小体积,加适量的盐酸在低温下分解试样,用氯化亚锡还原溶液 至淡黄色(以后步骤同全铁流程)。
(3)二氧化硅的检测流程 :称取适量的样品于镍坩埚中,加 适量的氢氧化钾、过氧化钠混合熔剂,于 650-700 度的高温炉中 完全熔融,取出冷却,用水提取熔块。加 25 毫升盐酸,置于电热 板蒸至粉砂状。加 30 毫升盐酸,加热,搅拌微沸 1 分钟,将烧杯 置于 70 度水浴锅中,加适量动物胶,搅拌,保温 30 分钟,冷至室 温,加水 40 毫升,搅拌溶解盐类,用快速定量滤纸过滤,用稀盐 酸和水洗净沉淀和滤纸。将沉淀和滤纸移入已恒重的瓷坩埚中, 低温灰化后,在 950-1000 度灼烧至恒重,计算出二氧化硅净重, 再计算二氧化硅含量。
球团理论与工艺9球团质量要求及检验方法-精选
9 球团质量要求及检测
9.1 生球质量标准及检验方法 9.1.3生球落下强度 落下高度为500mm,落到10mm厚的钢板上,规定到它出现
裂缝或一次在内),取其算术平均值(单位:次/个球)。
生球的落下强度要求与转运次数有关: 一般要求的生球落下强度,湿球:不小于3-5次/个球;干球: 不小于1-2次/个球。
转鼓内径1000mm、宽500mm,鼓内侧有两 个对称的提升板(50×50×5) 。
可缩小转鼓宽度(1/2或l/5),同时按比例减少 装料量(7.5kg或3kg) 。
9 球团质量要求及检测
9.3.1冷强度 (2)转鼓试验
转鼓指数:+6.3mm>90% 磨损指数:-0.5mm<5% (3)抗压试验 抗压强度>2000N/个,小高炉>1500N/个 9.3.2还原性 还原性是模拟炉料自高炉上部进入高温区的条件,用还原 气体从球团矿中排除与铁结合氧的难易程度的一种度量。 用CO和N2组成的还原气体,在900℃下等温还原球团矿, 以还原180min后的球团矿的失氧量计算铁矿石还原度(RI) 。
9 球团质量要求及检测
9.3.4高温软化及熔融特性 (2)熔融滴落温度
当炉料从软化带进入熔融状态时,试验温度仅为 1050℃(或1100℃),已不能真正反应高炉下部炉料的特性。 要求在更高温度(1500~1600℃)下,测定熔化特性与熔融 滴落特性。
球团渣铁开始滴落时的温度称为滴落温度。
谢谢大家
将合格粒度的球团矿装入坩埚内,用标准法压紧。以 50mm直径的硅碳棒作压杆,荷重为2kg/cm2。
在通氮条件下加热到800℃,然后缓慢升温至1350℃ 。 规定收缩率3%及25%作为球团软化的开始及软化终点 温度的收缩率。
铁矿石中全铁含量的测定(无汞定铁法)——重铬酸钾法
实验九铁矿石中全铁含量的测定(无汞定铁法)——重铬酸钾法、实验目的:1. 掌握基准物K2Cr2O7标准溶液的配制方法。
2. 了解铁矿石的溶解方法。
3. 理解甲基橙既是氧化剂又是指示剂的原理与条件。
4. 掌握K2Cr2O7法测全铁量的原理和方法。
5. 学习二苯胺磺酸钠的使用原理二、实验原理铁矿石的溶解方法:铁矿石的溶解方法是根据铁矿石的组成来决定的。
例如:含硅酸盐用氟化物助溶;磁铁矿用二氯化锡助溶;含硫或有机物先灼烧(550℃~600℃)去掉S和C(SO2↑、CO2↑)后,再用HCL溶;还有碱熔融法等。
本实验所用的铁矿石用浓HCL溶,基本上就可以完全溶完。
例: Fe3O4 + 8HCL == 2FeCL3 + FeCL2 + 4H2O溶解过程温度应保持80℃~90℃。
温低溶解慢、溶不完,温高FeCL3↑。
2、试样的预处理:(1) Fe(Ⅲ)的还原:用浓HCl 溶液分解铁矿石后,在热HCl 溶液中,以甲基橙为指示剂,用SnCl2 将Fe3+还原至Fe2+,并过量1 滴(只能过量1~2滴)。
经典方法是用HgCl2 氧化过量的SnCl2,除去Sn2+的干扰,但HgCl2 造成环境污染,本实验采用无汞定铁法。
还原反应为2FeCl4- + SnCl42- + 2Cl-= 2FeCl42- + SnCl62+(2) 除去过量的SnCl42-:SnCl42- 耗Cr2O72-所以必须除去。
使用甲基橙指示SnCl2 还原Fe3+的原理是:Sn2+将Fe3+还原完后,过量的Sn2+可将甲基橙还原为氢化甲基橙而褪色,指示了还原的终点,剩余的Sn2+还能继续使氢化甲基橙还原成N,N-二甲基对苯二胺和对氨基苯磺酸钠,反应为:(CH3)2NC6H4N=NC6H4SO3Na→(CH3)2NC6H4NH-NHC6H4SO3Na→(CH3)2NC6H4H2N + NH2C6H4SO3Na以上反应是不可逆的,不但除去了过量的Sn2+,而且甲基橙的还原产物不消耗K2Cr2O7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三、 铁矿石900℃间接还原性能检测
【实验性质】综合性实验;学时:4
3.1实验目的
(1) 了解并掌握铁矿石还原动力学性能测定方法。
(2) 了解所用设备的工作原理及基本操作方法。
(3) 进一步巩固所学冶金物理化学过程热力学、动力学等专业基础知识,并运用所学相关知识,对影响铁矿石还原动力学性能的相关因素进行分析讨论,提高理论联系实际的水平。
(4) 通过实验,使得同学们的动手能力和分析问题与解决问题的能力得到提高。
3.2实验装置及实验原理
现代高炉生产中,铁矿石的还原是高炉冶炼要完成基本任务,还原过程包括两部分,既间接还原和直接还原。
间接还原是指还原剂是气体为即CO或H2的还原过程;直接还原是指用固体C完成的还原。
间接还原是高炉上部最主要的反应,在目前高炉冶炼技术条件下,尽量发展间接还原。
充分利用高炉煤气中的CO(H2),对于改善高炉冶炼过程的能量利用,降低焦比具有重要的意义。
间接还原的反应是由高价氧化物到低价氧化物的反应,即:
3Fe2O3+CO(H2)=2Fe3O4+CO2(H2O)
Fe3O4+CO(H2)=3FeO+CO2(H2O)
FeO+CO(H2)=Fe+CO2(H2O)
所谓铁矿石的还原性,是指铁矿石中的氧化铁被CO(H2)还原的难易程度。
高炉工作者力求铁矿石具有良好的还原性,因此需要通过实验测定铁矿石的还原性。
还原性是评价铁矿石冶炼价值的重要指标。
在本实验采用热天平失重法,其原理为:在900℃条件下,将悬挂于电子天平下反应管内的500克铁矿石通入还原气体CO或H2,铁氧化物中的氧与还原性气体发生反应,生成CO2或H2O而排出反应管外,铁矿石因失氧而重量逐渐减轻,这样便可计算出各时刻的相对还原度;画出还原度随时间变化的还原曲线。
本实验方法为《铁矿石的还原性测定方法》GB/T13241-91标准方法,该方法参照ISO7215标准实验装置见图3-1。
图3-1 铁矿石还原实验装置系统图
3.3 实验步骤
将铁矿石(烧结矿、球团矿、块矿)样品在105℃温度下烘干120分钟,以除去水分,铁矿石试样重500克,粒度为10—12.5mm,为保证粒度需用10—12.5mm 的标准筛进行试样筛分。
将试样置于还原反应管中,还原反应管用耐热钢制造,内径75mm,中部有带空隔板,隔板上放式样,隔板下放高铝球,用于预热还原气体。
装好试样的反应管吊在天平下面,置于还原炉中,还原炉内径130mm,其加热元件为铁铬铝电炉丝,工作管为高铝螺纹管。
还原炉由可控硅温控电源供电,并且自动保持恒温。
升温时先往反应管内通干燥的氮气作为保护气体。
2小时内将温度升至900℃,保温30
分钟,然后在通入还原气体CO(H 2)
,开始记录数据。
还原气体组成为CO:N 2=30%:70%,还原气体流量为15升/分。
通气还原前验证电子天平的灵敏度,通气后要调整好气体的流量。
还原时间为180分钟。
还原结束,停止通入还原气体,断电冷却,向还原管内通入N 2保护试样下冷却至室温,观察还原后样品,为以后的软化和融滴实验做准备的样品。
900℃间接还原性能检测实验结果以还原性即“RI”表示:
%10010043.043.011.001×⎥⎦⎤⎢⎣⎡××−+=m A m m A B RI t
式中:A、B 分别为试样的TFe 和FeO 含量(%);
m 0为试样的质量(g)
; m 1,m t 分别为还原开始前和还原到t 分钟试样的质量(g)。
实验完毕,整理数据计算还原度,并画出还原度与还原时间的关系曲线如图3-2所示。
图3-2:实验结果示例
3.4 拓展实验训练
3.4.1铁矿石500℃低温还原粉化性能RDI检测实验
铁矿石发生低温还原粉化的原因是铁矿物400~600℃低温还原时发生的晶型转变,再生的赤铁矿由αFe2O3转变为γFe2O3,前者为三方晶系六方晶格,后者为等轴晶系立方晶格,晶格的转变造成结构扭曲,产生极大的内应力,导致在机械作用下严重的碎裂。
影响铁矿石低温还原粉化性能的因素是多方面的,包括铁矿石的化学成分、矿物组成、还原性等方面。
3.4.1.1 500℃低温还原粉化性能的试验方法及设备
采用《铁矿石低温粉化试验静态还原后使用冷转鼓方法》GB/T13242-91标准方法。
实验设备与间接还原设备相同,见图3-1。
3.4.1.2实验步骤
(1)将铁矿石样品在105℃温度下烘干120分钟,以除去水分,铁矿石试样重500克,粒度为10—12.5mm,为保证粒度需用10—12.5mm的标准筛进行试样筛分。
(2)将试样置于还原反应管中,还原反应管用耐热钢制造,内径75mm,中部有带空隔板,隔板上放式样,隔板下放高铝球,用于预热还原气体。
(3)试样在500℃温度下通过15升/分的还原气体,还原气体由20%CO+20%CO2+60%N2组成,试样还原时间为60分钟。
试样经还原后用纯N2气保护冷却至室温后称重,然后置于Φ130×200mm的标准转鼓内以30转/分的速度转10分钟,倒出后用6.3、3.15和0.5mm的方孔标准筛过筛称重,试验结果分别以“RDI+6.3”、“RDL+3.15”和“RDI-0.5”表示
低温还原强度指数:RDI +6.3=%1000
1×D D m m 低温还原粉化指数:%1000
2115.3×+=+D D D m m m RDI 低温还原抗磨指数: %100)(032105.0×++−=
−D D D D D m m m m m RDI 式中:m D0为还原后转鼓前试样的质量(g);
m D1、m D2、m D3 分别为转鼓后留在6.3mm,3.15mm,0.5mm 筛上试样的质量(g);
其中RDI +3.15作为考核指标,要求RDI +3.15大于60%。
(4)实验完毕,整理实验数据,计算铁矿石低温还原粉化性能各项指标,撰写实验报告。
3.4.2球团矿900℃还原膨胀RSI 性能检测实验
高炉炼铁使用的球团矿为氧化球团矿,其其主要成分为赤铁矿。
球团矿在900—1000℃还原时将发生体积变化。
原始氧化物 赤铁矿
产物 Fe 2O 3 Fe 3O 4 FeO x Fe
视体积 100 125 132 127
体积膨胀,将造成球团矿的破碎。
3.4.2.1 900℃还原膨胀性能的实验方法及设备
采用国家标准《铁矿球团相对自由膨胀指数的测定方法》GB/T13240-91标准方法进行,实验设备与间接还原设备相同,见图3-1。
3.4.2.2实验步骤
将球团矿样品在105℃温度下烘干120分钟,以除去水分,取直径ф10.0-12.5mm 18个球,分三层装入球团矿还原膨胀指数测定容器,置于反应管中,在900℃温度下恒温还原60分钟,还原气体成份由30%CO+70%N 2组成,流量为15升/分,测定球团矿在还原前后的体积变化,并计算它的百分率,用RSI 表示。
球团矿的体积采用累计直径法取测定10次的平均值计算。
球团矿的900℃还原膨胀率要求<20%
实验完毕,整理实验数据,计算球团矿的900℃还原膨胀率,撰写实验报告。
3.4.3块矿热裂性能检测实验
由于部分赤铁矿或褐铁矿含有部分结晶水,在加入到高炉中后受到还原气体的高温作用,结晶水的分解和剧烈蒸发将造成铁矿石的碎裂,产生粉末,影响高炉的料层透气性。
3.4.3.1块矿热裂性能的实验方法及设备:
参照ISO8371进行。
实验设备与间接还原设备相同,见图3-1。
3.4.3.2实验步骤
实验试样500g,10份,粒度为20—25mm,经过105℃,2小时烘干。
将试样防入直径75mm 的反应管,升温,升温速度为30分钟升到700℃,升温过程通入纯氮,流量15升/分。
到700℃,断电冷却,并通入空气,流量15升/分,冷却到室温,取出过6.3mm 筛子,以<6.3mm 的所占比例作为热裂指数,以DI 表示。
实验结果取十组数据平均值。
实验完毕,整理实验数据,计算块矿的热裂性能,撰写实验报告。
3.5实验报告内容要求
(1) 实验目的;
(2) 实验原理及设备;
(3) 实验步骤;
(4) 实验数据整理,绘制实验曲线
实验结果与讨论,分析相关的影响因素。