信息光学(第二版)06-二维线性系统分析2-傅里叶变换定理、

合集下载

信息光学总复习

信息光学总复习

线性系统
若系统对几个激励的线性组合的整体响应,等于单个激 励所产生的响应的线性组合,则该系统称为线性系统。 系统对输入的脉冲函数产生的输出称为脉冲响应. 若输入脉冲发生位移时, 线性系统的响应函数形式 不变,仅造成响应函数相应的位移,即:
{d(x-x, y-h)}=h (x-x, y-h)
这样的系统称为线性空不变系统。
x y U ( x, y ) c t ( x0 , y0 ) exp j 2 f x0 f y0 dx0 dy0

c
t ( x0 , y0 ) f
x
x y , fy f f
用单色平面波照明物体,物体置于透镜的前焦面,则在 透镜的后焦面上得到物体的准确的傅里叶变换。透镜的后焦 面称为频谱面。
振幅谱 位相谱
线性系统的定义: 设: g1(x2, y2) =ℒ {f1(x, y)}, g2(x2, y2) = ℒ {f2(x, y)}, 且对于 任意复常数a1 和a2,有: ℒ {a1 f1 (x, y) + a2 f2 (x, y) } = a1 g1 (x2, y2) + a2 g2 (x2, y2) 则称该系统 ℒ 为线性系统。
衍射受限系统—— 线性空不变的成像系统
1
~ h xi ,yi

2
3
P(d i ~, d i ~) x y
若成像系统的像质仅受有限大小光瞳的衍射效应所限制, 则称为 “衍射受限”系统 (diffraction-limited system )
衍射受限的相干成像系统点扩展函数是光瞳函数的傅里叶变换
{h(x,y)}
x
x f y y )]dxdy
=

信息光学chap1傅里叶分析

信息光学chap1傅里叶分析
通信理论引入光学
• Maxwell方程的正确性,把电与光有机地统一 起来。 • 光学信息处理是电子通信理论的发展,解决了 电子信息处理的瓶颈问题。 • 许多电子通信理论及技术可以用来指导光学信 息处理理论。 • 从一维线性理论发展到二维光学线性理论是有 条件的、近似的。
第一章 傅里叶分析
信息处理系统
comb(ax)
n -
d (ax - n)

n d [a( x - )] a n -

n -



1 n d (x - ) a a 1 n d (x - ) a a

证毕!
n -

(2) 偶函数性质
comb( x) comb(- x)
注意:有偏置x0 的comb函数无此特性!
- nb)
思考:g(x)的comb函数表述形式?
2 梳状函数的性质
(1) 比例变换性质
1 comb(ax) a
n d (x - ) a n -

有偏置x0 的comb函数表现形式?
1 comb[a( x - x0 )] a
n d ( x - x0 - ) a n -

证明:
x rect ( ) cos x b
请大家画出它的图示。
1.1.2 sinc 函数
定义:
x - x0 sin p ( x - x0 ) / a sin c( ) a p ( x - x0 ) / a
式中 a>0
当 x=x0 处有最大值1,零点位于 x-x0=na,两个一级零点 之间的宽度为主瓣宽度为2a. 当x0=0,a=1时,上式变为:
f(-x) x
bf(x) -f(x) x x

光学第六章 - 傅里叶变换光学简介

光学第六章 - 傅里叶变换光学简介

(x , y )
F
+1
+1 -1
0 -1
衍射方向:
0级为正出射的平面波,衍射角为0 ;
空间频率越高, 衍射角就越大
代表向上斜出射的平面光,衍射角 满足: 1级U sin 1 + f 1 1 代表向下斜出射的平面光,衍射角 满足: 1级U sin 1 f 1 1
At U 0 1 0 1 A t ei (2 fx 0 ) U 1 11 2 2 i ( f ) x i0 1 1 A1t1e A1t1eik sin1 x i0 2 2 1 1 i (2 fx 0 ) U 1 A1t1e A1t1eik sin1 x i0 2 2
A1e
发散球面波
2 ( n 1) s ik
x2 y 2 ik ik ( n 1) x 2s
2s
e
2 x ( n 1) s y 2 ik
2s
发散中心,即像点的位置为:((n-1)s, 0, -s)
(3)窗函数
光学元件孔径有限 窗函数(window function) tw
变换相因子
(1)透镜(在傍轴条件下,忽略吸收)
L ( x, y ) e t
x2 y 2 ik 2f
二次相因子
(2)棱镜(小角)
(1x +2 y ) P ( x, y) eik (n1) t
线性相因子
试运用相因子分析法 分析 余弦型环状波带片的衍射场
4、 余弦光栅的衍射场 余弦光栅的制备:
x2 y 2 ik 2f
A1e
x2 y 2 ik 2s
ik
A1e
x2 y 2 fs 2 f s

信息光学chap1傅里叶分析

信息光学chap1傅里叶分析

a
0
x2 + y2 circ a
1.1.7 高斯函数
Gaussian Function
Gaus(x) = exp(-px2) Gaus(0) = 1 S=1 是非常平滑的函数,即 各阶导数均连续.
Gaus(x)
x
0
二维情形:
Gaus(x)Gaus(y)=exp[- p(x2+y2)] 可代表单模激光束的光强分布
1.1.8复指数函数 Complex exponential function
Aexp(j)=Acos + jAsin
w = 2p
A 0 对于简谐振动, = 2p t

:振子的位相角
推广到二维:
Aexp[j 2p (fxx+fyy)]
注意
以上定义的函数,其宗量均无量纲。在处理实际 问题时,要根据所取的单位采用适当的缩放因子。 例: 以 rect(x) 代表单缝。若x单位为cm,则 rect(x) 代表宽度为1cm 的单缝。若x单位为mm, 则 rect(x/10) 代表宽度为1cm 的单缝。


当n=k,二者定义域和值域都一样。左边=右边。 证毕。 例题2:写出下图函数g (x)的表达式。
g(x)
1
………
b 0 x0
……….
x
写出第一个δ函数的表达形式: 写出第n个δ函数的表达形式:

d ( x - x0 )
d ( x - x0 - nb)
0
写出g(x)的表达形式:
n -
d (x - x
一维矩形函数定义
x - x0 1 x - x0 1, rect ( ) a 2 a 0, 其它

傅立叶光学

傅立叶光学
用算符表示系统
Linear Systems
1.线性系统 3)线性系统的定义 g(x, y) = {f(x, y)}
定义: 如果 g1(x, y) = 输入
f(x, y)
{
}
输出
g(x, y)
{f1(x, y)}, g2(x, y) =
{f2(x, y)}
若对任意复常数a1, a2有: {a1 f1 (x, y) + a2 f2 (x, y) } =
2.2 线性不变系统
输入输出关系: 空域
Linear Shift-Invariant System
2.二维线性空不变系统 2-D Linear Space Invariant Systems
+∞
∵ f ( x, y ) = f ( x, y ) ∗ δ ( x, y ) = ∫
∴ g (x, y) =
逆傅立叶变换的物理意义:物函数f(x,y)可看作是无数振幅不同 ( F ( f x , f y )df x df y) 方向不同( cosα=λfx cosβ= λ fy )的平面波线性叠加的结果。 这种方法通常称为傅立叶分解
1.线性系统
2.1 线性系统 Linear Systems
4)线性系统的分析与综合:
g(x, y) =
=
叠加积分
{f(x, y)}
+∞
∫∫ ∫∫
f (ξ ,η )
{ δ ( x − ξ , y − η ) }d ξ d η
−∞ +∞
=
f (ξ ,η ) h ( x , y ; ξ ,η ) d ξ dη
−∞
只要知道各个脉冲响应函数(点扩散函数), 系统 的输出即为脉冲响应函数的线性组合. 问题是如 何求对任意点的脉冲δ (x-ξ, y- η)的响应h(x, y;Linear Space Invariant Systems

光学第六章 - 傅里叶变换光学简介 - 小结

光学第六章 - 傅里叶变换光学简介 - 小结

高通
带通
sin k f k
t ( x)
1
x0
a
d
b
x
以黑白光栅为物,单色平行光照射 在傅里叶频谱面上加一可调狭缝,观察像的变化
( x) t ( x kd ) t
( x) ck ei 2 kfx t
a sin( ka / d ) ck d ka / d
E(kx , k y ) i PSF (kx , k y ) i (kx , k y )
E ( x, y) ( x, y)
I ( x, y) 2 2 ( x, y) 2 2 ( x, y)
10、 相位物可视化的其它光学方法
暗场法 纹影法 微分法 离焦法
(x, y) A t t cos(2 fx ) U U U 4、余弦光栅的衍射 U 2 1 0 1 0 0 1 1
At U 0 1 0 1 U 1 A1t1ei (2 fx 0 ) 2 2 i ( f ) x i0 1 1 A1t1e A1t1eik sin1 x i0 2 2 1 A t e i (2 fx 0 ) 1 A t eik sin1 x i0 U 1 11 11 2 2
5、傅里叶变换光学大意
夫琅禾费衍射实现屏函数的傅里叶变换:
频 谱 面
物 面 周期屏函数可以用傅里叶展开:
a0 1 1 i 2 f k x i 2 f k x i 2 f k x t ( x) (ak ibk )e (ak ibk )e c e k 2 k 1 2 2
11、 夫琅禾费衍射的普遍定义与多种装置
12、 准确获得物频谱的三种系统

《信息光学》教学大纲

《信息光学》教学大纲

《信息光学》课程教学大纲一、课程基本信息二、课程简介信息光学是应用光学、计算机和信息科学相结合而发展起来的一门新的光学学科,是信息科学的一个重要组成部分,也是现代光学的核心。

本课程主要介绍信息光学的基础理论及相关的应用,内容涉及二维傅里叶分析、标量衍射理论、光学成像系统的频率特性、部分相干理论、光学全息照相、空间滤波、相干光学处理、非相干光学处理、信息光学在计量学和光通信中的应用等。

三、课程目标本课程是光电信息科学与工程专业的主要专业课程之一,设置本课程的目的是让学生掌握信息光学的基本概念、基础理论及光信息处理的基本方法,了解光信息处理的发展近况和运用前景。

为今后从事光信息方面的生产,科研和教学工作打下基础。

四、教学内容及要求第一章信息光学概述(2学时)1.信息光学的基本内容和发展方向2.光波的数学描述和基本概念3.相干光和非相干光4.从信息论看光波的衍射要求:1.了解信息光学的内容和发展方向2.掌握相干光和非相干光的特点3.掌握从信息论的观点看光波的衍射。

重点:空间频率,等相位面。

从信息光学看衍射的基本观点。

难点:空间频率,光波的数学描述。

第二章二维傅里叶分析(8+2学时)1.光学常用的几种非初等函数2.卷积与相关3.傅里叶变换的基本概念4.线性系统分析5.二维采样定理要求:1.了解光学中常用非初等函数的定义、性质,熟悉它们的图像及在光学中的作用2.了解卷积与相关的定义及基本性质3.熟悉傅里叶变换的基本原理,性质和几何意义4.熟悉系统的基本概念及线性系统分析的基本理论5.了解二维采样定理及其应用6.本章强调概念的物理意义理解,以定性和应用为主。

避免与《信号与系统》课程重复。

重点:δ函数的意义和运算特性,傅里叶变换性质、定理,相关和卷积的意义及运算,线性空间不变系统的特性。

难点:卷积,傅里叶变换、系统分析。

第三章标量衍射理论(6+2学时)1.基尔霍夫衍射理论2.菲涅耳衍射和夫琅和费衍射3.夫琅和费衍射计算实例4.菲涅尔衍射计算实例5.衍射的巴俾涅原理要求:1.了解基尔霍夫衍射理论2.熟悉菲涅耳- 基尔霍夫衍射公式及其物理意义3.熟悉菲涅耳衍射与夫琅和费衍射4.掌握常见夫琅和费衍射光场的分析与计算5.了解菲涅耳衍射光场的分析和计算6.了解巴俾涅原理及其应用重点:如何用二维傅里叶变换来分析和计算夫琅和费衍射。

信息光学总结

信息光学总结

第1章二维傅里叶分析第一讲 光学中常用的几种非初等函数 δ函数Ⅰ重要的基本概念和公式 δ函数性质 (1)筛选特性 0000(,)δ(,)d d (,)f x y x x y y x y f x y +∞-∞--=⎰⎰(2)可分离变量 0000δ(,)δ()δ()x x y y x x y y --=--(3)乘法性质 000000(,)δ(,)(,)δ(,)f x y x x y y f x y x x y y --=-- (4)坐标缩放 1δ(.)δ(,)ax by x y ab=(5)积分形式 11δ()cos , δ()d 22i xx xd x eωωωωππ∞∞±-∞-∞==⎰⎰Ⅱ 例题讲解:证明:()x df e x xf j x δπ=⎰∞∞-±2 ()()[]()()()x x f x f f df x f dfx f i x f df e x x x f xx xxxx xf j x x δππππππ===±=∞→∞∞∞-∞∞-±⎰⎰⎰22sin 22cos 22sin 2cos lim 202此证明利用了关系式()()Nx c N x f N sin =; ()()y x f x N N ,lim ∞→=δⅢ 练习题: 一、计算题1. 已知连续函数f (x ), a >0和b >0 。

求出下列函数: (1) ()()()0x ax x f x h -=δ(2) ()()()[]x x comb x f x g 0-=(提出:本题主要复习δ函数的缩放性质和筛选性质;梳妆函数的抽样特征和平移复制功能)第二讲 卷积和相关Ⅰ重要的基本概念和公式1. 卷积定义:设f (x )和h (x )是两个复函数,其卷积定义为:⎰∞∞--=*=ξξξd x h f x h x f x g )()()()()(卷积运算的意义:一个函数绕函数轴反转并沿自变量轴做某一平移后与另一函数的重叠面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档