快速傅里叶变换(FFT)的原理及公式

合集下载

FFT快速傅里叶变换(蝶形算法)详解概要

FFT快速傅里叶变换(蝶形算法)详解概要
第五章 快速傅里叶变换
本章目录

直接计算DFT的问题及改进的途径 按时间抽取的基2-FFT算法 按频率抽取的基2-FFT算法 快速傅里叶逆变换(IFFT)算法 Matlab实现
2
5.1 引言

DFT在实际应用中很重要: 可以计算信号的频
谱、功率谱和线性卷积等。

直接按DFT变换进行计算,当序列长度N很

9
5.3.1 算法原理
设N=2L,将x(n)按 n 的奇偶分为两组:
x(2r ) x1 (r )
x(2r 1) x2 (r )
r
N =0,1,…, 1 2

X (k ) DFT [ x(n)] x(n)WNnk
n 0
N 1

n 0 n为偶数
x(n)W
N 1
x1 (r )W
r ( N 2 k ) N 2
rk x1 (r )WN 2 X 1 (k ) r 0
N 2 1
同理可得
N k ) X 2 (k ) 2
12
考虑到 及前半部分X(k)
( N 2 k ) N 2 k k WN WN WN WN
k X (k ) X 1 (k ) WN X 2 (k )
运算前
A(k ) X 1 (k ) X (k )
运算后
A(k )
A(k
N ) X 2 (k ) 2
k WN
N A(k N ) X (k ) 2 2
30
观察原位运算规律
31
蝶形运算两节点间的距离

蝶形运算两节点间的距离
以N=8为例: 第一级蝶形,距离为: 第二级蝶形,距离为: 第三级蝶形,距离为: 1 2 4

快速傅里叶变换 FFT

快速傅里叶变换 FFT

因为
,所以:
上式中X1(k)和X2(k)分别为x2(r)和x2(r)的N/2点DFT, 即
由于X1(k)和X2(k)均以N/2为周期,且 X(k)又可表示为:
,以
即将一个N点的DFT分解成为两个N/2点的DFT。 上述运算可用右下图来表示,称为蝶形运算符号。
从右图可知,要完成一 个蝶形运算需要进行一 次复数相乘和两次复数 相加运算。
对于象雷达、通信、声纳等需要实时处理的信号, 因为其运算量更大,所以无法满足信号处理的实时 性要求。迫切需要有新的算法。
二、DFT运算的特点
实际上,DFT运算中包含有大量的重复运算。在WN
矩阵中,虽然其中有N2个元素,但由于WN的周期
性,其中只有N个独立的值,即
,且
这N个值也有一些对称关系。总之,WN因子具有如 下所述周期性及对称性:
N 1
X (k) x(n)WNkn n0
x(n)
1 N
N 1
X (k)WNkn
k 0
k 0,1,2, , N 1 n 0,1,2, , N 1
计算X(k)的运算量:需要N2次复数乘法,N(N-1)
次复数加法。在N较大时计算量很大。
例如:N=1024时, 需要1,048,576次复数乘法, 即 4,194,304次实数乘法
1.对称性
2.周期性 由上述特性还可得出:
利用上述对称特性,可使DFT运算中有些项可以合 并,这样,可使乘法次数减少大约一半;利用WN 矩阵的对称性及周期性,可以将长序列的DFT分解 为短序列的DFT,N越小,运算量能够减少。 例如,对于四点的DFT,直接计算需要16次复数乘 法,根据上述特性可以有以下形5年,J. W. Cooley和J. W. Tukey巧妙应用DFT中 W因子的周期性及对称性提出了最早的FFT,这是 基于时间抽取的FFT。具有里程碑式的贡献(运算量 缩短两个数量级)

快速傅里叶变换fft原理

快速傅里叶变换fft原理

快速傅里叶变换fft原理
快速傅立叶变换(Fast Fourier Transform,FFT)是一种将时域信号转变为频
域信号的数字信号处理方法。

它通常比傅里叶变换(Fourier Transform,FT)更快、更方便。

它通过将高维度的折叠为低维度,将傅里叶变换从背景计算量O(N2)优化到O(NlogN),并延长空间采样前的信号。

FFT可以理解为若干特殊形式的数学公式,用于将复数的时域函数转换为它们
的频域表示形式的变换,即其频域图像。

例如,我们可以将一个正弦信号的时域图像转换为它的频域图像,从而可以获得关于这个信号的频率的一些有用信息。

FFT的运算思想和FT一样,它们都使用复数的形式将时域信号变换成频域信号,但FFT采用更加高效的算法,以缩短复杂度为O(NlogN)。

它还允许用户以
恒定频率对信号进行采样,然后分析其时域运动规律。

因此,FFT应用于诸如脉冲
调制、音频信号分析等复杂的应用场景,广泛的地增强了计算能力。

编程实现快速傅里叶变换(fft)

编程实现快速傅里叶变换(fft)

一、概述傅里叶变换是信号处理和数据压缩中常用的数学工具,它可以将时域信号转换为频域信号,从而便于分析和处理。

而快速傅里叶变换(FFT)则是一种高效的计算傅里叶变换的方法,可以大大提高计算效率,广泛应用于信号处理、图像处理、通信系统等领域。

二、傅里叶变换原理傅里叶变换的基本思想是将一个时域信号分解为不同频率的正弦和余弦函数的叠加,从而得到该信号的频谱图。

具体来说,对于一个连续信号x(t),它的傅里叶变换X(ω)定义为:X(ω) = ∫[0,∞]x(t)e^(-jωt)dt其中,ω为频率变量,X(ω)表示在频率ω处的信号能量。

而对于离散信号x[n],它的傅里叶变换X[k]则定义为:X[k] = ∑[n=0,N-1]x[n]e^(-j2πkn/N)其中,N为信号的采样点数,k为频率域的序号。

上述公式称为离散傅里叶变换(DFT),计算复杂度为O(N^2)。

而快速傅里叶变换则通过巧妙的算法设计,将计算复杂度降低到O(NlogN)。

三、快速傅里叶变换算法概述快速傅里叶变换的算法最早由Cooley和Tukey在1965年提出,它的基本思想是将一个长度为N的DFT分解为两个长度为N/2的DFT的组合,通过递归地分解和合并,最终实现对整个信号的快速计算。

下面我们来介绍一种常用的快速傅里叶变换算法:递归式分治法。

四、递归式分治法递归式分治法是一种高效的计算DFT的方法,它的基本思想是将长度为N的DFT分解为两个长度为N/2的DFT,并通过递归地调用自身,最终实现对整个信号的傅里叶变换。

具体来说,假设有一个长度为N的信号x[n],对其进行快速傅里叶变换的过程可以分为如下几个步骤:1. 将长度为N的信号x[n]分为长度为N/2的偶数序号和奇数序号的两个子信号x_even[n]和x_odd[n];2. 对子信号x_even[n]和x_odd[n]分别进行快速傅里叶变换,得到它们的频域表示X_even[k]和X_odd[k];3. 结合X_even[k]和X_odd[k],计算原信号的频域表示X[k]。

FFT算法详解

FFT算法详解

FFT算法详解FFT (Fast Fourier Transform) 是一种高效的离散傅里叶变换算法,用于将时域信号转换为频域信号。

它在信号处理、图像处理、通信领域等具有广泛的应用。

本文将详细介绍FFT算法的原理和实现。

一、傅里叶变换的基本原理傅里叶变换是一种将信号从时域转换到频域的方法。

它将时域信号分解成多个不同频率的正弦和余弦函数的叠加。

傅里叶变换的基本公式为:F(k) = Σ_{n=0}^{N-1} f(n)e^{-2πikn/N}其中,F(k)是频域信号的复数表示,f(n)是时域信号的复数表示,N是信号长度,k是频率。

二、傅里叶变换的问题传统的傅里叶变换算法的时间复杂度为O(N^2),计算量较大,不适用于实时处理大型信号。

FFT算法通过分治的思想,将DFT(Digital Fourier Transform)问题转化为多个子问题,从而降低了计算复杂度。

三、蝶形运算蝶形运算的公式为:y_0=x_0+W_N^k*x_1y_1=x_0-W_N^k*x_1其中,x_0、x_1是输入,y_0、y_1是输出,W_N^k是旋转因子,N是信号长度,k是频率。

四、FFT算法的步骤1.将输入信号分成偶数下标和奇数下标的两个子序列。

2.对两个子序列分别进行FFT变换,得到两个子序列的频域表示。

3.将两个子序列的频域表示合并成完整的频域信号。

4.重复上述步骤,直到得到最终的频域信号。

五、FFT算法的实现1.初始化输入信号和旋转因子。

2.将输入信号按照偶数下标和奇数下标分成两个子序列。

3.对两个子序列分别进行FFT变换,递归调用FFT函数。

4.将两个子序列的频域表示合并成完整的频域信号。

5.返回最终的频域信号。

总结:FFT算法是一种高效的离散傅里叶变换算法,通过分治的思想将DFT问题分解为多个子问题,从而降低了计算复杂度。

它在信号处理、图像处理、通信领域等有着广泛的应用。

掌握FFT算法的原理和实现对于理解信号处理技术和提高算法效率具有重要意义。

快速傅里叶变换多项式乘法

快速傅里叶变换多项式乘法

快速傅里叶变换多项式乘法快速傅里叶变换(FFT)是一种快速计算多项式乘法的算法。

在计算机科学中,多项式乘法是一个十分广泛的问题,因为它有很多应用,例如信号处理、密码学、图像处理、数据压缩等等。

FFT算法的出现解决了这个问题的时间复杂度,使得计算大型多项式乘法成为了可行的任务。

1. FFT算法的原理和步骤 FFT算法是一种基于分治思想的算法,它把多项式乘法分解成两个较小的多项式乘法,然后以递归的方式继续分解直到小到可以直接计算的程度。

FFT算法的主要步骤如下:Step 1:将两个多项式的系数表达式分别展开,组成两个系数向量,由于向量在FFT算法中的操作更加方便,因此将分别展开出的系数给予两个向量。

Step 2:给向量补齐空缺值,由于$n$(两多项式次数之和)为$2$的幂,于是补齐至$2^n$个。

Step 3:对向量进行傅里叶变换,得到两个傅里叶变换向量。

这一步可以利用DFT(离散傅里叶变换)或IDFT (离散傅里叶逆变换)实现。

具体实现方式后续详细介绍。

Step 4:将两个傅里叶变换向量逐位相乘(注意:乘法运算是复数乘法,不是单纯的数乘),得到一个新的傅里叶变换向量。

Step 5:对新的傅里叶变换向量进行傅里叶逆变换(IDFT),得到的结果就是最后的多项式系数向量。

2. DFT的计算及优化思路DFT(离散傅里叶变换)是FFT算法中的重要计算基础,因此,如何快速准确地计算离散傅里叶变换的值是至关重要的。

对于长度为$n$的一个序列$a$,它的DFT计算公式如下:$$A(k)=\sum _{j=0}^{n-1}a(j)\cdot e^{-i2\pikj/n}$$其中$i$表示虚数单位,$e$表示自然常数,$k$表示频率,$j$表示时间,$n$表示序列长度。

根据公式,可以采用暴力枚举的方式计算出$A(k)$的值,但是时间复杂度达到$O(n^2)$,很不适合计算大量数据。

于是,FFT算法采用了一种基于蝴蝶运算的DFT优化方式,能够将时间复杂度降到$O(nlog(n))$:如果序列的长度为偶数,可以将序列分成两个序列,再分别进行DFT;如果序列长度是奇数,则可以将序列复制一份,增加一个零元素,然后将序列分成两部分,分别进行DFT的计算。

fft算法原理

fft算法原理

FFT算法原理一、简介傅里叶变换(Fourier Transform)是数字信号处理领域中一种重要的数学变换方法,常用于信号频谱分析、滤波器设计和图像处理等方面。

快速傅里叶变换(Fast Fourier Transform, FFT)是一种高效的傅里叶变换算法,能够在时间复杂度为O(N log N)的情况下进行离散傅里叶变换(Discrete Fourier Transform, DFT)计算。

本文将介绍FFT算法的原理及其应用。

二、傅里叶变换概述傅里叶变换是一种将一个连续时间域上的信号转换到频域上的数学变换。

对于连续信号f(t),其傅里叶变换F(ω)定义如下:傅里叶变换公式傅里叶变换公式其中,F(ω)表示信号在频率域上的表示,ω是频率参数。

三、离散傅里叶变换(DFT)离散傅里叶变换是对离散信号进行傅里叶变换的方法。

对于离散信号f(n),其中n为整数,其离散傅里叶变换F(k)定义如下:离散傅里叶变换公式离散傅里叶变换公式其中,N是信号的长度,k为频率参数。

DFT的计算复杂度为O(N^2),当信号长度N较大时,计算量会很大。

为了解决这个问题,FFTs算法应运而生。

四、快速傅里叶变换(FFT)快速傅里叶变换是一种分治算法,其思想是将一个N点DFT计算分解为多个较小规模的DFT计算,并利用它们之间的关系加速计算。

FFT算法基于下面的重要性质:一个N点DFT可以分解为两个N/2点DFT的和与差。

具体实现可以采用迭代方式或递归方式。

1. 迭代实现迭代实现FFT算法的步骤如下:1.将N点输入信号重新排列为位逆序(bit-reversal)的顺序;2.将长度为N的输入信号分解为两个长度为N/2的子信号;3.对两个子信号分别进行FFT计算;4.合并两个子信号的计算结果。

迭代实现FFT算法的时间复杂度为O(N log N)。

2. 递归实现递归实现FFT算法的步骤如下:1.如果N=1,直接返回输入信号;2.将长度为N的输入信号分解为两个长度为N/2的子信号;3.对两个子信号递归调用FFT计算;4.合并两个子信号的计算结果。

FFT快速傅里叶变换(蝶形算法)详解概要

FFT快速傅里叶变换(蝶形算法)详解概要

0 X 3 (1) x3 (0) W21x3 (1) x(0) W21 x(4) x(0) WN x(4)
这说明,N=2M的DFT可全部由蝶形运算来完成。
20
以8点为例第三次按奇偶分解
N=8按时间抽取法FFT信号流图
21
5.3.2 按时间抽取基2-FFT算法与直接计算DFT运算量的比较
所以 整个N点DFT运算共需要:
实数乘法次数: 4 N2
实数加法次数: N×2(2N-1)= 2N(2N-1)
6
DFT运算量的结论
N点DFT的复数乘法次数举例 N 2 4 8 16 32 N2 4 16 64 256 1028 N 64 128 256 512 1024 N2 4049 16384 65 536 262 144 1 048 576
规律:对于共L级的蝶形而言,其m级蝶形运算的节
点间的距离为 2 m1
32
r WN
的确定

W 的确定
r N
以N=8为例:
r m 1时,WN WNj / 4 W2jm W20 , j 0
r m 2时,WN WNj / 2 W2jm W4j , j 0,1
r m 3时,WN WNj W2jm W8j , j 0,1,2,3
16 384
65 536 262 144 1 048 576 4 194 304
448
1 024 2 304 5 120 11 264
36.6
64.0 113.8 204.8 372.4
24
5.3.3 按时间抽取的FFT算法的特点

序列的逆序排列 同址运算(原位运算) 蝶形运算两节点间的距离
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

快速傅里叶变换(FFT)的原理及公式
原理及公式
非周期性连续时间信号x(t)的傅里叶变换可以表示为
式中计算出来的是信号x(t)的连续频谱。

但是,在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT)。

因此需要利用离散信号x(nT)来计算信号x(t)的频谱。

有限长离散信号x(n),n=0,1,…,N-1的DFT定义为:
可以看出,DFT需要计算大约N2次乘法和N2次加法。

当N较大时,这个计算量是很大的。

利用WN的对称性和周期性,将N点DFT分解为两个N/2点
的DFT,这样两个N/2点DFT总的计算量只是原来的一半,即(N/2)2+(N/2)2=N2/2,这样可以继续分解下去,将N/2再分解为N/4点DFT等。

对于N=2m点的DFT都可以分解为2点的DFT,这样其计算量可以减少为(N/2)log2N 次乘法和Nlog2N次加法。

图1为FFT与DFT-所需运算量与计算点数的关系曲线。

由图可以明显看出FFT算法的优越性。

将x(n)分解为偶数与奇数的两个序列之和,即
x1(n)和x2(n)的长度都是N/2,x1(n)是偶数序列,x2(n)是奇数序列,则
其中X1(k)和X2(k)分别为x1(n)和x2(n)的N/2点DFT。

由于X1(k)和X2(k)均以N/2为周期,且WN k+N/2=-WN k,所以X(k)又可表示为:
上式的运算可以用图2表示,根据其形状称之为蝶形运算。

依此类推,经过m-1次分解,最后将N点DFT分解为N/2个两点DFT。

图3为8点FFT的分解流程。

FFT算法的原理是通过许多小的更加容易进行的变换去实现大规模的变换,降低了运算要求,提高了与运算速度。

FFT不是DFT的近似运算,它们完全是等效的。

关于FFT精度的说明:
因为这个变换采用了浮点运算,因此需要足够的精度,以使在出现舍入误差时,结果中的每个组成部分的准确整数值仍是可辨认的。

为了FFT的舍入误差,应该允许增加几倍log2(log2N)位的二进制。

以256为基数、长度为N字节的数
可以产生大到(256)2N阶的卷积分量,所以为了正确存储,需要16+log2N位精度,若数i是浮点尾数的二进制位数,则有条件:
如果i=24,对于任意感兴趣(N>256)的N值,单精度是不合适的;如果i=53,也就是采用双精度,则允许N大于106,相当于几百万十进制位。

所以,用FFT 作大数乘法时,向量数组选用双精度类型。

相关文档
最新文档