烘干车间工艺课程设计
(完整word版)回转烘干机课程设计 (2)

目录❖第一章前言 (5)1.1课程设计背景 (5)1.2课程设计的依据 (5)1.2.1矿渣烘干机的原理及优点 (5)1.2.2矿渣烘干机的结构和型式 (6)1.2.3矿渣烘干机的加热方式及流程 (6)1.3烘干物料设备原理及其应用 (7)1.3.1物料的烘干 (7)1.3.2干燥设备分类及在水泥中应用 (8)1.4回转烘干机工艺流程流程型号及特性 (8)1.4.1矿渣烘干机的工艺流程 (8)1.4.2矿渣烘干机的型号及特性 (9)❖第二章矿渣烘干机的选型计算................错误!未定义书签。
2.1 烘干机的实际产量计算 (12)2.1.1烘干机的实际每小时产量计算 (12)2.1.1煤的选取及基准的转换(抚顺烟煤) (12)2.1.2计算空气需用量,烟气生成量,烟气成分 (13)2.1.3烟气的燃烧温度和密度 (14)2.2 物料平衡及热平衡计算 (15)2.2.1确定水的蒸发量 (15)2.2.2干燥介质用量 (15)2.2.3燃料消耗消耗量 (19)2.2.4废气生成量 (19)2.3烘干机的容积V及规格 (19)2.4电动机的功率复核 (20)2.5烘干机的热效率计算 (22)2.6废气出烘干机的流速 (22)2.7根据废气量及含尘量选型收尘设备和排风设备及管路布置 (23)2.7.1 收尘设备选型 (23)2.7.2选型依据 (23)2.8确定燃烧室及其附属设备 (24)2.8.1据工艺要求选择燃烧室的型式 (24)2.8.2计算炉篦面积 (24)2.8.3计算炉膛容积 (24)2.8.4计算炉膛高度 (24)2.8.5 燃烧室鼓风机鼓风量计算 (25)2.9确定烟囱选型计算 (25)2.9.1烟囱的高度 (35)2.9.2烟囱的直径 (35)❖第三章烟道阻力损失及烟囱计算 (26)3.1.1 摩擦阻力损失 (26)3.1.2 局部阻力损失 (27)3.1.3 几何压头的变化 (27)3.2 烟道计算 (27)3.2.1 烟气量 (28)3.2.2 烟气温度 (28)3.2.3 烟气流速与烟道断面 (29)3.2.4 烟道计算 (30)3.3 烟囱计算 (30)3.3.1 计算公式 (31)3.3.1.2 本课程设计 (33)3.3.1.3 确定烟囱选型 (34)3.3.1.3.1 烟囱高度 (34)❖第四章烘干机结构 (35)4.1 筒体部分 (35)4.2 内部扬料装置 (36)4.3 轮带 (36)4.4 支承装置 (26)4.4.1 托轮支承装置 (37)4.4.2 挡轮装置 (37)4.5 托轮与轴承的结构 (38)4.6 卸料罩壳的设计 (38)4.7 密封装置的设计 (39)4.7.1 密封装置的位置与要求 (39)4.7.2 密封结构 (40)4.8 传动装置 (40)4.9电动机选型及其特点 (41)4.9.1 电动机选型 (41)4.9.2 YCT系列电动机 (42)4.9.3减速机的设计 (42)❖第五章总结 (45)❖参考文献 (46)❖致谢信 (47)6吨/年矿渣烘干机的设计摘要:本课题设计的是6万吨/年矿渣回转烘干机,工业生产中,矿渣发挥着着重要的作用,尤其是一些重大型工厂。
烘干车间工艺设计

烘干车间工艺设计首先,需要对产品进行分析,了解产品的特性和烘干要求。
例如,如果产品是湿热敏感的,则需要选择低温烘干的工艺;如果产品是散粉状的,则需要选择喷流烘干的工艺。
同时,需要了解产品的烘干要求,如烘干时间、温度和湿度等。
其次,根据产品的特性和烘干要求,确定烘干车间的工艺流程。
一般来说,烘干的工艺流程包括进料、烘干、冷却和出料等环节。
在进料环节,需要设计合适的输送设备,如皮带输送机或真空输送机,以确保产品能够顺利进入烘干设备。
在烘干环节,需要根据产品的特性选择合适的烘干设备,如烘箱、旋转烘干机或喷雾烘干机等。
在冷却环节,可以采用自然冷却或者冷却器等设备来降低产品的温度。
最后,在出料环节,需要设计合适的输送设备,以便将烘干好的产品送出烘干车间。
接下来,需要进行设备布局的设计。
设备布局的设计需要考虑到生产能力、工作流程和安全要求等因素。
首先,根据烘干车间的实际情况,确定合适的生产能力。
然后,根据生产能力确定烘干设备的数量和大小。
在设备布局的过程中,需要考虑到工作流程的顺序和方便性。
例如,可以将进料和出料设备放在车间的两端,烘干设备放在中间,以便产品的进出流程能够顺利进行。
此外,还需要合理安排设备之间的距离,以便操作人员能够方便地进行设备的操作和维护。
最后,在设备布局的过程中,需要考虑到安全要求,并设置相应的安全设施,如防护网、安全门和报警系统等。
最后,需要对烘干车间的工艺流程和设备布局进行评估和改进。
在烘干车间的运行过程中,可能会出现一些问题,如烘干效果不佳或者生产效率低下等。
针对这些问题,需要对工艺流程和设备布局进行评估,并采取相应的改进措施。
例如,可以调整烘干设备的温度和湿度,以提高烘干效果;或者增加设备的数量和尺寸,以提高生产效率。
总之,烘干车间的工艺设计是一个复杂的过程,需要考虑到产品的特性和烘干要求,确定工艺流程和设备布局,并在实际运行过程中进行评估和改进。
只有经过科学合理的设计,才能确保产品在烘干过程中能够达到预期的质量要求和生产效率。
PLC烘干机课程设计

第1章 烘干机的概述烘干机是干燥物品的专用设备。
在干燥物品时,为保证物品质量,减小烘干机零件损耗,除要求温度能自动控制外,还需要间断通风。
烘房内装有电接点温度计TJ ,用来检测烘房温度。
当加热器通电时,烘房加热升温;通风机通电时,烘房通风。
当烘房的温度升至需要温度时,电接点温度计的接点闭合;当烘房的温度低于需要温度时,电接点温度计的接点断开。
当按下启动按钮后,要求烘干机按图1所示的过程循环往复的工作,直至按下停止按钮时为止。
某一烘房,在干燥物品时,除要求温度能自动控制外,还需要间断通风,其主电路如图1所示。
L1L2L3N 电源开关电热器通风电动机图1 烘干机主电路图烘房内装有电接点温度计TJ ,用来检测烘房温度。
当加热器通电时,烘房加热升温;通风机通电时,烘房通风。
当烘房的温度升至需要温度时,电接点温度计的接点闭合;当烘房的温度低于需要温度时,电接点温度计的接点断开。
当按下启动按钮后,要求烘干机按图2所示的过程循环往复地工作,直至按下停止按钮时为止。
图2 烘干机工作过程示意图第2章 控制方案论证目前应用于烘干机控制系统主要有继电器控制系统、PLC 和单片机控制系统。
2.1单片机控制方式 它是用程序实现各种复杂的控制,功能最强。
工作方式采用中断处理,响应也较快,价格比PLC 要低。
但它的程序修改难度较大,可靠性比PLC 要差,也需要设计专门的接口电路和抗干扰措施。
在使用时要求有较好的工作环境,维护技术也较高,系统设计较复杂,调试技术难度大,需要有系统的计算机知识。
它需要设计和制作输入接口电路、输出接口电路、放大电路和印刷电路板,设计制作工作量大,周期长,而且它的抗扰能力很弱,对环境的适应性差。
2.2继电器控制方式由于继电器控制设计出的线路也比较复杂,因而电器控制装置的制造周期较长,造价相应较高,维修也不方便。
控制系统完成后,若控制任务发生变化,如某些生产工艺流程的变动,则必须通过改变接线才能实现。
干燥装置课程设计

干燥装置课程设计一、课程目标知识目标:1. 学生能理解干燥装置的基本原理,掌握干燥过程的关键科学概念;2. 学生能够描述不同类型的干燥装置及其工作原理,对比分析各自的优缺点;3. 学生能够运用物理和化学知识解释干燥过程中的现象。
技能目标:1. 学生通过小组合作,设计并构建一个简单的干燥装置模型,培养动手操作能力和问题解决能力;2. 学生能够运用图表、数据和文字准确记录实验过程,提高观察与表达能力;3. 学生能够运用科学方法分析干燥装置的效能,优化实验方案。
情感态度价值观目标:1. 学生通过学习干燥装置的相关知识,激发对科学探究的兴趣,培养主动学习的态度;2. 学生在小组合作中学会倾听、尊重他人意见,培养团队协作精神;3. 学生能够认识到干燥技术在生活和工业中的重要性,关注科技创新,增强环保意识。
二、教学内容本课程以《物理》教材中“物态变化”章节为基础,结合以下内容进行教学:1. 干燥原理:介绍干燥过程中水分的蒸发、扩散等基本原理,以及影响干燥速率的因素;- 教材章节:物态变化第四章第二节2. 干燥装置类型:分析不同类型的干燥装置(如太阳能干燥、热风干燥、微波干燥等)及其工作原理;- 教材章节:物态变化第四章第三节3. 干燥装置的设计与优化:指导学生设计简单干燥装置模型,探讨优化干燥过程的策略;- 教材章节:物态变化第四章第四节4. 实验操作与数据分析:组织学生进行干燥实验,学习记录、分析实验数据,提高实验操作能力;- 教材章节:物态变化第四章实验部分5. 干燥技术在生活中的应用:介绍干燥技术在食品、药品、农产品等领域的应用,探讨其对生活质量的影响;- 教材章节:物态变化第四章第五节教学进度安排:第一课时:干燥原理及影响干燥速率的因素;第二课时:干燥装置类型及其工作原理;第三课时:干燥装置设计与优化;第四课时:实验操作与数据分析;第五课时:干燥技术在生活中的应用及讨论。
三、教学方法本课程采用以下多样化的教学方法,以激发学生的学习兴趣和主动性,提高教学效果:1. 讲授法:教师以生动的语言、丰富的实例,系统地讲解干燥原理、干燥装置类型及其工作原理等理论知识,为学生奠定扎实的基础;- 结合教材章节:物态变化第四章第二节、第三节2. 讨论法:针对干燥装置的设计与优化、干燥技术在生活中的应用等议题,组织学生进行小组讨论,鼓励学生发表见解,培养批判性思维;- 结合教材章节:物态变化第四章第四节、第五节3. 案例分析法:引入实际生活中的干燥案例,如农产品干燥、食品干燥等,让学生分析案例中的问题,提出解决方案,提高学生分析问题和解决问题的能力;- 结合教材章节:物态变化第四章第五节4. 实验法:组织学生进行干燥实验,让学生亲自动手操作,观察实验现象,记录和分析数据,培养学生实验操作能力和科学探究精神;- 结合教材章节:物态变化第四章实验部分5. 小组合作学习:在课程中,将学生分成若干小组,以小组为单位进行讨论、实验和展示,培养学生团队协作能力和沟通技巧;- 结合整个教学过程6. 翻转课堂:利用课外时间,让学生通过观看教学视频、阅读教材等方式自主学习干燥原理等基础知识,课堂上以解决问题、讨论案例为主,提高课堂效率;- 结合整个教学过程7. 创新思维训练:鼓励学生从不同角度思考干燥装置的设计与优化,培养学生的创新意识和能力;- 结合教材章节:物态变化第四章第四节四、教学评估为确保教学评估的客观性、公正性和全面性,本课程采用以下评估方式,全面反映学生的学习成果:1. 平时表现:占总评成绩的30%。
干燥窑设计任务书课程设计

干燥窑设计任务书课程设计木材干燥课程设计计算说明书设计题目:木材干燥窑的设计学院:林学院专业年级:木材加工班学生姓名:班级学号:指导教师:二0一0年_月_日第三组50立方米顶峰即时强制循环干燥窑设计1)设计条件(1)干燥树种:柞木。
(2)初含水率为90%,终含水率为8%,厚度为30mm,长度为4m 的整边板。
(3)建窑地点年最低气温为10℃,最冷月份平均气温为15℃,相对湿度φ为60%。
(4)保温材料采用聚氯乙烯泡沫塑料。
2) 设计要求(1)规范的实际说明书。
(2)手绘图纸一张比例(1:50)。
(3)计算机一张A4图。
(4)图上要把设计的内容及相关尺寸(位置尺寸、注尺寸)表达清楚。
蒸汽管路图(阀门、疏水器、旁通管和分水器的安装图)。
一、设计任务和依据1木材干燥室的设计任务(1)干燥方式和室型的选择;(2)热力计算;(3)气体动力计算;(4)进气道和排气道的计算;(5)解决装堆、卸堆和运输机械化问题;2木材干燥室的设计依据(1)被干锯材的树种、规格、材积、初含水率以及所要求的终含水率;(2)关于能源(蒸汽、电力等)的资料;(3)建室地区一年中最冷月份及年平均气象资料;二、干燥方式、室型的选择和有关尺寸的计算1 干燥方式的选择:干燥整边板采用强制循环周期式顶风机干燥窑。
2 有关尺寸的计算:(1)规定干燥室的容量E=V外×β容m3 50= V外×0.496 V外=100.8 m3 (2)干燥窑基本尺寸:单元材堆:长4000mm 宽2800mm 高1500mm 室内总尺寸:长8600mm 宽4800mm 高5750mm (3)确定干燥室年周转次数柞木干燥时间Z=130/24=5.42昼夜,Z1=0.1昼夜墙壁厚240(一砖)+100(聚氯乙烯泡沫)+100(钢筋混凝土)=440mm 顶棚厚100(钢混)+140(聚氯乙烯泡沫)+(空心楼板)=340mm 门(吊挂式、内外覆铝板、中间聚氯乙烯泡沫夹层)320 mm 风机型号No.10 Y型12叶片转速1500 r/min 圆翼型肋型管散热器长度2米120个加热面积150 m3 三、热力计算 1 水分蒸发量的计算 2 新鲜空气量与循环空气量的确定干燥室一次周转期间的水分蒸发量:M室= = =__kg/周期平均每小时水分蒸发量:M平= 计算每小时的水分蒸放量:M计=M平__=73.8×1.3=96kg/h 蒸发1kg水分所需要的新鲜空气量:g0=kg/kg 柞木的干燥基准如下表干燥阶段干球温度(℃)相对温度(℃)相对湿度(%)干燥时间系数(%)1 65 60.5 79 302 70 63 72 20 3 76 64.5 58 204 82 62.5 41 30 t1=82℃ φ1=36% d1=140g/kg I1=446 t2=65℃ φ2=90% d2=150g/kg I2=460 t0=20℃ φ0=78% d0=13g/kg I0=41 每小时输入干燥室的新鲜空气量的体积:V进=M计×g0×v0=96×4.3×0.72=297.2 m3/h 每小时由室内排除的废气体积:V废=M计×g0×v2=96×4.3×1.22=503.6m3/h 每小时室内循环空气的体积:F堆=m×L×h×(1-β)=6×4×1.5×(1-0.04)=14.72m2 V循=3600×ω循×F堆×1.2=3600×16.364×2×1.2=__.96 m3/h 3 干燥过程中热消耗量的确定干燥室内平均温度t平= t冬计=0.4t冷平+0.6t最低=0.4×(15)+0.6×(10)=-12℃ 预热的热量消耗预热1m3木材的热量消耗:Q预=1000(1.591+4.1868×W初/100)(t平- t冬计)=1000×0.36(1.591+4.186×0.9)(73.5-12)=__(kj/h) 预热期平均每小时热耗量:Q预室= Q预×E/Z预=__×50/4.5=2.2082ⅹ106 kJ/h Z预=3×1.5=4.5h 以1kg被蒸发水为准的,用于预热上的单位热量消耗量:q预= =395.33kJ/kg 蒸发1kg水分的热消耗量:q蒸= 干燥室内每小时用于蒸发水分的热量消耗量为:Q蒸=q蒸×M计=2567×96=__kJ/h 透过干燥室壳体的热损失:墙:外墙为一砖(250mm)厚,λ砖=0.814W/( m2 ℃) 内墙为100mm厚钢筋混凝土结构。
烘干机课程设计

回转烘干机课程设计_年产6吨矿渣烘干机的设计年产6吨矿渣烘干机的设计目录第一章前言 511课程设计背景 512课程设计的依据5121矿渣烘干机的原理及优点 5122矿渣烘干机的结构和型式 6123矿渣烘干机的加热方式及流程 613烘干物料设备原理及其应用 8131物料的烘干8132干燥设备分类及在水泥中应用814回转烘干机工艺流程流程型号及特性9141矿渣烘干机的工艺流程9142矿渣烘干机的型号及特性10第二章矿渣烘干机的选型计算 1321 烘干机的实际产量计算13211烘干机的实际每小时产量计算13211煤的选取及基准的转换抚顺烟煤13212计算空气需用量烟气生成量烟气成分13213烟气的燃烧温度和密度1422 物料平衡及热平衡计算 15221确定水的蒸发量15222干燥介质用量15223燃料消耗消耗量17224废气生成量1823烘干机的容积V及规格1824电动机的功率复核1925烘干机的热效率计算1926废气出烘干机的流速1927根据废气量及含尘量选型收尘设备和排风设备及管路布置20 271 收尘设备选型 20272选型依据2028确定燃烧室及其附属设备21281据工艺要求选择燃烧室的型式21282计算炉篦面积21283计算炉膛容积21284计算炉膛高度22285 燃烧室鼓风机鼓风量计算2229确定烟囱选型计算22291烟囱的高度22292烟囱的直径23第三章烟道阻力损失及烟囱计算26 311 摩擦阻力损失26312 局部阻力损失27313 几何压头的变化2732 烟道计算27321 烟气量28322 烟气温度28323 烟气流速与烟道断面29324 烟道计算3033 烟囱计算30331 计算公式313312 本课程设计333313 确定烟囱选型3433131 烟囱高度34第四章烘干机结构3541 筒体部分3542 内部扬料装置3643 轮带3644 支承装置26441 托轮支承装置37442 挡轮装置3745 托轮与轴承的结构3846 卸料罩壳的设计3847 密封装置的设计39471 密封装置的位置与要求39472 密封结构4048 传动装置4049电动机选型及其特点41491 电动机选型41492 YCT系列电动机42493减速机的设计42第五章总结45参考文献46致谢信476吨年矿渣烘干机的设计摘要本课题设计的是6万吨年矿渣回转烘干机工业生产中矿渣发挥着着重要的作用尤其是一些重大型工厂利用矿渣制成提炼加工为矿渣水泥矿渣微粉矿渣粉矿渣硅酸盐水泥矿渣棉高炉矿渣粒化高炉矿渣粉铜矿渣矿渣立磨节约了能耗随着现今工业的发展最离不开的也是资源的开采由于资源已是不可再生资源工业赖以生存和发展的物资基础在工业的发展和日常的生活中矿渣烘干机的发展越来越快烘干机的价值也将会更加被世界能源界所重视随着国家可持续发展战略的实施等矿产资源的合理开发和综合用已成重要课题原来干选机作为废弃物闲置堆放的的充分开发用已刻不容缓用宝贵的资源使之变废为宝不仅能产生可观的经济效益还解决了堆放占用土地和污染环境等一系列问题12课程设计的依据121矿渣烘干机的原理及优点矿渣烘干机又称回转烘干机的工作原理1矿渣由皮带输送机或斗式提升机送到料斗然后经料斗的加料机通过加料管道进入加料端2加料管道的斜度要大于物料的自然倾角以便物料顺利流入矿用烘干机内3烘干机圆筒是一个与水平线略成倾斜的旋转圆筒物料从较高一端加入载热体由低端进入与物料成逆流接触也有载热体和物料一起并流进入筒体的4随着圆筒的转动物料受重力作用运行到较底的一端湿物料在筒体内向前移动过程中直接或间接得到了载热体的给使湿物料得以干燥然后在出料端经皮带机或螺旋输送机送出5矿渣烘干机筒体内壁上装有抄板作用是把物料抄起来又撒下使物料与气流的接触表面增大以提高干燥速率并促进物料前进6载热体经干燥器以后一般需要旋风除尘器将气体内所带物料捕集下来载热体一般分为热空气烟道气等如需进一步减少尾气含尘量还应经过袋式除尘器或湿法除尘器后再放排放1处理量比较大抗过载能力强热效率高煤耗降低20左右直接降低干燥成本传动大小齿轮采用销柱可换齿轮取代了传统的铸钢齿轮节约成本投资又大大降低了维修费用和时间2在设计时为了达到最佳的烘干效果采用顺流干燥方式物料与热源气流由同一侧进入干燥设备烘干机出口温度低热效率高3在内部结构上实现了创新强化了对已分散物料的清扫和热传导作用消除了筒体内壁的沾粘现象4使用了新型的给料排料装置杜绝了矿渣烘干机给料堵塞不连续不均匀和返料等现象为您降低了除尘系统的负荷该设备在扬料装置系统上作了多方面的技术革新特别是采用了新型多组合式扬料装置克服了传统烘干机的风洞现象5可满足不同用户对矿渣类物料的烘干后粒度和水分要求顺流式烘干机的特点顺流式烘干机中物料和气流运动方向相同适用于初水分高的物料湿物料与温度较高相对湿度低的热气首先接触这时热交换急剧干燥速度快随着物料与热气流在烘干机内前进物料水分逐渐减少温度逐渐升高在接近卸料端时热气流的湿含量的相对湿度增大气体温度已降低此时干燥速率已很慢所以物料顺流式烘干机内的干燥速率是很不均匀的142矿渣烘干机的型号及特性在回转烘干机内按物料与热气体流动的方向的不同有顺流式和逆流式两种顺流式烘干机物料与热气流的流动方向是一致的在进料端湿物料与温度较高的热气体接触其干燥速度较快而在卸料端由于物料易被烘干物料温度也升高了而气体温度以降低二者温差较小故干燥速率很慢所以在整个筒体内干燥速率不均匀逆流式烘干机物料与热气体流动方向是相反的已烘干的物料的物料与温度较高含湿量较低的热气体接触所以整个筒体内干燥速率比较均匀顺流干燥烘干特点示意图逆流干燥烘干特点示意图再选择烘干机的顺逆流操作时应根据具体条件来考虑入物料的特性粒径物料最终水分的要求以及车间的布置情况等在水泥厂中两种操作方法均有采用而以顺流操作的居多其主要特点如下1 在烘干机热端物料与热气体的温差较大热交换过程迅速大量水分易被蒸发适用于初水分较高的物料2.粘性物料进入烘干机后由于表面水分易蒸发可减少粘结有利于物料运动用于烘干湿煤时可避免高温气体直接接触干煤引起着火3.顺流操作的热端负压低能减少进入烘干的漏风量有利于稳定烘干机内热气体的温度及流速4.喂料与供煤同设与烘干机的热端车间布置较方便5.顺流操作的烘干机出料温度低一般可用胶带输送机输送6.顺流操作的粉尘飞扬较逆流时要多烘干机内总的传热速率比逆流式要慢回转烘干机的规格是以筒体的直径和长度表示目前我国水泥厂常用的几种规格的烘干机及设备参数如下表所示编号规格m LD 有效容积转速斜度功率KW 1 φ1×5 539 244 5 45 2 φ12×6 5 81 2 5 45 3 φ15×128 212 208 5 20 4 φ22×12 545 39 47 5 17 5 φ22×14 636 47 49 524 14 6 φ24×18 75 814 32 4 30 7φ3×20667 1415 35 3 65回转烘干机的操作控制参数干燥物料的种类石灰石矿渣粘土烟煤无烟煤进烘干机热气温度℃800~1000 700~800 600~800 400~700 500~700 出烘干机废气温度℃100~150 100~150 80~110 90~120 90~120出烘干机物料温度℃100~120 80~100 80~100 60~90 60~90 烘干机出口气体流速ms 15~3 15~3 15~3 15~3 15~3第二章矿渣烘干机的选型计算矿渣烘干机选型的计算包括烘干机的实际小时产量燃料燃烧计算及燃烧室的选择烘干机物料平衡及热平衡计算烘干机容积和规格电动机拖动率复核烘干机的热效率计算废气出烘干机的流速等已知原始数据烘干物料矿渣产量6万t年矿渣粘土初水分v1 20粘土终水分v2 2进烘干机高温混合气温度tm1 800℃出烘干机混合气温度tm2 80℃进料温度18℃出料温度80℃当地大气压101×105MPa环境温度ta 20℃环境风速20--80Nms废气排放浓度标准150mgBm3矿渣平均粒径05--10cm21 烘干机的实际产量计算211烘干机的实际每小时产量计算22燃料的燃烧计算211煤的选取及基准的转换抚顺烟煤种类工业分析元素分析低位热值MJKgMar Mad Aad Ad Vdaf Cdaf Hdaf Odaf Ndaf Sdaf 烟煤 351 788 4445 8029 61 116 142 059 2782212计算空气需用量烟气生成量烟气成分基准100Kg煤引用下表1Kg煤燃烧所需理论空气量实际空气量理论氧气量理论烟气量实际烟气量烟气的组成成分213烟气的燃烧温度和密度设进窑炉的煤和空气的温度均为20度差表可知由上表可知燃料的收到基低位放热量339×71361030×543109× 1031-052 -25×35128640kJkg理论燃烧温度设则9406×168×1800 284437<2890128设则9406×168×1900 3002395>2890128实际温度烟气分子量在 137175P 101325Pa时的密度22 物料平衡及热平衡计算221确定水的蒸发量每小时水分蒸发量222干燥介质用量冷空气温度20度高温烟气湿寒量热含量高发热量求补充热量干燥介质带入热量废废气带走热q2物料带入热量物料带走热量干燥器壁扩散热量1湿物料带人干燥器的热量2物料出干燥器带出的热量干燥器表面向环境的散量如图可以得到蒸发1水干燥介质用量每小时干燥介质用量混合比223燃料消耗量当时蒸发1Kg水的燃料消耗为每小时燃料消耗224废气生成量废气量分为三份出烘干机的废气温度为80℃则23烘干机的容积V及规格烘干机的容积及规格规格筒体内径 m 12 12 15 22 24 30 30 筒体长度m 8 10 12 12 18 20 25 筒体容积91 113 212 456 81 1414 筒体转速rmin 55 55 507 47 32 35 35筒体斜度 3 5 5 5 4 3 4 电机转数rmin 960 970 1460 970 970 985 985 电机功率kW 55 75 17 22 30 55 55由公式24电动机的功率复核系数k值物料填充率β01 015 020 025 单筒回转烘干机的k值 0049 0069 0082 0092国内常用的几种烘干机的规格及性能参数编号规格m LD 有效容积转速斜度功率KW 1 φ1×5 539 244 5 45 2 φ12×6 5 81 2 545 3 φ15×12 8 212 208 5 20 4 φ22×12545 39 47 5 17 5 φ22×14636 47 49 52414 6 φ24×1875 814 32 4 30 7φ3×20667 1415 35 3 65回转烘干机的操作控制参数干燥物料的种类石灰石矿渣粘土烟煤无烟煤进烘干机热气温度℃800~1000 700~800 600~800 400~700 500~700 出烘干机废气温度℃100~150 100~150 80~110 90~120 90~120 出烘干机物料温度℃100~120 80~100 80~100 60~90 60~90 烘干机出口气体流速ms 15~3 15~3 15~3 15~3 15~3几种回转烘干机水分蒸发强度A值Kgm3·h粘土1 粘土2 矿渣石灰石水分A 值水分 A 值水分 A 值水分 A 值φ15×1210 22 10 285 10 35 2 12315 29 15 38 15 40 3 165 20 3320 43 20 45 4 205 25 36 25 4725 49 5 244 30 52 6 265 10 35φ22×1210 22 10 285 10 35 2 10515 29 15 38 15 40 3 153 20 3320 43 20 45 4 172 25 36 25 4725 49 5 228 30 52 6 225 10 337φ24×1810 22 10 195 10 30 2 9615 29 15 26 15 35 3 138 20 3320 32 20 37 4 179 25 36 25 3925 39 5 215 30 40 6 236 10 34所以电机可以选用的型号为Y200L-625烘干机的热效率计算26废气出烘干机的流速27根据废气量及含尘量选型收尘设备和排风设备及管路布置271 收尘设备选型排风量废气含尘浓度由排风量查表可知选用CLTA型旋风收尘器它的特点是结构完善能在阻力较小的条件下具有较高的收尘效率收尘器的阻力系数为105根据气体流量和含尘浓度的大小选用直径为筒体截面上的气体流速为每个筒体的气体流量所需旋风收尘器个数为因此选用三个旋风收尘器272选型依据含尘气体的处理量可根据烘干机出口废气量考虑一定的漏风和储备获得含尘浓度和排放标准总的收尘效率28确定燃烧室及其附属设备281据工艺要求选择燃烧室的型式燃煤量小于200Kgh时可以选人工操作燃烧室燃煤量大于200Kgh选用机械化操作燃烧室由于282计算炉篦面积燃烧室炉蓖面积热强度通风方式及煤种燃烧室型式人工操作燃烧室回转炉蓖燃烧室倾斜推动炉蓖燃烧室振动炉蓖燃烧室人工通风烟煤无烟煤8109309301050 93 810930810930 93011609001160 自然通风烟煤无烟煤350580470700 —— 520700520700 ——从表中可以看出取283计算炉膛容积燃用挥发分较高的煤如烟煤时可取低值燃用挥发分较低的煤如无烟煤时可取高值则取284计算炉膛高度285 燃烧室鼓风机鼓风量计算根据风量鼓风机可以选型为SWT-28其参数如下风量全压转速电机功率1295 92Pa 1450rmin 009kW第三章烟道阻力损失及烟囱计算烟囱是工业炉自然排烟的设施在烟囱根部造成的负压抽力是能够吸引并排烟的动力在上一讲中讲到的喷射器是靠喷射气体的喷射来造成抽力的而烟囱是靠烟气在大气中的浮力造成抽力的其抽力的大小主要与烟气温度和烟囱的高度有关为了顺利排出烟气烟囱的抽力必须是足够克服烟气在烟道内流动过程中产生的阻力损失因此在烟囱计算时首先要确定烟气总的阻力损失的大小31 烟气的阻力损失烟气在烟道内的流动过程中造成的阻力损失有以下几个方面摩擦阻力损失局部阻力损失此外还有烟气由上向下流动时需要克服的烟气本身的浮力――几何压头流动速度由小变大时所消耗的速度头动压头等311 摩擦阻力损失摩擦阻力损失包括烟气与烟道壁及烟气本身的粘性产生的阻力损失计算公式如下mmH2OmmH2O式中摩擦系数砌砖烟道 005L计算段长度md水力学直径其中 F通道断面积㎡u通道断面周长m烟气温度t时的速度头即动压头 mmH2O标准状态下烟气的平均流速Nms标准状态下烟气的重度㎏NM3体积膨胀系数等于t烟气的实际温度℃312 局部阻力损失局部阻力损失是由于通道断面有显著变化或改变方向使气流脱离通道壁形成涡流而引起的能量损失计算公式如下㎜H2O式中 K局部阻力系数可查表313 几何压头的变化烟气经过竖烟道时就会产生几何压头的变化下降烟道增加烟气的流动阻力烟气要克服几何压头此时几何压头的变化取正值上升烟道与此相反几何压头的变化取负值几何压头的计算公式如下㎜H2O式中 H烟气上升或下降的垂直距离m大气即空气的实际重度 kgm3烟气的实际重度 kgm332 烟道计算321 烟气量烟气在进入烟道时过剩空气量较燃烧时略大而且在烟道内流动过程中由于不断地吸入空气而烟气量在不断地变化尤其在换热器烟道闸板和人孔等处严密性较差空气过剩量都有所提高在烟囱根处空气过剩量变得最大因此在计算烟道时在正常烟气量的基础上根据烟道严密性的好坏应做适当的调整以使计算烟气量符合实际烟气量空气吸入量大约可以按炉内烟气量的10~30%计算炉子附近取下限烟囱附近取上限322 烟气温度烟气温度指烟气出炉时的实际温度而不是炉尾热电偶的测定值应是用抽气热电偶测出的烟气本身的温度烟气温度与炉型及炉底强度有关连续加热炉的烟气温度比较稳定均热炉和其他热处理炉等周期性的间歇式工作的炉子不单烟气量随着加热工艺变化而且烟气温度也有较大的变化因此烟道计算时应采用典型工艺段的烟气出炉温度烟气在烟道内的流动过程中由于空气的吸入和散热吸热现象的发生使烟气温度不断发生变化因此烟道计算中采用每算阶段的实际温度一般采用计算算段的平均烟气温度323 烟气流速与烟道断面烟道内烟气流速可参考下列数据采用烟道烟气流速表151 烟气温度℃<400 400~500 500~700 700~800 烟气流速Nms 25~35 25~17 17~14 14~12 烟道为砌砖烟道时根据采用的烟气流速计算烟道断面积然后按砌砖尺寸选取相近的标准烟道断面再以此断面为基础计算出该计算段的烟气流速324 烟道计算混合煤气发热量Q 2000KcalNm3煤气消耗量B 7200Nm3h当 11时查燃料燃烧图表得烟气量为287Nm3 Nm3煤气烟气重度 128 Kg Nm3当 11时出炉烟气量为V 7200×287 20660 Nm3h 575 Nm3S计算分四个计算段进行第Ⅰ计算段炉尾下降烟道烟道长25m竖烟道入口烟气温度为900℃采用烟气流速时烟道断面选用1044×696断面此时烟气速度当量直径烟道温降℃m时第Ⅰ计算段内烟气平均温度℃末端温度℃此计算段烟气速度头1动压头增量炉尾烟气温度为900℃流速为12ms时动压头h动压头增量2几何压头㎜H2O也可以查图151计算3局部阻力损失由炉尾进入三个下降烟道查表得局部阻力系数K 234 摩擦阻力损失第Ⅰ计算段阻力损失为第Ⅱ计算段换热器前的水平烟道烟道长9m烟道断面为1392×1716其面积F2 218㎡当量直径查表得d2 155m温降℃m时平均温度℃末端温度此计算段动压头℃1动压头增量2局部阻力损失K1 15 K2 11 K K1K2 1511 263摩擦阻力损失第Ⅱ计算段阻力损失为第Ⅲ计算段换热器部分在上一讲换热器的计算中己表述过换热器部分烟气的阻力损失计算另外还用图154的方法进行计算要注意的是由于换热器安装时烟道封闭不严吸入部分冷空气因此计算此段烟气量时应考虑增加的过剩空气量计算中设定换热器内烟气阻力损失hⅢ 8㎜H2O第Ⅳ计算段换热器出口至烟囱入口烟道长11m设有烟道闸板烟道断面为1392×1716面积F3 218m2当量直径d4 155m温降t 25℃m烟气经换热器后温度降为500℃考虑换热器与闸板处吸风由11增为14 即烟气量增加至24700Nm3h 685Nm3s 此时烟气温度可由下式计算式中――计算段开始烟气量温度和比热――吸入空气量温度和比热还可以从煤气燃烧计算图查取烟气温度500℃的烟气由增至后其温度降为440℃因此此计算段烟气平均温度℃末端温度℃烟气流速此计算段烟气速度头1 动压头增量2 局部阻力损失3 摩擦阻力损失第IV计算段阻力损失为烟道总阻力系数为IhⅡhⅢhⅣ 877555800453 2685㎜H2O总阻力损失是计算烟囱的主要依据因此要采取合理的措施尽量减小烟道阻力损失33 烟囱计算331计算公式H式中H烟囱高度mK抽力系数计算烟囱高度时必须考虑富余抽力对于计算高度低于40米的烟囱按计算阻力增大20~30%估计高度大于40米的烟囱按计算阻力增大15~20%h烟道总阻力损失㎜H2Oh1h2分别为烟囱顶部和底部烟气速度头㎜H2O烟囱出口速度一般取25~40Nmsh烟囱内烟气平均速度头按平均速度和平均温度求得㎜H2O---烟囱每米高度的几何压头㎜H2O烟囱每米高度的摩擦损失d烟囱平均直径d 05d1d2 md1d2分别为烟囱顶部和底部直径3312 本课程设计计算在烟道计算中烟道总阻力损失h 2685㎜H2O烟囱底部温度t 413℃m烟囱底部 16此时烟气量为384Nm3m3×7200m3 27500Nm3 762Nm3s烟囱温降℃m夏季平均温度 30℃当地大气压烟气重度假设烟囱高度为45m时烟囱顶部温度℃烟囱内烟气平均温度℃采用烟囱出口速度时烟囱顶部直径底部直径烟囱平均直径烟囱底部烟气速度烟气平均速度烟囱顶部烟气速度头烟囱底部烟气速度头烟囱内速度头增量烟气平均速度头抽力系数采用K 115时有效抽力烟囱每米摩擦损失烟囱每米几何压头查图151得计算烟囱高度烟囱计算表152项目代号公式数值单位备注烟道总阻力由烟道计算2685 ㎜H2O 抽力系数k 取K 115~130 115有效抽力3087 ㎜H2O 烟气量 V 查燃烧计算图384×7200 762 Nm3s 烟囱底部烟气温度t2 由烟道计算413 ℃顶部烟气温度t1 368 ℃℃m预设H 45m 烟气平均温度t 391 ℃烟囱出口速度w1 采用25~40 3 Nms烟囱顶部直径d1 18 m 烟囱底部直径d2 27 m 烟囱平均直径 d 225 m 底部烟气速度W2 133 Nms 烟气平均速度w 217 Nms 顶部烟气速度头h1 137 ㎜H2O 底部烟气速度头h2 029 ㎜H2O 平均烟气速度头h 075 ㎜H2O 大气温度t0 夏天最高月平均温度30 ℃大气压力当地气压760 mmHg 每米摩擦损失0017 ㎜H2O 每米几何压头查图151 063 ㎜H2O 烟囱计算高度H 3212 m 采用烟囱高度32 m 3313确定烟囱选型33131烟囱的高度烘干机每小时排烟量烟囱高度可以根据大气污染物排放标准中的规定来确定烟囱高度m1 12 26 610 1020 2635 烟囱最低高度m 20 25 30 35 4045 由此表和上述计算分析最终取烟囱高度H 35m33132烟囱的直径烟囱出口烟气流速v ms通风方式运行情况全负荷时最小负荷时机械通风1020 45 自然通风610 253 由表可以选取 4ms则烟囱出口直径烟囱底部直径第四章烘干机结构41 筒体部分筒体部分包括筒体和内部装置筒体是卧式回转圆筒用15mm厚度的锅炉钢板25kg卷焊制成筒体直径D为22m筒体的长度L为12m在筒体的进料端为防止倒料装有挡料圈和导料板在筒体的热端为了保护筒体可装有耐热护口板42 内部扬料装置内部扬料装置其作用在于改善物料在烘干机筒体内的运动状态增大物料和气流的接触面积以及增加筒体内的热交换能力加快物料的烘干速度筒体回转时升举式扬料板将物料带到高处连续洒下使物料在空中呈分散瀑布状与高温烟气流有较好的接触进行热交换筒体内设有四种扬料板沿筒体周向均匀分布且平行排列43 轮带轮带用铸钢车削加工而成通过垫板挡块等零件活套安装在筒体外圈上其结构形式和固定方式与回转窑类同筒体有前后两个轮带起作用是把筒体和物料的重量传递给托轮支承装置烘干机筒体在传动时要轴向窜动生产用烘干机都采用挡轮结构抑制窜动轮带设计成如图所示的结构轮带上有传动槽传动时托轮支承在轮带的槽内并且防止筒体轴向传动44 支承装置回转圆筒烘干机的支承装置为挡轮托轮系统441 托轮支承装置托轮支承装置有前后两个档且构造相同没档由两个托轮四个轴承和一个大底座组成作用是支承轮带使筒体转动并起径向定位作用托轮用铸钢制成托轮的结构及布置与回转窑类同托轮装置承受整个回转部分的重量同时传递运动为使筒体稳定运转设计为二共四个托轮没个轮带下的没个托轮夹角为60度托轮结构如图所示442 挡轮装置一般在靠出料端轮带两侧各装一个其轴线与筒体垂直某侧挡轮转动是筒体上窜或下滑的标志在操作中应避免使上挡轮或下挡轮长时间连续转动挡轮的结构与回转窑的普通挡轮结构类同45 托轮与轴承的结构托轮装置按所用轴承可分为滑动轴承托轮组和滚动轴承托轮组滚动轴承托轮组又可分为转轴式和心轴式还有滑动滚动轴承托轮组径向滑动轴承轴向滚动轴承滚动轴承托轮组具有结构简单维修方便摩擦阻力小减少电耗及制造简单等优点托轮挡轮标准中每组托轮承载不超过100吨时都用滚动轴承只有当载荷较重时所需滚动轴承尺寸较大受到供货条件的限制而采用滑动轴承一般干燥器中都用滚动轴承托轮组的左右轴承可以是分设的也可以是整体的整个轴承座便于调整托轮可通过机械加工保证左右两轴承座孔的同心度因此取消了调心球面瓦或省去了调心式的止推轴承较大的托轮组一般采用左右轴承座分设的结构设有球面瓦使安装和调整过程中左右轴承始终保持同轴线46 卸料罩壳的设计根据物料离开转同时的方向及位置的不同卸料方法可分为轴向卸料径向卸料及中心卸料三种1轴向卸料法最简单的方法是使物料在转筒低的一端自动流出若欲保持物料在筒体内具有一定的厚度则可在转筒尾端装一环形挡料圈也可将筒端做成锥型2径向卸料法在出料端的筒体上开许多孔物料即由这些孔中卸出如圆筒筛及水泥熟料的换热冷却筒都用此阀卸料3中心卸料法此时转筒在卸料端装有3~4个瓢把物料抄起后倒入状在筒中心的卸料管而卸出47 密封装置的设计471 密封装置的位置与要求回转筒一般是在负压下进行操作回转的筒体及部件和固定装置的连接处努克避免存在缝隙为了防止外界空气被吸入筒体内或防止筒体内空气携带物料外泄污染环境必须在某些部位设定密封装置对密封装置的基本要求是1密封性能好2能适应筒体的形状误差椭圆度偏心等和运转中沿轴向的往复窜动3磨损轻维修和检修方便4结构尽量简单472 密封结构。
烘干工程方案

烘干工程方案1. 概述烘干工程是指利用热力对物料进行脱水、干燥的工艺过程。
烘干是许多行业中常用的生产工艺之一,广泛应用于食品、医药、化工等领域。
本文档将介绍烘干工程的基本原理、常见设备以及烘干工程的方案设计。
2. 烘干工程基本原理烘干工程的基本原理是通过加热和通风的方式将水分从物料中蒸发出来,使物料达到所需的干燥程度。
其主要包括传热、质量传递和气体流动三个过程。
2.1 传热过程在烘干过程中,通过加热源将热量传递给物料,使物料的温度升高。
传热过程中主要有三种传热方式:导热、对流和辐射。
导热是通过固体之间的接触传递热量,对流是通过流体对物体表面的对流传热,辐射是通过电磁波辐射传递热量。
2.2 质量传递过程质量传递过程是指水分从物料中通过蒸发、扩散、对流等方式转移到气相中的过程。
物料表面的水分蒸发后,通过对流将气相中的湿气带走,从而实现物料干燥。
2.3 气体流动过程烘干工程中的气体流动过程主要是通过通风系统来实现的。
通风系统的设计需要考虑气体的流速、流量等因素,以实现有效的湿气排出和新鲜空气的补充。
3. 常见烘干设备烘干工程中常用的烘干设备包括批式干燥机、连续式干燥机、流化床干燥机等。
3.1 批式干燥机批式干燥机适用于小批量生产和试验研究,其特点是操作简单、灵活性较高。
批式干燥机通常由烘箱和加热系统组成,通过对烘箱内的物料进行批处理,实现烘干目的。
3.2 连续式干燥机连续式干燥机适用于大批量生产,其特点是生产效率高、连续作业。
常见的连续式干燥机包括带式干燥机、滚筒干燥机等,可根据物料的特性选择适合的设备进行干燥。
3.3 流化床干燥机流化床干燥机是一种常用的干燥设备,其特点是烘干效果好、热利用率高。
流化床干燥机通过对物料进行床层流化,使物料与热载体之间的传热和质量传递均匀而高效。
4. 烘干工程方案设计烘干工程方案的设计需要综合考虑物料特性、烘干要求等因素。
下面是一个常见的烘干工程方案设计流程:4.1 确定烘干要求首先需要明确烘干工程的目标和要求,如烘干的物料种类、产量、干燥程度等。
烘干车间工艺课程设计(相关知识)

学校代码:学号:水泥工业热工设备课程设计说明书题目:10.00t/h烘干车间工艺设计学生姓名:学院:学院系别:系专业:班级:指导教师:二〇一X 年月摘要本课程设计主要是对烘干机的设计计算,烘干物质是矿渣,以顺流的烘干方式进行计算。
该烘干系统包含的主要设备有:回转烘干机、旋风收尘器、袋收尘器以及其它辅助设备—如提升机、带式输送机、排风机、鼓风机、螺旋输送机、料仓等。
设计的主要计算为热平衡的计算和物料平衡计算。
本课程设计主要是对烘干机车间的设计进行了详细的讲述。
通过原始资料及实际条件,主要进行了回转烘干机产量和水分蒸发量计算,烘干机的热效率;在燃烧室热平衡计算中,计算了空气量、烟气量、烟气组成以及收入热量和支出热量,因热量收支平衡从而计算出混合用冷空气量;燃烧室设计计算,计算了燃烧室的耗煤量及炉膛容积,喷嘴直径;除尘系统中说明了除尘分管的直径计算和废气的排放浓度和排放量计算,通过废气的排放量、温度和含尘浓度进行除尘系统及排风机实务选型以达到符合废气排放标准的要求。
通过对主要数据的计算,选择出符合要求的设备型号,达到节能环保的国际要求,同时又能够使公司利益最大化。
关键词:烘干机车间;烘干机;燃烧室;输送机;收尘器目录引言 ................................................. 错误!未定义书签。
第一章原始数据及设计条件 .............................. 错误!未定义书签。
1.1设计技术条件、技术参数等........................ 错误!未定义书签。
第二章回转烘干机产量和水分蒸发量 . (3)2.1回转烘干机产量 (3)2.2烘干机的水分蒸发量 (3)2.3 回转烘干机的操作方式 (3)2.4烘干机功率 (4)2.5物料在烘干机内的停留时间 (4)第三章燃烧室热平衡计算 (5)3.1干燥无灰基转化为收到基的计算 (5)3.2空气量、烟气量及烟气组成计算 (5)3.3热平衡计算 (6)3.3.1收到热量 (6)3.3.2支出热量 (6)第四章烘干机热平衡计算 (8)4.1收入热量 (8)4.2支出热量 (9)4.3烘干机的热耗和热效率 (10)第五章燃烧室设计计算 (11)5.1耗煤量计算 (11)5.2 燃烧室炉膛容积计算 (11)5.3喷煤嘴直径计算 (11)5.3.1空气用量 (12)5.3.2 一次风用量及风速 (12)5.3.3喷煤嘴直径 (12)5.4燃烧室鼓风机选型 (12)5.4.1 要求鼓风量 (12)5.4.2 鼓风机压力 (12)5.4.3 鼓风机选型 (13)第六章除尘系统 (13)6.1 烘干机废气量 (13)6.2 除尘器选型计算 (13)6.2.1 旋风收尘器选型及阻力计算 (13)6.2.2 袋式收尘器选型及阻力计算 (14)6.2.3 除尘风管直径 (15)6.3 排风机选型 (16)6.3.1 进排风机风量 (16)6.3.2 除尘系统总阻力 (17)6.3.3 排风机选型 (17)6.4 废气排放浓度和排放量 (18)6.4.1 废气排放浓度 (18)6.4.2 废气的排放量 (18)结论 (19)参考文献 (19)烘干车间工艺流程图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
..水泥工业热工设备课程设计说明书题目:10.00t/h烘干车间工艺设计学生姓名:学院:学院系别:系专业:班级:指导教师:二〇一X 年月摘要本课程设计主要是对烘干机的设计计算,烘干物质是矿渣,以顺流的烘干方式进行计算。
该烘干系统包含的主要设备有:回转烘干机、旋风收尘器、袋收尘器以及其它辅助设备—如提升机、带式输送机、排风机、鼓风机、螺旋输送机、料仓等。
设计的主要计算为热平衡的计算和物料平衡计算。
本课程设计主要是对烘干机车间的设计进行了详细的讲述。
通过原始资料及实际条件,主要进行了回转烘干机产量和水分蒸发量计算,烘干机的热效率;在燃烧室热平衡计算中,计算了空气量、烟气量、烟气组成以及收入热量和支出热量,因热量收支平衡从而计算出混合用冷空气量;燃烧室设计计算,计算了燃烧室的耗煤量及炉膛容积,喷嘴直径;除尘系统中说明了除尘分管的直径计算和废气的排放浓度和排放量计算,通过废气的排放量、温度和含尘浓度进行除尘系统及排风机实务选型以达到符合废气排放标准的要求。
通过对主要数据的计算,选择出符合要求的设备型号,达到节能环保的国际要求,同时又能够使公司利益最大化。
关键词:烘干机车间;烘干机;燃烧室;输送机;收尘器目录引言.................................................................................................................. 错误!未定义书签。
第一章原始数据及设计条件 ...................................................................... 错误!未定义书签。
1.1设计技术条件、技术参数等......................................................... 错误!未定义书签。
第二章回转烘干机产量和水分蒸发量.. (3)2.1回转烘干机产量 (3)2.2烘干机的水分蒸发量 (3)2.3 回转烘干机的操作方式 (3)2.4烘干机功率 (4)2.5物料在烘干机的停留时间 (4)第三章燃烧室热平衡计算 (5)3.1干燥无灰基转化为收到基的计算 (5)3.2空气量、烟气量及烟气组成计算 (5)3.3热平衡计算 (6)3.3.1收到热量 (6)3.3.2支出热量 (6)第四章烘干机热平衡计算 (8)4.1收入热量 (8)4.2支出热量 (9)4.3烘干机的热耗和热效率 (10)第五章燃烧室设计计算 (11)5.1耗煤量计算 (11)5.2 燃烧室炉膛容积计算 (11)5.3喷煤嘴直径计算 (11)5.3.1空气用量 (12)5.3.2 一次风用量及风速 (12)5.3.3喷煤嘴直径 (12)5.4燃烧室鼓风机选型 (12)5.4.1 要求鼓风量 (12)5.4.2 鼓风机压力 (12)5.4.3 鼓风机选型 (13)第六章除尘系统 (13)6.1 烘干机废气量 (13)6.2 除尘器选型计算 (13)6.2.1 旋风收尘器选型及阻力计算 (13)6.2.2 袋式收尘器选型及阻力计算 (14)6.2.3 除尘风管直径 (15)6.3 排风机选型 (16)6.3.1 进排风机风量 (16)6.3.2 除尘系统总阻力 (17)6.3.3 排风机选型 (17)6.4 废气排放浓度和排放量 (18)6.4.1 废气排放浓度 (18)6.4.2 废气的排放量 (18)结论 (19)参考文献 (19)烘干车间工艺流程图引言我国水泥产量已经连续十年居世界第一位。
随着十二五规划的即将编写和制定,我国水泥工业将会面临着更快更好的发展机遇。
同时随着对节能减排和环保要求力度的不断加大,我们必需进行水泥工业调整结构,实现水泥工业由“粗放型”向“集约型”的转变,必须在水泥工业的发展中加大采用新技术新设备的力度。
重点对产品质量低劣,环境污染,资源浪费的小型水泥厂实施停产改造或坚决关停,并加大水泥标准向国际标准靠拢的步伐,实现产品质量升级,产品结构调整的目的,争取在2020年以前率先完成对单位GDP能耗标准,真正做到水泥工业的现代化。
我国回转窑水泥厂的燃料基本上以煤为主,煤粉制备大多采用风扫煤磨系统。
本次新型干法水泥生产线的毕业设计,使我们进一步了解水泥厂工艺设计的基本容和方法,为将来从事水泥厂设计打下了基础。
这个1.0kt/d熟料新型干法水泥生产线,采用先进的新型干法预分解窑工艺技术装备,国产低压高效率预热器和可控气流高效篦冷机。
整条生产线充分体现了“产品、质量、效益”的指导思想,可以大大降低能耗和投资,提高产品质量,降低成本,从而为公司的发展创造良好的条件,有明显的经济效益和社会效益。
可见,水泥是国民经济建设中不可缺少的建筑材料。
为了加速水泥工业的发展,减少能耗,提高质量,降低成本,改善环境,增加产量,不断提高经济效益,合理配置以新型干法水泥生产线为中心,大力推动水泥工业的发展现状。
第一章原始数据及设计条件1.1设计技术条件、技术参数等:1.烘干机类型:回转烘干机2.烘干物料:矿渣3.产量G=10(t/h)4.烘干机干燥方式:顺流式W=20%5.矿渣初水分:1W=1%6.矿渣终水分:2t=800℃7.进烘干机烟气温度:1t=120℃8.出烘干机烟气温度:2t=20℃9.进料温度:3t=110℃10.出料温度:4t=130℃11.烘干机筒体表面温度:ft=20℃12.环境温度:a13.大气压力:P=99992Pa14.燃烧室类型:煤粉燃烧室Q=27810(kJ/kg)15.煤的热值:net16.煤的工业分析:17.18.煤粉燃烧室热效率:η=0.9m19废气出烘干机含尘浓度为10g/N320.忽视空气中带入水汽第二章 回转烘干机产量和水分蒸发量2.1回转烘干机产量烘干机的产量通常按单位容积蒸发水分量指标进行计算)(121W -100W -W 1000AV G =或F G =)100W 1000AV 221W W --(]1[ (2-1) 式中:F G —回转烘干机的产量(按含有初水分1W 的湿物料计算) G —回转烘干机的产量(按含有终水分的湿物料计算)V —回转烘干机容积 3kg m h3m ;1W —物料的初水分,%2W —物料的终水分,%A —回转烘干机的单位容积蒸发强度 3kgm h查《硅酸盐工业热工基础》表6-4得 A=373kgm h。
h G t68.1220-1001-2010004.8137W -100W -W 1000AV ]1[121=⨯⨯==)()(h t 69.15)1100120(10004.8137W -100W -W 1000AV G ]1[221F =--⨯⨯==)(2.2烘干机的水分蒸发量[1]1211000()100201W 100012.680 3.011510020W W W G W -=--=⨯⨯=- t 水/h (2-2)由此可根据《硅酸盐工业热工基础》 表6-2选取电机型号为:Y225M-6 电机转速:3.2r/min 电机功率:P=30kw根据以上计算..F G G W 的值和烘干机产量的要求 G=10 t/h .选用烘干机规格2.418m φ⨯ 是正确的,符合要求。
2.3 回转烘干机操作方式选择根据初水分含量的高低及物料粘性选择顺流式或逆流式,还可以根据场地大小选择烘干物料五矿渣,初水分含量不太高,且矿物粘性不大选择顺流式烘干机。
2.4 烘干机功率3[1]m N KD L n γ= (2-3)式中:N —回转烘干机要求功率,KW ;D —回转烘干机直径,m; L —回转烘干机长度,m;m γ—烘干机物料堆积密度,3t/m ;查《新型干法水泥设计手册》776页表14-7可知,干的酸性粒状矿渣密度为0.6-0.8 3t m ,此处选3/625.0m t r m =。
n —电机转速,min /3r n =;K ——随烘干机负荷率而定的系数,此处选 K=0.069 选自《新型干法水泥设计手册》 表 5-4 115页kw n Lr KD N m 19.323625.0184.2069.033=⨯⨯⨯⨯==2.5 物料在烘干机的停留时间[1]F Dnα=l (2-4) 式中:θ—物料休止角,40θ=o摘自《硅酸盐工业热工基础》表14-7得 P776F —烘干机结构阻碍物料系数 2F =摘自《硅酸盐工业热工基础》α—烘干机倾斜角 tan %i α= 4i =摘自《硅酸盐工业热工基础》 表 5-1 P11211.457F ===l min第三章 燃烧室热平衡计算3.1干燥无灰基转化为收到基的计算61.7100)5.3100(89.7100)M 100(A A ar d ar =-⨯=-=(3-1)38.7130.8010061.750.3100C 100A M 100C daf ar ar ar =⨯--=⨯--= (3-2)同理可得:42.510.68889.010.610061.75.3100100H )A M 100(H daf ar ar ar =⨯=⨯--=⨯--=31.106.118889.0O ar =⨯= 24.14.18889.0N ar =⨯=53.06.08889.0S ar =⨯=52.3946.448889.0V ar =⨯=3.2 空气量、烟气量及烟气组成计算理论空气用量为472.74.22211000=⨯⨯=a V N 3m /kg 煤粉实际空气用量为966.8472.72.1=⨯=aV N3m/kg煤粉理论烟气量为899.74.22100265.350=⨯=V N3m/kg煤粉实际烟气量为394.94.2210094.41=⨯=V N3m/kg煤粉3.3 热平衡计算图:3-3-1燃烧室热平衡如图3-3-1平衡围:燃烧室平衡基准:1kg煤粉,0℃3.3.1收到热量(1)煤粉化学热:27810,==arnetDWQq粉kJ/kg煤粉(3-3)(2)煤粉量热为:煤粉煤煤煤粉kgkJtCq/252026.111=⨯⨯=⨯⨯=(3-4)查资料《新型干法水泥工艺设计手册》知煤粉在20℃时平均比热c煤=1.263kJ/Nm⋅(℃)(3)空气显热为:设混合用冷空气量为3v Nm/kg混煤粉煤粉)(混混混空气kgkJVVtCVVqaaa/23292.2520296.1966.8()+=⨯⨯+=⨯+=查资料知:干空气在20℃时平均比热3ac 1.296(kJ/Nm)=⋅℃煤粉总收入热量混混空气煤粉粉kgkJVVqqqDW/92.252806723292.252527810+=+++=++=3.3.2 支出热量(1)热烟气带出的热量计算如下:出燃烧室烟气温度为800℃,烟气总量=3V V Nm /kg +理煤粉 不同气体在800℃时平均比热见表3-2:摘自:《硅酸盐工业热工基础》 表:4-13煤粉(混混烟空混烟烟烟kg kJ V V t C V t VC q /110811278800385.1800)367.1093.7450.1314.0186.2004.0668.1650.0140.2333.1+=⨯⨯+⨯⨯+⨯+⨯+⨯+⨯=+=(2)燃烧室损失热量的计算如下: 燃烧室热效率:η=0.9煤粉)()(粉损kg kJ Q q DW /27819.0-127810-1=⨯=⨯=η (3-5)混混损烟总支出热量V V q q 1108140592781110811278+=++=+=(3)热量平衡 收入热量=支出热量混混V V 11081405992.2528067+=+得:煤粉混kg Nm V /945.123=烟气总量及烟气比热分别为:煤粉烟气总理混kg Nm V V /339.22945.12394.93=+=+=800℃时烟气的平均比热为)/(434.1800339.22945.121108112783C Nm kJ ο•=⨯⨯+=第四章 烘干机热平衡计算平衡围:烘干机进料口到烘干机出料口 平衡基准:1kg 汽化水,0℃ 烘干机平衡示意图:4.1 收入热量:(1) 进烘干机热烟气带入热量:[1]111 1.4348001147.2q lc t ll l ==⨯⨯= kJ/kg 水 (4-1)式中:1q ——进烘干机热烟气带入热量,kJ/kg 水;l ——蒸发1kg/水需要的热气体量,3/Nm kg 水1t ——进烘干机烟气温度,℃1c ——进烘干机热气体平均比热,3/kJ Nm C ⋅︒(2)进烘干机湿物料带入热量:33222112100100100100t C t W C W C W W W q w w +⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛---= (4-2) 1002010011[0.84() 4.1868]20 4.1868201001100100--=⨯⨯+⨯⨯+⨯- 157.29/kJ kg =水式中:2q ——进烘干机湿物料带入热量,kJ/kg 水;1w ——进烘干机物料初水分,% 2w ——出烘干机物料终水分,% 2t ——进烘干机湿物料的温度,℃ w c ——水的比热,w c =4.1868/()kJ kg C ⋅︒c ——绝干物料的比热,/()kJ kg C ⋅︒,查资料知:20℃时c =0.84/()kJ kg C ⋅︒ (3) 总收入热量=1q +2q =(1147.2l +157.29)kJ/kg 水;4.2 支出热量120℃时不同气体的平均比热、废气量如表4-1(1)蒸发水分及水汽带走的热量:3q =2490+2[1]2H O c t (4-3)=2490+1.878⨯120 =2715.36/kJ kg 水式中: 3q ——蒸发水分及水汽带走的热量,/kJ kg 水2490——每千克水在0℃是变成水蒸气所需的汽化潜热,/kJ kg 水 2H O c ——水蒸气由0℃升至2t 时的平均比热,/()kJ kg C ⋅︒ 2t ——出烘干机废气温度,℃ (2) 出烘干机废气带走的热量:[1]422q lc t = (4-4)120)945.12903.7314.0004.0650.0333.1302.1945.12093.7297.1321.1314.0828.1004.0509.1650.0730.1333.1(⨯+++++⨯+⨯+⨯+⨯+⨯+⨯⨯=l159.80l = /kJ kg 水式中: 4q ——出烘干机废气带走的热量,/kJ kg 水 2c ——出烘干机废气的比热,3/kJ Nm C ⋅︒ 2t ——出烘干机废气温度,120℃ l ——出烘干机废气量,3/Nm kg 水 (3)出烘干机物料带走的热量4222115100100100100t W C W C W W W q w ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛---=(4-5)1002010011[0.84() 4.1868]1101001100100--=⨯⨯+⨯⨯- 404.55=/kJ kg 水式中:5q ——出烘干机物料带走的热量,/kJ kg 水 4t ——出烘干机物料温度,110℃ 4)烘干机筒体散热损失:[1]6()/F q F t t W αα=- (4-6)5.3011)20130(15653-⨯⨯==302/kJ kg 水 式中:6q ——烘干机筒体散热损失,/kJ kg 水F ——烘干机筒体散热表面积2m , 1.15F DL π= D ——烘干机直径,m L ——烘干机长度,m1.15——考虑到滚筒和大齿轮等所增加的表面系数 F t ——筒体外表面平均温度,℃ t α——周围环境温度,℃W ——烘干机每小时水分散发量,kg 水/hα——传热系数,2/()kJ m h ⋅⋅℃,见表4-2回转烘干机筒体表面传热系数 2/()kJ m h ⋅⋅℃ 表4-2:总支出热量3456q q q q =+++水kg kJ l /30255.4048.1592715+++=(3793.41159.80)l =+/kJ kg 水 水kg kJ l /)8.15955.3421(+=5)热量平衡收入热量=支出热量l l 8.15955.342129.1572.1147+=+ 得:水kg Nm l /306.33=4.3烘干机的热耗和热效率热耗:水kg kJ t lC q /42149.0800434.1306.311=⨯⨯==η热效率:qt C t C w O H 3222490-+=烘η4214201868.4120878.12490⨯-⨯+=624.0=第五章 燃烧室设计计算5.1 耗煤量计算耗煤量为:水煤粉kg kg Q t lC g arnet /1515.0278109.0800434.1306.3]1[,11=⨯⨯⨯==η (5-1)烘干物料煤粉kg kg W W W Q t lC g ar net c /360.0201001201515.0100]1[121,11=--⨯=--⨯=η(5-2) h g W G c /4561515.05.3011煤粉=⨯=•= (5-3)式中:g ——烘干机的煤耗,kg 煤粉/kg 水 c g ——烘干机的煤耗,kg 煤粉/kg 烘干物料 c G ——燃烧室耗煤量,kg 煤粉/h η——燃烧室热效率5.2 燃烧室炉膛容积计算:燃烧室炉膛容积:3,66.186800002781024.456m q Q G V varnet c =⨯== (5-4)式中:V ——燃烧室炉膛空间容积,3mv q ——燃烧室炉膛容积热强度,33/()/kJ m h kw m ⋅或,煤粉燃烧室的v q 一般为 44350108310/()kJ m h ⨯⨯⋅:。