高考文科数学试题汇编 统计

合集下载

2023高考数学试题汇编(排列组合统计概率)

2023高考数学试题汇编(排列组合统计概率)

2023高考数学试题汇编(无答案)排列与组合1. (2023甲卷理科T9)有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为A.120B.60C.40D.302. (2023乙卷理科T7)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )A.30种B.60种C.120种D.240种3. (2023新一卷T7)记S n 为数列{a n }的前n 项和,设甲:{a n }为等差数列:乙:{nn S }为等差数列,则A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件4. (2023新一卷T13)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有 种(用数字作答)5. (2023新二卷T3)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400和200名学生,则不同抽样结果共有( )A.1520045400C C ⋅种 B.4020020400C C ⋅种 C.3020030400C C ⋅种 D.2020040400C C ⋅种 6. (2023上海卷T10)已知(1+2023x )100+(2023−x )100=a 0 +a 1x +a 2x 2+…+a 100x 100,其中a 0,a 1,a 2…a 100∈R若0≤k ≤100且k ∈N,当a k <0时,k 的最大值是 .7. (2023上海卷T12)空间内存在三点A 、B 、C,满足AB=AC=BC=1,在空间内取不同两点(不计顺序),使得这两点与A 、B 、C 可以组成正四棱锥,求方案数为 .8. (2023天津卷T11)在(2x 3-x1)6的展开式中,x 2项的系数为 . 概率与统计1. (2023甲卷理科T6)有50人报名足球俱乐部,60人报名乒乓球俱乐部,结束70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球,俱乐部的概率为( )A.0.8B.0.4C.0.2D.0.12. (2023甲卷文科T4)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为3. (2023乙卷理科T5,文科T7)设O 为平面坐标系的坐标原点,在区域{(x,y)|1≤x 2+y 2≤4}内随机取一点,记该点为A,则直线OA 的倾斜角不大于4的概率为 ( )4. (2023乙卷文科T9)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A. B. C. D.5. (2023新一卷T 9)有一组样本数据x 1,x 2,…,x 6,其中x 1是最小值,x 6是最大值,则A.x 2,x 3,x 4,x 5的平均数等于x 1,x 2,…,x 6的平均数B.x 2,x 3,x 4,x 5的中位数等于x 1,x 2,…,x 6的中位数C.x 2,x 3,x 4,x 5的标准差不小于x 1,x 2,…,x 6的标准差D.x 2,x 3,x 4,x 5的极差不大于x 1,x 2,…,x 6的极差6. (2023新二卷T12)在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为α(0<α<1),收到0的概率为1-α;发送1时,收到0的概率为β(0<β<1),收到1的概率为1-β.考虑两种传输方案:单次传输和三次传输,单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码:三次传输时,收到的信专中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A.采用单次传输方案,若依次发送1,0,1,则依次收到1,0,1的概率为(1-α)(1-β)2B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为β(1-β)2C.采用三次传输方案,若发送1,则译码为1的概率为β(1-β)2+(1-β)3D.当0<α<0.5时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率7.(2023上海卷T9)国内生产总值(GDP)是衡量地区经济状况的最佳指标,根据统计数据显示,某市在2020年间经济高质量增长,GDP稳步增长,第一季度和第四季度的GDP分别为231和242,且四个季度GDP的中位数与平均数相等,则2020年GDP总额为8.(2023上海卷T14)根据身高和体重散点图,下列说法正确的是( )A.身高越高,体重越重B.身高越高,体重越轻C.身高与体重成正相关D.身高与体重成负相关9.(2023天津卷T7)调查某种群花萼长度和花瓣长度,所得数据如图所示,其中相关系数r ,下列说法正确的是( )0.8245A. 花瓣长度和花萼长度没有相关性B. 花瓣长度和花萼长度呈现负相关C. 花瓣长度和花萼长度呈现正相关D. 若从样本中抽取一部分,则这部分的相关系数一定是0.824510.(2023天津卷T13)甲乙丙三个盒子中装有一定数量的黑球和白球,其总数之比为5:4:6.这三个盒子中黑球占总数的比例分别为40%,25%,50%.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为_________;将三个盒子混合后任取一个球,是白球的概率为_________.11.(2023甲卷理科T19)为探究某药物对小鼠的生长作用,将40只小鼠均分为两组,分别为对照组(不药物)和实验组(加药物)(1)设其中两只小鼠中对照组小鼠数目为X,求X的分布到和数学期望:(2)测得40只小鼠体重如下(单位:g):(已按从小到大排好)对照组:17.3 18.4 20.1 20.4 21.5 23.2 24.6 24.8 25.0 25.426.1 26.3 26.4 26.5 26.8 27.0 27.4 27.5 27.6 28.3实验组:5.4 6.6 6.8 6.9 7.8 8.2 9.4 10.0 10.4 11.2,14.4 17.3 19.2 20.2 23.6 23.8 24.5 25.1 25.2 26.0(i)求40只小鼠体重的中位数m,并完成下面2×2列联表:(i)根据2×2列联表,能否有95%的把握认为药物对小鼠生长有抑制作用参考数据:12.(2023甲卷文科T19)一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g)试验,结果如下:对照组的小白鼠体重的增加量从小到大排序为:15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.132.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2试验组的小白鼠体重的增加量从小到大排序为7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.219.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5(1)计算试验组的样本平均数(2)(i)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表(∈)根据(∈)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:()()()()()22n ad bc a b c d a c b d χ-=++++13. (2023乙卷理科T17文科T17)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为,y(i=1,2,…10),试验结果如下记zi=xi -yi(i=1,2,…,10),记z 1,z 2,…,z 1的样本平均数为z ,样本方差为s 2,(1)求z ,s 2 (2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥2102s ,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)14. (2023新一卷T21)甲、两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮,无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8,由抽签确定第1次投篮的人选,第一次投篮的人是甲,乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i 次投篮的人是甲的概率:(3)已知:若随机变量x 服从两点分布,且P(x i =1)=1−P(x i =0)=q i,i=1,2,…,n,则∑∑=n i ni i i q X )(E ,.记前n 次(即从第1次到第n 次)投篮中甲投篮的次数为Y ,求E(Y)15. (2023新二卷T19)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图: 利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c 的人判定为阳性,小于或等于c 的人判定为阴性,此检测标准的漏诊率是将患病者判定为阴性的概率,记为p(c);误诊率是将患者判定为阳性的概率,记为q(c).假设数据在组内均匀分布,以事件发生的概率作为相应事件发生的概率(1)当漏诊率p(c)=0.5%时,求临界值c 和误诊案q(c);(2)设函数f(c)=p(c)+q(c).当c∈[95,105]时,求f(c)的解析式,并求f(c)在区间[95,105]的最小值16.(2023上海卷T19)21世纪汽车博览会在上海2023年6月7日在上海举行,下表为某汽车模型公司共有25个汽车模型,其外观和内饰的颜色分布如下表所示:(1)若小明从这些模型中随机拿一个模型,记事件A为小明取到的模型为红色外观,事件B取到模型有棕色内饰,求P(B)、P(B/A),并据此判断事件A和事件B是否独立(2)该公司举行了一个抽奖活动,规定在一次抽奖中,每人可以一次性从这些模型中拿两个汽车模型,给出以下假设:1、拿到的两个模型会出现三种结果,即外观和内饰均为同色、外观内饰都异色、以及仅外观或仅内饰同色;2、按结果的可能性大小,概率越小奖项越高;(3)奖金额为一等奖600元,二等奖300元,三等奖150元,请你分析奖项对应的结果,设X为奖金额,写出X的分布列并求出X的数学期望。

全国高考文科数学历年试题分类汇编

全国高考文科数学历年试题分类汇编

全国高考文科数学历年试题分类汇编全国高考文科数学历年试题分类汇编(一)小题分类1.集合(2019卷1)已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B I 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2(2019卷2)已知集合A={}{}=<<=<<-B A x x B x x Y 则,30,21 A.(-1,3) B.(-1,0 ) C.(0,2) D.(2,3)(2019卷1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则M B =I ( ) A. )1,2(- B. )1,1(- C. )3,1( D. )3,2(-(2019卷2)已知集合A=﹛-2,0,2﹜,B=﹛x |2x -x -20=﹜,则A B ⋂=( )(A) ∅ (B ){}2 (C ){}0 (D) {}2-(2019卷1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =I ( ) (A ){0} (B ){-1,,0} (C ){0,1} (D ){-1,,0,1}(2019卷2)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( ). A .{-2,-1,0,1} B .{-3,-2,-1,0} C .{-2,-1,0} D .{-3,-2,-1} (2018卷1)已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A 错误!B (B )B 错误!A (C )A=B (D )A ∩B=∅(2018卷2)☆已知集合{|A x x =是平行四边形},{|B x x =是矩形},{|C x x =是正方形},{|D x x =是菱形},则(A )A B ⊆ (B )C B ⊆ (C )D C ⊆ (D )A D ⊆(2017卷1)已知集合M={0,1,2,3,4},N={1,3,5},P=M N I ,则P 的子集共有A .2个B .4个C .6个D .8个 (2016卷1)已知集合A ={x ||x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =( )A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}(2015卷1)已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则A B =IA .{3,5}B .{3,6}C .{3,7}D .{3,9}(2014卷1)已知集合M ={ x|(x + 2)(x -1) < 0 },N ={ x| x + 1 < 0 },则M ∩N =( ) A. (-1,1)B. (-2,1)C. (-2,-1)D. (1,2)(2016卷1)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =I (A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7}(2016卷2)已知集合{123}A =,,,2{|9}B x x =<,则A B =I (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},,(D ){12},(2017卷1)已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A ∩B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A ∩B =∅C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A U B=R(2017II 卷1).设集合{}{}123234A B ==,,, ,,, 则=A B U A. {}123,4,, B. {}123,, C. {}234,, D. {}134,,2.复数(2019卷1)已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +(2019卷2)若a 实数,且=+=++a i iai则,312( ) A.-4 B. -3 C. 3 D. 4 (2019卷1)设i iz ++=11,则=||z ( ) A.21B. 22C. 23D. 2(2019卷2)131ii+=-( ) (A )12i + (B )12i -+ (C )1-2i (D) 1-2i -(2019卷1)212(1)ii +=-( )(A )112i --(B )112i -+(C )112i +(D )112i -(2019卷2)21i+=( ).A .22B .2C .2D ..1 (2018卷1)复数z =-3+i2+i的共轭复数是 (A )2+i (B )2-i (C )-1+i (D )-1-i (2017卷1)复数512ii=-( )A .2i -B .12i -C . 2i -+D .12i -+(2016卷1)已知复数z =3+i 1-3i2,z 是z 的共轭复数,则z ·z =( ) A.14B.12C .1D .2(2015卷1)复数3223ii+=- A .1 B .1- C .i (D)i -(2014卷1)已知复数1z i =-,则21z z =-( ) A. 2B. -2C. 2iD. -2i(2016卷1)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,则a=(A )-3(B )-2(C )2(D )3(2016卷2)设复数z 满足i 3i z +=-,则z =(A )12i -+(B )12i -(C )32i +(D )32i - (2017II 卷2)(1+i )(2+i )=A.1-iB. 1+3iC. 3+iD.3+3i (2017卷3)下列各式的运算结果为纯虚数的是 A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)3.向量(2019卷1)已知点(0,1),(3,2)A B ,向量(4,3)AC =--u u u r,则向量BC =u u u r ( )(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)(2019卷2)已知向量=•+-=-=则(2),2,1(),1,0(( )A. -1B. 0C. 1D. 2(2019卷1)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+( )A. ADB.AD 21 C. BC 21D. BC (2019卷2)设向量a ,b 满足|a+b|=10,|a-b|=6,则a b?( )(A )1 (B ) 2 (C )3 (D) 5(2017卷2)设非零向量a ,b 满足+=-b b a a 则 A a ⊥b B. =b a C. a ∥b D. >b a(2019卷1)已知两个单位向量a ,b 的夹角为60o,(1)=+-c ta t b ,若0⋅=b c ,则t =_____。

完整版)近几年全国卷高考文科数列高考题汇总

完整版)近几年全国卷高考文科数列高考题汇总

完整版)近几年全国卷高考文科数列高考题汇总近几年全国高考文科数学数列部分考题统计及所占分值如下:2016年:I卷17题,12分;II卷17题,12分;III卷17题,12分。

2015年:I卷无数列题;II卷5题,共计15分。

2014年:I卷17题,12分;II卷无数列题。

2013年:I卷12、14、17题,共计10分+12分+12分=34分;II卷17题,12分。

2012年、2011年、2010年:I卷7、13、5题,共计10分+10分+17分=37分;II卷5、16、17题,共计10分+17分+12分=39分。

一.选择题:1.已知公差为1的等差数列{an}的前8项和为4倍的前4项和,求a10.改写:设公差为1的等差数列{an}的前n项和为Sn,已知S8=4S4,求a10.答案:D。

2.设Sn为等差数列{an}的前n项和,已知a1+a3+a5=3,求S5.答案:C。

3.已知等比数列{an}满足a1=1,a3a5=4(a4-1),求a2.答案:B。

4.已知等差数列{an}的公差为2,且a2,a4,a8成等比数列,求前n项和Sn。

答案:D。

5.设首项为1,公比为2的等比数列{an}的前n项和为Sn,求Sn的表达式。

答案:C。

6.数列{an}满足an+1+(-1)^nan=2n-1,求前60项和。

答案:B。

二.填空题:7.在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和。

若-Sn=126,则n=6.8.数列{an}满足an+1=1/an,a2=2,求a1.答案:-1.9.等比数列{an}满足a2+a4=20,a3+a5=80,求a1.答案:4.10.等比数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n$,若$S_3+3S_2=S_1$,则公比 $q=$______;前 $n$ 项和$S_n=$______。

改写:已知等比数列 $\{a_n\}$,前 $n$ 项和为 $S_n$。

安徽省2009—2013年高考数学真题汇编(文科)

安徽省2009—2013年高考数学真题汇编(文科)

安徽省2009—2013年高考数学真题汇编(文科)(选择题、填空题部分)高考考点1:集合与常用逻辑用语1.(2009年-2). 若集合()(){},0312<-+=x x x A {}5≤∈=+x N x B ,则B A ⋂是A .{1,2,3} B. {1,2} C. {4,5} D. {1,2,3,4,5}2.(2009年-4).“d b c a +>+”是“b a >且d c >”的A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件3.(2010年-1).若{|10}A x x =+>,{|30}B x x =-<,则AB = A.(1,)-+∞ B.(,3)-∞ C.(1,3)- D.(1,3)4.(2011年-2)集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则)(CuT S ⋂等于A. }{,,,1456B. }{,15C. }{4D. }{,,,,123455.(2012年-2)设集合A={3123|≤-≤-x x },集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=A. (1,2)B.[1,2]C. [ 1,2D.(1,2 ]6.(2012年-4)命题“存在实数x ,使x > 1”的否定是A .对任意实数x , 都有x > 1 B.不存在实数x ,使x ≤ 1C.对任意实数x , 都有x ≤ 1D.存在实数x ,使x ≤ 17.(2013年-2)已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=A.{}2,1--B.{}2-C.{}1,0,1-D.{}0,18.(2013年-4) “(21)0x x -=”是“0x =”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.(2010年-11).命题“存在x R ∈,使得2250x x ++=”的否定是 高考考点2:函数、 导数及其应用1.(2009年-8) 设b a <,函数()()b x a x y --=2的图像可能是2.(2009年-9)设函数()θθθt an 2cos 33sin 23++=x x x f ,其中⎥⎦⎤⎢⎣⎡∈125,0πθ,则导数()1'f 的取值范围是A.[]2,2-B.[]3,2C. []2,3D. []2,2 3.(2010年-6).设0abc >,二次函数2()f x ax bx c =++的图像可能是4.(2010年-7)设253()5a =,352()5b =,252()5b =,则a 、b 、c 的大小关系是 A.a c b >> B.a b c >> (C )c a b >> D.b c a >>5.(2011年-5)若点(a,b)在lg y x = 图像上,a ≠1,则下列点也在此图像上的是A.(a 1,b )B. (10a,1-b)C. (a10,b+1) D. (a 2,2b) 6.(2011年-10) 函数()()n f x ax x 2=1-g 在区间〔0,1〕上的图像如图所示,则n 可能是A. 1B. 2C. 3 D .47.(2012年-3)(2l o g 9)·(3log 4)= A . 14 B. 12C. 2 D . 4 8.(2013年-8) 函数()y f x =的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同12,,,n x x x ,使得1212()()()n nf x f x f x x x x ===,则n 的取值范围为A. {}2,3B.{}2,3,4C. {}3,4D. {}3,4,59.(2013年-10)已知函数32()f x x ax bx c =+++有两个极值点12,x x ,若112()f x x x =<,则关于x 的方程 23(())2()0f x af x b ++=的不同实根个数为A. 3B. 4C. 5D. 610.(2011 年-11)设()f x 是定义在R 上的奇函数,当x≤0时,()f x =22x x -,则(1)f =.11.(2011年-13)函数y =的定义域是 .12.(2012年-13)若函数()|2|f x x a =+的单调递增区间是),3[+∞,则a =________.13.(2013年-11) 函数1ln(1)y x =+_____________.14.(2013年-14)定义在R 上的函数()f x 满足(1)2()f x f x +=.若当01x ≤≤时。

2011-2019高考文科数学全国卷真题分类汇编(含详细答案)专题:第8章 统计概率

2011-2019高考文科数学全国卷真题分类汇编(含详细答案)专题:第8章 统计概率

第8章 统计概率【高考真题】1.(2011全国文6)有个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为().A. B. C. D. 2.(2013全国I 文3)从中任取个不同的数,则取出的个数之差的绝对值为的概率是().A.B. C. D. 3.(2013全国II 文13)从中任意取出两个不同的数,其和为的概率是_______. 4.(2014全国I 文13)将本不同的数学书和本语文书在书架上随机排成一行,则本数学书相邻的概率为.5.(2014新课标Ⅱ文13)甲、已两名运动员各自等可能地从红、白、蓝种颜色的运动服中选择种,则他们选择相同颜色运动服的概率为.6. (2015全国I 文4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从中任取3个不同的数,则这3个数构成一组勾股数的概率为() A.B. C. D. 7.(2013全国I 文18)为了比较两种治疗失眠症的药(分别称为药,药)的疗效,随机地选取位患者服用药,位患者服用药,这位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:)实验的观测结果如下:服用药的位患者日平均增加的睡眠时间:服用药的位患者日平均增加的睡眠时间:3131223341234,,,222121314161,2,3,4,55212311,2,3,4,531015110120A B 20A 20B 40h A 20B 203.2.1.0.B 药A 药(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?8.(2014全国I 文18)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如图所示频数分布表:(1) 作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表); (3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于的产品至少要占全部产品的”的规定?9.(2014新课标Ⅱ文19)(本小题满分12分)9580%某市为了考核甲、乙两部门的工作情况,随机访问了位市民.根据这位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数; (2)分别估计该市的市民对甲、乙两部门的评分高于的概率; (3)根据茎叶图分析该市的市民对甲、乙两部门的评价.10.(2011全国文19)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于的产品为优质品.现用两种新配方(分别成为配方和配方)做试验,各生产了件这样的产品,并测量了每件产品的质量指标值,得到了下面试验结果.配方的频数分布表配方的频数分布表(1)分别估计用配方,配方生产的产品的优质品率; (2)已知用配方生产的一件产品的利润(单位:元)505090102A B 100A B A B B y与其质量指标值的关系式为估计用配方生产的一件产品的利润大于的概率,并求用配方生产的上述件产品平均一件的利润.11.(2013全国II 文19)经销商经销某种农产品,在一个销售季度内,每售出该产品获利润元,未售出的产品,每亏损元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了该农产品.以(单位:)表示市场需求量,表示下一个销售季度内经销该农产品的利润.(1)将表示为的函数;(2)根据直方图估计利润不少于元的概率.12.(2012全国文18)某花店每天以每枝元的价格从农场购进若干枝玫瑰花,然后以每枝元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进枝玫瑰花,求当天的利润()关于当天需求量(单位:枝,)的函数解析式;(2)花店记录了天玫瑰花的日需求量(),整理得下表:(i )假设花店在这天内每天购进枝玫瑰花,求这天的日利润(单位:元)的平均;(ii )若花店一天购进枝玫瑰花,以天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于元的概率.t 2,94,2,94102,4,102.t y t t -<⎧⎪=<⎨⎪⎩……B 0B 1001t 5001t 300130t X t ,100150x ≤≤T T X T 5700051017y 单位:元n n ∈Ν100单位:元10017100171007513.(2015全国II 文18)某公司为了解用户对其产品的满意度,从,两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得出地区用户满意评分的频率分布直方图和地区用户满意度评分的频数分布表.地区用户满意度评分的频数分布表(1)在答题卡上作出地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).(2)根据用户满意度评分,将用户的满意度分为三个等级:估计哪个地区用户的满意度等级为不满意的概率大?说明理由.A B A B A 地区用户满意度评分的频率分布直方图B B B 地区用户满意度评分的频率分布直方图14.(2012全国文3)在一组样本数据,,,(,不全相等)的散点图中,若所有样本点都在直线上,则这组样本数据的样本相关系数为(). A. B. C.D. 15. . (2015全国I 文19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量(单位:t )和年利润z (单位:千元)的影响.对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.表中(1)根据散点图判断,与哪一个适宜作为年销售量关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润与的关系为,根据(2)的结果回答下列问题: (i )年宣传费时,年销售量及年利润的预报值是多少? (ii )年宣传费为何值时,年利润的预报值最大?()11,x y ()22,x y (),n n x y 2n …12,,,n x x x (),i i x y ()1,2,,i n =112y x =+1-0121y i x ()1,2,,8i y i =千元565452504846444240383634i w =8118i i w w ==∑y a bx =+y c =+y z ,x y 0.2z y x =-49x =x附:对于一组数据,,,,其回归直线的斜率和截距的最小二乘估计分别为,.16. (2015全国II 文3)根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是().A. 逐年比较,2008年减少二氧化碳排放量的效果显著B. 2007年我国治理二氧化碳排放显现成效C. 2006年以来我国二氧化碳年排放量呈逐渐减少趋势D. 2006年以来我国二氧化碳年排放量与年份正相关17. (2016全国I 文19)(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:()11,u v ()22,u v (),n n u v v u αβ=+()()()121niii nii u u v v u u β==--=-∑∑v u αβ=-2010年2012年2009年2013年2004年2006年2007年2008年2011年2005年19002000记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数.(Ⅰ)若=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?18.(2017全国I文2).为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数19.(2017全国I文4)4.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.π8C.12D.π4nn20.(2017全国I 文19)19.(12分)为了监控某种零件的一条生产线的学科*程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑0.09≈.21(2017全国I文3)3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半22.(2018全国I文19)19.(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)23.【2019年高考全国Ⅲ卷文数】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.824.【2019年高考全国Ⅰ卷文数】某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生B.200号学生C.616号学生D.815号学生25.【2019年高考全国Ⅱ卷文数】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A.23B.35C.25D.1526.【2019年高考全国Ⅱ卷文数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为______________.27.【2019年高考全国Ⅰ卷文数】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.28.【2019年高考全国Ⅱ卷文数】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.29.【2019年高考全国Ⅲ卷文数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70.(1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).高考真题详解1.解析甲、乙两位同学参加个小组的所有可能性有(种),其中甲、乙两人参加同一个小组的情况有种.故甲、乙两位同学参加同一个兴趣小组的概率. 故选A.2.分析利用列举法求出事件的个数,再利用古典概型求概率.解析从中任取2个不同的数,有,,,,,,,,,,,,共12种情形,而满足条件“2个数之差的绝对值为2”的只有,,,,共4种情形,所以取出的2个数之差的绝对值为2的概率为故选B. 3339⨯=33193P ==1,2,3,4()1,2()1,3()1,4()2,1()2,3()2,4()3,1()3,2()3,4()4,1()4,2()4,3()1,3()2,4()3,1()4,241.123=3.分析先找出两数之和等于5的各种情况,再利用古典概型的概率知识求解.解析:两数之和等于5有两种情况和,总的基本事件有,共10种.所以. 4.解析设2本不同的数学书为,,1本语文书为,在书架上的排法有,,,,,,共6中,其中2本书写数相邻的有,,,,共4中,因此2本数学书相邻的概率. 5.解析甲、乙的选择方案有红红、红白、红蓝、白红、白白、白蓝、蓝红、蓝白、蓝蓝9种,其中颜色相同的有3种,所以所求的概率为. 6.解析由,,可知只有是一组勾股数. 从中任取3个不同的数,其基本事件有:,,,共种.则从中任取3个不同的数,则这3个数构成一组勾股数的概率.故选C. 7.分析(1)直接求解平均数,并比较大小;(2)观察茎叶图,看看数据的离散情况及中位数的位置.解析:(1)设药观测数所的平均数为,B 药观测数据的平均数为.由观测结果可得,.由以上计算结果可得,因此可看出A 药的疗效更好.()1,4()2,3()()()()()1,2,1,3,1,4,2,3,2,4,()()()()2,5,3,4,3,5,4,520.210P ==1a 2a b 12a a b 12a ba 21a a b 21a ba 12ba a 21ba a 12a a b 21a a b 12ba a 21ba a 4263P ==3193=211=222224,39,416,525====()3,4,51,2,3,4,5()()()1,2,3,1,2,4,1,2,5()()()1,3,4,1,3,5,1,4,5()()()()2,3,4,2,3,5,2,4,5,3,4,5101,2,3,4,5110P =A x y (10.6 1.2 1.2 1.5 1.5 1.8 2.2 2.3 2.320x =++++++++)2.4 2.5 2.6 2.7 2.7 2.8 2.9 3.0 3.1 3.2 3.5 2.3+++++++++++=(10.50.50.60.80.9 1.1 1.2 1.2 1.3 1.4 1.6 1.720y =+++++++++++)1.8 1.9 2.1 2.4 2.5 2.6 2.7 3.2 1.6++++++++=x y >(2)由观测结果可绘制茎叶图如图:从以上茎叶图可以看出,A 药疗效的试验结果有的叶集中在茎“2.”,“3.”上,而B 药疗效的试验结果有的叶集中在茎“0.”,“1.”上,由此可看出A 药的疗效更好. 8.解析(I )(II )质量指标值的样本平均数为.质量指标的样本方差为 .所以这种产品质量指标的平均数的估计值为,方差的估计值为. (III )质量指标值不低于的产品所占比例的估计值为.由于该估计值小于,故不能认为该企业生产的这种产品符合“质量指标不低于的产品至少要占全部产品的”的规定.评注 本题考查绘制频率分布直方图,计算样本的数字特征,及用样本估计总体等知识,同时考查统计的思想方法.9.解析(1)由所给茎叶图知,位市民对甲部门的评分由小到大排序,排在第位的是,故样本中位数为,所以该市的市民对甲部门评分的中位数的估计值是.位市民对乙部门的评分由小到大排序,排在第位的是,故样本中位数为,所以该市的市民对乙部门评分的中位数的估计值是.(2)由所给茎叶图知,位市民对甲、乙部门的评分高于的比率分别为,,故该市的市民对甲、乙部门的评分高于的概率的估计值分别为,.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.710710800.06900.261000.381100.221200.08100x =⨯+⨯+⨯+⨯+⨯=()()22222200.06100.2600.38100.22200.08s =-⨯+-⨯+⨯+⨯+⨯=100104950.380.220.080.68++=0.89580%5025,2675,7575755025,2666,686668672+=67509050.150=80.1650=900.10.16评注本题考查利用茎叶图进行中位数,概率的相关计算,考查用样本的数字特征估计总体的数字特征,运用统计与概率的知识与方法解决实际问题的能力,考查数据处理能力及应用意识.10.【解析】(1)由试验结果知,用配方生产的产品中优质品的频率为,所以用配方生产的产品的优质品率的估计值为. 由试验结果知,用配方生产的产品中优质品率的频率为,所以用配方生产的产品的优质品率的估计值为.(2)由条件知,用配方生产的一件产品的利润大于,需其质量指标值, 由试验结果知,质量指标值的频率为. 用配方生产的产品平均一件的利润为(元) 11.分析(1)根据题意,应分两段进行求解;(2)运用得出的函数结合频率分布直方图求出范围,然后估计概率.解析:(1)当时,.当时,.所以 (2)由(1)知利润不少于57 000元当且仅当.由直方图知需求量的频率为0.7,所以下一个销售季度的利润不少于57 000元的概率的估计值为0.7.12.解析(1)当日需求量时,利润.当日需求量时,利润.所以关于的函数解析式为.(2)①这天中有天的日利润为元,天的日利润为元,天的日利润为元,天的日利润为元,所以这天的日利润的平均数为. ②利润不低于元当且仅当日需量不少于枝,故当天的利润不少于元的概率为A 2280.3100+=A 0.3B 32100.42100+=B 0.42B 094t …94t …0.96B ()142542424 2.68100⨯⨯-+⨯+⨯=⎡⎤⎣⎦[)100,130X ∈()50030013080039000T X X X =--=-[]130,150X ∈50013065000T =⨯=80039000,100130,65000,130150.X X T X -⎧=⎨⎩≤≤≤<T 120150X ≤≤[]120,150X ∈T 17n …85y =17n <1085y n =-yn ()1085,1785,17n n y n n -<⎧=∈⎨⎩Ν…1001055206516755485100()1551065207516855476.4100⨯+⨯+⨯+⨯=751675.13.分析 (1)根据题意通过两地区用户满意度评分的频率分布直方图可以看出地区用户满意评分的平均值高于地区用户满意度评分的平均值,地区用户满意度评分比较集中,地区用户的评分满意度比较分散;(2)由直方图得的估计值为.的估计值为,所以地区的用户满意度等级为不满意的概率大.解析 (1)通过两地区用户满意度评分的频率分布直方图可以看出,地区用户满意度评分的平均值高于地区用户满意度评分的平均值;地区用户满意度评分比较集中,而地区用户满意度评分比较分散.(2)A 地区用户的满意度等级为不满意的概率大.记表示事件:“地区用户的满意度等级为不满意”;表示事件:“B 地区用户的满意度等级为不满意”.由直方图得()A P C 的估计值为()0.010.020.03100.6++⨯=,()B P C 的估计值为()0.0050.02100.25+⨯=.所以A 地区用户的满意度等级为不满意的概率大.评注高考中对统计与概率的考查,主要建立在实际问题中,特别要能读懂题意,分析题目中的数据,并对数据进行处理,在解答中要注意概率的计算方法. 14.分析利用相关系数的意义直接作出判断.解析样本点都在直线上时,其数据的估计值与真实值是相等的,即,代入相关系数公式0.160.160.150.130.10.7P =++++=B A B A ()A P C 0.6()B P C 0.25A B A BA B 地区用户满意度评分的频率分布直方图A C ABC i i y y =.故选D.15.解析(1)由散点图变化情况选择较为适宜.(2)由题意知. 又一定过点,所以, 所以关于的回归方程为(3)(ⅰ)由(2)可知当时,,. 所以年宣传费时,年销售量为,年利润的预报值为千元.(ⅱ).所以当,即(千元)时,年利润的预报值最大,16.解析 由柱形图可以看出,我国二氧化碳排放量呈下降趋势,故年排放量与年份是负相关关系,依题意,须选不正确的.故选D.17. (2016全国I 文19)(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:1r ==y c =+()()()81821108.8681.6iii i i w w y y d w w==--===-∑∑y c =+(),w y 56368 6.8100.6c y d w =-=-⨯=y x 100.6y =+49x =100.6576.6y =+=0.2576.64966.32z =⨯-=49x =576.6t 66.32(0.20.2100.620.12z y x x x =-=+-=+=)226.8 6.820.12-++6.8=26.846.24x ==记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数. (Ⅰ)若=19,求y 与x 的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(Ⅲ)100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?解析:(Ⅰ)(Ⅱ)此题要求为求平均值,即=,所以n 最小取19.(Ⅲ)若都购买19个易损零件,则费用为:元 若都购买20个易损零件,则费用为:元所以每一台机器购买19个零件划算.18.(2017全国I 文2).为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B19.(2017全国I 文4)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是B .14B .π8C .12D .π 4【答案】B20.(2017全国I 文19)19.(12分)n n 3800,16193800(19)500,19x y x x ≤≤⎧=⎨+-⨯>⎩160.06170.16180.24190.24200.2210.1⨯+⨯+⨯+⨯+⨯+⨯18.66192007020500250010286000⨯⨯+⨯+⨯⨯=209020050010410000⨯⨯+⨯=为了监控某种零件的一条生产线的学科*程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑0.09≈.【解析】(1)由样本数据得(,)(1,2,,16)i x i i =的相关系数为16()(8.5)0.18ix x i r --==≈-∑.由于||0.25r <,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)(i )由于9.97,0.212x s =≈,由样本数据可以看出抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查.(ii )剔除离群值,即第13个数据,剩下数据的平均数为1(169.979.22)10.0215⨯-=,这条生产线当天生产的零件尺寸的均值的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除第13个数据,剩下数据的样本方差为221(1591.1349.221510.02)0.00815--⨯≈,这条生产线当天生产的零件尺寸的标准差的估计值为0.09≈.21(2017全国I 文3)3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是 A A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 22.(2018全国I 文19)19.(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)解:(1)。

2022年数学文高考真题分类汇编专题07概率与统计

2022年数学文高考真题分类汇编专题07概率与统计

2022年数学文高考真题分类汇编专题07概率与统计1.【2022高考新课标1文数】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.1125B.C.D.3236【答案】A【解析】考点:古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举.2.【2022高考新课标2文数】某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.7533B.C.D.108810【答案】B【解析】试题分析:因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为故选B.考点:几何概型.【名师点睛】对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.3.[2022高考新课标Ⅲ文数]某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15C,B点表示四月的平均最低气温约为5C.下面叙述不正确的是()40155,408A.各月的平均最低气温都在0C以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均气温高于20C的月份有5个【答案】D【解析】考点:1、平均数;2、统计图.【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B.学优高考网4.[2022高考新课标Ⅲ文数]小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.8111B.C.D.1581530【答案】C【解析】试题分析:开机密码的可能有(M,1),M(,2)M,(,3)M,(,M,4),(I,5)I,(,1)I,((,,4I2)),,((,I,53)(N,1),(N,2),(N,3),(N,4),(N, 5),共15种可能,所以小敏输入一次密码能够成功开机的概率是选C.考点:古典概型.1,故15【解题反思】对古典概型必须明确判断两点:①对于每个随机试验来说,所有可能出现的试验结果数n必须是有限个;②出现的各个不同的试验结果数m其可能性大小必须是相同的.只有在同时满足①、②的条件下,运用的古典概型计算公式P(A)m得出的结果才是正确的.n5.【2022高考山东文数】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140【答案】D【解析】考点:频率分布直方图【名师点睛】本题主要考查频率分布直方图,是一道基础题目.从历年高考题目看,图表题已是屡见不鲜,作为一道应用题,考查考生的视图、用图能力,以及应用数学解决实际问题的能力.6.【2022高考天津文数】甲、乙两人下棋,两人下成和棋的概率是率为()(A)11,甲获胜的概率是,则甲不输的概2356(B)25(C)16(D)13【答案】A【解析】试题分析:甲不输概率为115.选A.236考点:概率【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题.运用概率加法的前提是事件互斥,不输包含赢与和,两种互斥,可用概率加法.对古典概型概率考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往采取计数其对立事件.7.【2022高考北京文数】从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.1289B.C.D.552525【答案】B考点:古典概型【名师点睛】如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A中的基本事件数,利用公式P(A)但列举时必须按照某一顺序做到不重不漏.如果基本事件个数比较多,列举有一定困难时,也可借助两个计数原理及排列组合知识直接计算m,n,再运用公式P(A)m求出事件A的概率,这是一个形象直观的好方法,nm求概率.学优高考网n8.【2022高考北京文数】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.【名师点睛】本题将统计与实际应用结合,创新味十足,是能力立意的好题,根据表格中数据分析排名的多种可能性,此题即是如此.列举的关键是要有序(有规律),从而确保不重不漏,另外注意条件中数据的特征.9.【2022高考北京文数】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有_______种.【答案】①16;②29【解析】考点:统计分析【名师点睛】本题将统计与实际情况结合,创新味十足,是能力立意的好题,关键在于分析商品出售的所有可能的情况,分类讨论做到不重复不遗漏,另外,注意数形结合思想的运用.学优高考网10.【2022高考四川文科】从2、3、8、9任取两个不同的数值,分别记为a、b,则oglab为整数的概率=.【答案】【解析】16考点:古典概型.【名师点睛】本题考查古典概型,解题关键是求出基本事件的总数,本题中所给数都可以作为对数的底面,4因此所有对数的个数就相当于4个数中任取两个的全排列,个数为A4,而满足题意的只有2个,由概率公式可得概率.在求事件个数时,涉及到排列组合的应用,涉及到两个有理的应用,解题时要善于分析.11.【2022高考上海文科】某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______.【答案】161.6【解析】试题分析:将4种水果每两种分为一组,有C246种方法,则甲、乙两位同学各自所选的两种水果相同的概率为考点:.古典概型【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好的考查考生数学应用意识、基本运算求解能力等.12.【2022高考上海文科】某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).【答案】1.76【解析】试题分析:将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.13.【2022高考新课标1文数】(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:频数2420221060161718192022更换的易损零件数记某表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(I)若n=19,求y与某的函数解析式;(II)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(III)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【答案】(I)y【解析】,某19,3800(某N)(II)19(III)19,某19,500某5700(Ⅱ)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故n的最小值为19.(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为【名师点睛】本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.学优高考网14.【2022高考新课标2文数】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数保费0123452a0.85aa1.25a1.5a1.75a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数频数060150230330420510(Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(III)求续保人本年度的平均保费估计值.【答案】(Ⅰ)由公式求解.【解析】60503030求P(A)的估计值;(Ⅱ)由求P(B)的估计值;(III)根据平均值得计算200200(Ⅱ)事件B发生当且仅当一年内出险次数大于1且小于4.由是给数据知,一年内出险次数大于1且小于4的频率为30300.3,200故P(B)的估计值为0.3.(Ⅲ)由题所求分布列为:保费频率0.85a0.30a0.251.25a0.151.5a0.151.75a0.102a0.05调查200名续保人的平均保费为0.85a0.30a0.251.25a0.151.5a0.151.75a0.302a0.101.1925a,因此,续保人本年度平均保费估计值为 1.1925a.考点:样本的频率、平均值的计算.【名师点睛】样本的数字特征常见的命题角度有:(1)样本的数字特征与直方图交汇;(2)样本的数字特征与茎叶图交汇;(3)样本的数字特征与优化决策问题.15.[2022高考新课标Ⅲ文数]下图是我国2022年至2022年生活垃圾无害化处理量(单位:亿吨)的折线图(I)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(II)建立y关于t的回归方程(系数精确到0.01),预测2022年我国生活垃圾无害化处理量.附注:参考数据:yi9.32,tiyi40.17,i1i1772(yy)0.55,7≈2.646.ii17参考公式:相关系数r(tt)(yy)iii1n(tt)(y2ii1i1nn,iy)2b中斜率和截距的最小二乘估计公式分别为:回归方程yab(ti1nit)(yiy)i(ti1nybt.,at)2【答案】(Ⅰ)理由见解析;(Ⅱ)1.82亿吨.【解析】考点:线性相关与线性回归方程的求法与应用.【方法点拨】(1)判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数r公式求出r,然后根据r的大小进行判断.求线性回归方程时在严格按照公式求解时,一定要注意计算的准确性.学优高考网16.【2022高考北京文数】(本小题13分)某市民用水拟实行阶梯水价,每人用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(I)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(II)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.【答案】(Ⅰ)3;(Ⅱ)10.5元.【解析】所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w至少定为3.考点:频率分布直方图求频率,频率分布直方图求平均数的估计值.【名师点睛】1.用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观.2.频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.17.【2022高考山东文数】(本小题满分12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为某,y.奖励规则如下:①若某y3,则奖励玩具一个;②若某y8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(I)求小亮获得玩具的概率;(II)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【答案】()【解析】5.()小亮获得水杯的概率大于获得饮料的概率.16所以,PB63.168则事件C包含的基本事件共有5个,即1,4,2,2,2,3,3,2,4,1,所以,PC因为5.1635,816所以,小亮获得水杯的概率大于获得饮料的概率.考点:古典概型学优高考网【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题较易,能较好的考查考生数学应用意识、基本运算求解能力等.18.【2022高考四川文科】(12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[4,4.5]分成9组,制成了如图所示的频率分布直方图.(I)求直方图中的a值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;(Ⅲ)估计居民月均用水量的中位数.【答案】(Ⅰ)a0.30;(Ⅱ)36000;(Ⅲ)2.04.【解析】试题分析:(Ⅰ)由高某组距=频率,计算每组中的频率,因为所有频率之和为1,计算出a的值;(Ⅱ)利用高某组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率某样本总数=频数,计算所求人数;(Ⅲ)将前5组的频率之和与前4组的频率之和进行比较,得出2≤某<2.5,再进行计算.试题解析:(Ⅰ)由频率分布直方图,可知:月用水量在[0,0.5]的频率为0.08某0.5=0.04.同理,在[0.5,1),(1.5,2],[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+.025+0.06+0.04+0.02)=0.5某a+0.5某a,解得a=0.30.考点:频率分布直方图、频率、频数的计算公式【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题解决问题的能力.在频率分布直方图中,第个小矩形面积就是相应的频率或概率,所有小矩形面积之和为1,这是解题的关键,也是识图的基础.。

—年新课标全国卷1文科数学分类汇编—10.统计、概率

—年新课标全国卷1文科数学分类汇编—10.统计、概率

2021 年— 2021 年新课标全国卷Ⅰ文科数学分类汇编10.统计、概率一、【 2021,2】 估一种 作物的种植效果, 了n 地作 田 . n 地的 量〔 位:kg 〕分x 1 , x 2 , , x n ,下面 出的指 中可以用来 估 种 作物 量 定程度的是A. x 1 , x 2 , , x n 的平均数B. x 1 , x 2 , , x n 的 准差C. x 1, x 2 ,, x n 的最大D. x 1 , x 2 ,, x n 的中位数【 2021, 4】如 ,正方形ABCD 内的 形来自中国古代的太极 ,正方形内切 中的黑色局部和白色局部关于正方形的中心成中心 称 .在正方形内随机取一点, 此点取自黑色局部的概率是〔 〕1π1π A.B.C. D. 4824【 2021, 3】 美化 境,从 、黄、白、紫4 种 色的花中任2 种花种在一个花 中,余下的2 种花种在另一个花 中, 色和紫色的花不在同一花 的概率是〔 〕.1 B .1 2 5A .2C .D .336【 2021,4】如果 3 个正数可作 一个直角三角形三条 的 , 称3 个数 一 勾股数,从 1,2,3,4,5中任取 3 个不同的数, 3 个数构成一 勾股数的概率 ()3 1 C .1 D .1A .B .1020105【 2021, 3】从 1,2,3,4 中任取2 个不同的数, 取出的2 个数之差的2 的概率是 ().A .1B .1C .1D .123 4 6【 2021, 3】在一 本数据〔x 1 , y 1 〕,〔 x 2 , y 2 〕,⋯,〔 x n , y n 〕〔 n2 , x 1 , x 2 ,⋯, x n 不全相 等〕的散点 中,假设所有 本点〔 x i , y i 〕〔 i =1, 2,⋯, n 〕都在直y1x 1 上, 本数据的 本相关系数 〔 〕2A .- 1B . 01 D . 1C .2【 2021,6】有 3 个 趣小 ,甲、乙两位同学各自参加其中一个小 ,每位同学参加各个小 的可能性相同, 两位同学参加同一个 趣小 的概率 〔〕 .11 C.2 3A.B.3D.324二、填空【 2021,13】将 2 本不同的数学 和 1 本 文 在 架上随机排成一行, 2 本数学 相 的概率 _____.三、解答【 2021,19】 了 控某种零件的一条生 的生 程, 每隔 30 min 从 生 上随机抽取一个 零件,并 量其尺寸〔 位:cm 〕.下面是 在一天内依次抽取的 16 个零件的尺寸:抽取次序 12345678零件尺寸抽取次序 910111213141516零件尺寸算得 x1161162116222( x i x) 16x )x i 9.97 , s(x i, 1616i 116 i 116 i 116( x i 8.5)218.439 ,( x i x ) i ,其中 x i 抽取的第 i 个零件的尺寸, i=1,2, ⋯ ,16.i 1i11, i ( i=1,2, ⋯ ,16) r 〔 〕求,并答复是否可以 一天生 的零件尺寸不随生 程的x i 的相关系数 行而系 地 大或 小〔假设 , 可以 零件的尺寸不随生 程的 行而系 地 大或 小〕 .〔 2〕一天内抽 零件中,如果出 了尺寸在( x 3s, x 3s) 之外的零件,就 条生 在 一天的生 程可能出 了异常情况,需 当天的生 程 行 .〔 ⅰ 〕从 一天抽 的 果看,是否需 当天的生 程 行 ?〔 ⅱ 〕在 ( x 3s, x 3s) 之外的数据称 离群 , 剔除离群 ,估 条生 当天生 的零件尺寸的均 与 准差. 〔精确到〕n( x i x)( y iy)i 1 附: 本 (x i ,y i )(i=1,2,⋯,n)的相关系数r,.nn(x ix )2( y i y)2i 1i 1【 2021,19】某公司划 1 台机器,种机器使用三年后即被淘汰.机器有一易零件,在机器,可以外种零件作件,每个200 元.在机器使用期,如果件缺乏再,每个500元.需决策在机器同几个易零件,此搜集并整理了100 台种机器在三年使用期内更的易零件数,得下面柱状.数2420161060161718192021更的易零件数x 表示 1台机器在三年使用期内需更的易零件数,y 表示 1 台机器在易零件上所需的用〔位:元〕, n 表示机的同的易零件数.〔 1〕假设n19,求y与x的函数解析式;〔 2〕假设要求“需更的易零件数不大于n 〞的率不小于0.5 ,求n的最小;〔 3〕假100台机器在机的同每台都19 个易零件,或每台都20 个易零件,分算100 台机器在易零件上所需用的平均数,以此作决策依据,1台机器的同19 个是 20 个易零件?【 2021, 19】某公司确定下一年度投入某种品的宣,需了解年宣x〔位:千元〕年售量〔位: t 〕和年利 z〔位:千元〕的影响,近8 年的宣 x i,和年售量 y i (i=1,2,3, ⋯ ,8)的数据作了初步理,得到下面的散点及一些量的,表中1i x i ,88ii 1n n n nx y(x i x)2( i)2(x i x)( y i y)(i)( y i y)i1i 1i 1i 15631469(Ⅰ )根据散点判断, y=a+bx与 y c d x ,哪一个宜作年售量y 关于年宣x的回方程型〔出判断即可,不必明理由〕;(Ⅱ )根据 (Ⅰ )的判断果及表中数据,建立y 关于 x 的回方程;(Ⅲ )种品的年利z 与 x, y 的关系,根据 (Ⅱ )的果答复以下:(1)当年宣 x= 49 ,年售量及年利的多少?(2)当年宣 x 何,年利的最大?【2021,18 】18.从某企业生产的某种产品中抽取 100 件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组[75 , 85)[85 , 95)[95 , 105)[105 , 115)[115 , 125)频数62638228〔 I 〕在答题卡上作出这些数据的频率分布直方图:〔 II 〕估计这种产品质量指标值的平均数及方差〔同一组中的数据用该组区间的中点值作代表〕;〔 III〕根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95 的产品至少要占全部产品的80%〞的规定?【 2021, 18】为了比拟两种治疗失眠症的药(分别称为 A 药, B 药 )的疗效,随机地选取20 位患者服用 A 药, 20 位患者服用 B 药,这 40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位: h) .试验的观测结果如下:服用 A 药的 20 位患者日平均增加的睡眠时间:服用 B 药的 20 位患者日平均增加的睡眠时间:(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?【 2021, 18】某花店每天以每枝 5 元的价格从农场购进假设干枝玫瑰花,然后以每枝10 元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理。

历年高考全国1卷文科数学真题分类汇编-概率与统计无答案

历年高考全国1卷文科数学真题分类汇编-概率与统计无答案

历年高考新课标Ⅰ卷试题分类汇编—概率与统计1、(2012年第19题)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。

如果当天卖不完,剩下的玫瑰花做垃圾处理。

(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式。

(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 日需求量n 14 15 16 17 18 19 20 频数10201616151310(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。

2、(2013年第3题) 从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) (A )错误!未找到引用源。

(B )错误!未找到引用源。

(C )14错误!未找到引用源。

(D )163、(2013年第19题) 为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ),试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5 (1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?4、(2014年第13题) 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .5、(2014年第19题) 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:(I )在答题卡上作出这些数据的频率分布直方图:(II )估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表); (III )根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?6、(2015年第4题)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )(A )310 (B )15 (C )110 (D )1207、(2015年第19题)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)质量指标值分组 [75,85) [85,95) [95,105) [105,115) [115,125)频数 6 26 38 22 8对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值.(I )根据散点图判断,y a bx =+与y c d x =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题: (i )当年宣传费x =49时,年销售量及年利润的预报值时多少? (ii )当年宣传费x 为何值时,年利润的预报值最大?8、(2016年第3题)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.569、(2016年第19题)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:频数记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(I)若n=19,求y与x的函数解析式;(II)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(III)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?10、(2017年第2题)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出学.科.网的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数11、(2017年第4题)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,学科&网则此点取自黑色部分的概率是()A.14B.π8C.12D.π412、(2017年第19题)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序 1 2 3 4 5 6 7 8零件尺寸9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04抽取次序9 10 11 12 13 14 15 16零件尺寸10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得16119.9716iix x===∑,16162221111()(16)0.2121616i ii is x x x x===-=-≈∑∑,1621(8.5)18.439ii=-≈∑,161()(8.5) 2.78iix x i=--=-∑,其中i x为抽取的第i个零件的尺寸,1,2,,16i=⋅⋅⋅.(1)求(,)ix i(1,2,,16)i=⋅⋅⋅的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r<,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,学.科网是否需对当天的生产过程进行检查?(ⅱ)在(3,3)xs x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数12211()()()()niii n niii i x x y y r x x y y ===--=--∑∑∑,0.0080.09≈.13、(2018年第3题)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半14、(2018年第19题)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m 3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量 [)00.1,[)0.10.2, [)0.20.3, [)0.30.4, [)0.40.5, [)0.50.6, [)0.60.7,频数13249265使用了节水龙头50天的日用水量频数分布表日用水量 [)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,频数151310165(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m 3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)15、(2019年第6题)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )A .8号学生B .200号学生C .616号学生D .815号学生16、(2019年第17题)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.17、(2020年第4题)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( )A .15B .25C .12D .4518、(2020年第5题)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A .y a bx =+B .2y a bx =+C .e x y a b =+D .ln y a b x =+19、(2020年第17题)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下: 甲分厂产品等级的频数分布表等级 A B C D 频数40202020乙分厂产品等级的频数分布表等级 A B C D 频数28173421(1)分别估计甲、乙两分厂加工出来的一件产品为A 级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I单元统计I1随机抽样17.I1,I2[2013·安徽卷] 为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x1,x 2,估计x 1-x 2的值.17.解:(1)设甲校高三年级学生总人数为n ,由题意知,30n =0.05,即n =600.样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-530=56.(2)设甲、乙两校样本平均数分别为x 1′,x 2′,根据样本茎叶图可知,30(x 1′-x 2′)=30x 1′-30x 2′=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92=2+49-53-77+2+92 =15.因此x 1′-x 2′=0.5,故x 1-x 2的估计值为0.5分.3.I1[2013·湖南卷] 某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差别,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n =( )A .9B .10C .12D .133.D [解析] 根据抽样比例可得360=n 120+80+60,解得n =13,选D.5.I1[2013·江西卷] 总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08 B.07C.02 D.015.D[解析] 选出来的5个个体编号依次为:08,02,14,07,01.故选D.7.I1,I4[2013·四川卷] 某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图1-4所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()图1-4图1-57.A[解析] 首先注意,组距为5,排除C,D,然后注意到在[0,5)组和[5,10)组中分别只有3和7各一个值,可知排除B.选A.I2用样本估计总体17.I1,I2[2013·安徽卷] 为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1,x 2,估计x 1-x 2的值.17.解:(1)设甲校高三年级学生总人数为n ,由题意知,30n =0.05,即n =600.样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-530=56.(2)设甲、乙两校样本平均数分别为x 1′,x 2′,根据样本茎叶图可知,30(x 1′-x 2′)=30x 1′-30x 2′=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92=2+49-53-77+2+92=15.因此x1′-x2′=0.5,故x1-x2的估计值为0.5分.16.I2,K1,K2[2013·北京卷] 图1-4是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.图1-4(1)求此人到达当日空气质量优良的概率;(2)求此人在该市停留期间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)16.解:(1)在3 月1日至3 月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是6 13.(2)根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为4 13.(3)从3月5日开始连续三天的空气质量指数方差最大.12.I2[2013·湖北卷] 某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(1)平均命中环数为________;(2)命中环数的标准差为________.12.(1)7(2)2[解析] x=7+8+7+9+5+4+9+10+7+410=7,标准差σ=110[(7-7)2+(8-7)2+…+(4-7)2]=2.16.I2[2013·辽宁卷] 为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据,已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为________.16.10[解析] 由已知可设5个班级参加的人数分别为x1,x2,x3,x4,x5,又S2=4,x=7,所以(x1-7)2+(x2-7)2+(x3-7)2+(x4-7)2+(x5-7)25=4,所以(x1-7)2+(x2-7)2+(x3-7)2+(x4-7)2+(x5-7)2=20,即五个完全平方数之和为20,要使其中一个达到最大,之五个数必须是关于0对称分布的,而9+1+0+1+9=20,也就是(-3)2+(-1)2+02+12+32=20,所以五个班级参加的人数分别为4,6,7,8,10,最大数字为10.5.I2[2013·辽宁卷] 某班的全体学生参加英语测试,成绩的频率分布直方图如图1-1,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是()图1-1A.45B.50C.55D.605.B[解析] 由成绩的频率分布直方图可以得到低于60分的频率为0.3,而低于60分的人数为15人,所以该班的总人数为150.3=50人.图1-919.B1,I2[2013·新课标全国卷Ⅱ] 经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图1-9所示.经销商为下一个销售季度购进了130 t该产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率.19.解:(1)当X ∈[100,130)时, T =500X -300(130-X) =800X -39 000.当X ∈[130,150]时,T =500×130=65 000.所以T =⎩⎪⎨⎪⎧800X -39 000,100≤X <130,65 000,130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当 120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.10.I2[2013·山东卷] 将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示.则7个剩余分数的方差为( )A.1169B.367 C .36 D.6 7710.B [解析] 由题得91×7=87+90×2+91×2+94+90+x ,解得x =4,剩余7个数的方差s 2=17[(87-91)2+2(90-91)2+2(91-91)2+2(94-91)2]=367.5.I2,K2[2013·陕西卷] 对一批产品的长度(单位:毫米)进行抽样检测,图1-1为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )图1-1A .0.09B .0.20C .0.25D .0.455.D [解析] 利用统计图表可知在区间[25,30)上的频率为:1-(0.02+0.04+0.06+0.03)×5=0.25,在区间[15,20)上的频率为:0.04×5=0.2,故所抽产品为二等品的概率为0.25+0.2=0.45.15.I2,K2[2013·天津卷] 某产品的三个质量指标分别为x ,y ,z ,用综合指标S =x +y +z 评价该产品的等级,若S ≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:(1)利用上表提供的样本数据估计该批产品的一等品率;(2)在该样本的一等品中,随机抽取2件产品,(i)用产品编号列出所有可能的结果;(ii)设事件B为“在取出的2件产品中,每件产品的综合指标S 都等于4”.求事件B发生的概率.15.解:(1)计算10件产品的综合指标S,如下表:其中S≤4的有A1,A2,A4,A5,A7,A9,共6件,故该样本的一等品率为610=0.6.从而可估计该批产品的一等品率为0.6.(2)(i)在该样本的一等品中,随机抽取2件产品的所有可能结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A 5,A 7},{A 5,A 9},{A 7,A 9},共15种.(ii)在该样本的一等品中,综合指标S 等于4的产品编号分别为A 1,A 2,A 5,A 7,则事件B 发生的所有可能结果为{A 1,A 2},{A 1,A 5},{A 1,A 7},{A 2,A 5},{A 2,A 7},{A 5,A 7}, 共6种.所以P(B)=615=25.18.I2、I5[2013·新课标全国卷Ⅰ] 为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?图1-418.解:(1)设A药观测数据的平均数为x,B药观测数据的平均数为y.由观测结果可得x=120(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y=120(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x>y, 因此可看出A药的疗效更好.(2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A药疗效的试验结果有710的叶集中在茎2,3上,而B药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A药的疗效更好.6.I2[2013·重庆卷] 图1-2是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为()图1-2A.0.2 B.0.4C.0.5 D.0.66.B[解析] 由茎叶图可知数据落在区间[22,30)内的频数为4,所以数据落在区间[22,30)内的频率为410=0.4,故选B.I3正态分布I4变量的相关性与统计案例19.K1,I4[2013·福建卷] 某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图1-4所示的频率分布直方图.图1-4(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:χ2=n (n 11n 22-n 12n 21)2n 1+·n 2+·n +1·n +2⎝ ⎛⎭⎪⎫注:此公式也可以写成K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )19.解:(1)由已知得,样本中有“25周岁以上组”工人60名,“25周岁以下组”工人40名.所以,样本中日平均生产件数不足60件的工人中,“25周岁以上组”工人有60×0.05=3(人),记为A 1,A 2,A 3;“25周岁以下组”工人有40×0.05=2(人),记为B 1,B 2.从中随机抽取2名工人,所有的可能结果共有10种,它们是:(A 1,A 2),(A 1,A 3),(A 2,A 3),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).故所求的概率P =710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手有60×0.25=15(人),“25周岁以下组”中的生产能手有40×0.375=15(人),据此可得2×2列联表如下:所以得K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=100×(15×25-15×45)260×40×30×70=2514≈1.79.因为1.79<2.706.所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.11.I4[2013·福建卷] 已知x与y之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为y^=b^x+a^.若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是()A.b^>b′,a^>a′B.b^>b′,a^<a′C.b^<b′,a^>a′D.b^<b′,a^<a′11.C[解析] 画出散点图即可,选C.4.I4[2013·湖北卷] 四名同学根据各自的样本数据研究变量x,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且y^=2.347x-6.423;②y与x负相关且y^=-3.476x +5.648;③y与x正相关且y^=5.437x+8.493;④y与x正相关且y^=-4.326x-4.578.其中一定不正确...的结论的序号是()A.①②B.②③C.③④D.①④4.D[解析] r为正时正相关,r为负时负相关,r与k符号相同,故k>0时正相关,k<0时负相关.7.I1,I4[2013·四川卷] 某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图1-4所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()图1-4图1-57.A[解析] 首先注意,组距为5,排除C,D,然后注意到在[0,5)组和[5,10)组中分别只有3和7各一个值,可知排除B.选A.17.I4[2013·重庆卷] 从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,算得错误!,a=y-bx,其中x,y为样本平均值.线性回归方程也可写为y^=b^x+a^.17.解:(1)由题意知n =10,x =1n ∑i =1n x i =8010=8,y =1n ∑i =1n y i =2010=2,又l xx =错误!i y i -n x y =184-10×8×2=24,由此得b =l xy l xx=2480=0.3,a =y -bx =2-0.3×8=-0.4,故所求回归方程为y =0.3x -0.4.(2)由于变量y 的值随x 的值增加而增加(b =0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为 y =0.3×7-0.4=1.7(千元).I5 单元综合17.I5[2013·广东卷] 从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1)根据频数分布表计算苹果的重量在[90,95)的频率; (2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.17.解:18.I2、I5[2013·新课标全国卷Ⅰ] 为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.90.80.9 2.4 1.2 2.6 1.3 1.41.60.5 1.80.6 2.1 1.1 2.5 1.2 2.70.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?图1-418.解:(1)设A药观测数据的平均数为x,B药观测数据的平均数为y.由观测结果可得x=120(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y=120(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x>y, 因此可看出A药的疗效更好.(2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A药疗效的试验结果有710的叶集中在茎2,3上,而B药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A药的疗效更好.。

相关文档
最新文档