甲醇球形储罐设计
10000m^3甲醇内浮顶储罐设计

2 罐顶设计2.1 罐顶结构与厚度核算本设备选用自支承式带肋球壳拱顶结构。
顶板由瓜皮板和中心顶板组成。
瓜皮板分别为16块、32块及64块。
连接中心顶板的为32块的瓜皮板,二者厚度均取8mm ;二次连接的瓜皮板为64块;最后与罐壁连接的为16块,厚度均为10mm 。
肋板均选100mm 宽,8mm 厚。
则估算出罐顶总质量约60000kg ,折算成单位面积载荷为60000×9.8÷(π/4×302)=863.3Pa 。
考虑罐顶附加载荷取值,且不小于1200Pa ,故取P L =2063.3Pa 。
2.2 带肋球壳许用外载荷计算许用外载荷。
20.5[]0.0001m h S m t t P E R t=� (1-2)式中:[P ]为带肋球壳的许用外载荷(kPa);E 为设计温度下刚才的弹性模量(MPa);取192000MPa 。
R S 为球壳的曲率半径(m),取30m 。
t h 为罐顶板有效厚度(mm),取6.8mm 。
t m 为带肋球壳的折算厚度(mm)。
此值按照《立式圆筒形钢制焊接油罐设计规范》GB 50341—2014附录H 相关计算得22.5mm 。
将数据带入式中,得[P ]=17.81kPa 。
2.3 拱顶稳定性核算储罐带有罐壁通气孔,则储罐内部无内压,故只校核外载荷作用下的稳定性。
带肋球壳的稳定性验算应满足下式要求:P L ≤[P ] (1-3)综合以上,式1-3是成立的,故稳定性满足要求。
3 包边角钢截面积核算罐壁顶部设置包边角钢,以承受从罐顶传来的横向力。
计算与包边角钢相连的罐顶和罐壁各16倍板厚的截面应满足下式:2mim Pa 8tan pD F σϕθ= (1-4)式中:p 为储罐单位面积载荷,为2063.3Pa ;D 为储罐直径,30m ;σ为包边角钢的许用应力,取2.30×108Pa ;φ为焊接接头系数,取0.9;θ为罐顶与罐壁连接处罐顶的水平夹角(°),取30°。
甲醇储罐设计规范

甲醇储罐设计规范甲醇储罐是存储甲醇的设备,其设计应符合相关的规范和标准,以保证储罐的安全和可靠性。
以下是甲醇储罐设计规范的主要内容:1. 设计压力和温度:甲醇储罐应根据实际使用要求确定设计压力和温度。
设计压力通常不得低于正常操作压力的1.25倍,设计温度通常为-40°C至55°C。
2. 材料选择:储罐的材质应选择耐腐蚀性能好、耐压性能高的材料,如碳钢、不锈钢等。
对于密封性要求较高的区域,可选用外涂一层防腐胶。
3. 结构设计:甲醇储罐的结构设计应考虑内外压力、温度变化等因素对储罐的影响。
通常采用圆形、柱形或球形结构,底部应设有底阀、松散阀等安全设备。
4. 安全装置:甲醇储罐应配备安全阀、泄漏探测器、防火装置等安全设备,以保障储罐在故障情况下的安全操作和紧急处理能力。
5. 容积计算:储罐的容积应根据实际存储需求进行计算和确定。
容积计算应考虑液位变化、温度变化等因素,并预留一定的安全裕量。
6. 储罐的操作与维护:储罐应具备方便操作和维护的条件,如设有观察孔、检修门等。
同时,应定期对储罐进行维护和检查,确保其正常运行。
7. 环境保护:储罐应设有排放口,以便处理废气和废水。
同时,应定期对废气和废水进行检测和处理,以减少对环境的影响。
8. 监控系统:储罐应配备监控系统,实时监测储罐内的温度、压力、液位等参数,并与中控室相连,以便及时处理异常情况。
9. 储罐的防火设计:储罐应对火灾进行防护设计,如设有防火隔离带、防火涂层等。
同时,应定期进行消防设备检查和维护,确保其有效性。
总之,甲醇储罐的设计规范是为了保证储罐的安全运行和环境保护,设计人员在设计储罐时应严格遵守相关规范和标准,并结合实际情况进行合理设计。
甲醇罐区设计规范

甲醇罐区设计规范甲醇储罐设计第1章甲醇的理化性质1.1 甲醇主要的物理性质甲醇是一种无色透明的液体,具有特殊的气味和燃烧性能。
其密度为0.7918g/cm³,沸点为64.7℃,熔点为-97.8℃。
甲醇在常温下易挥发,易吸湿,且易溶于水和大多数有机溶剂。
1.2 化学性质甲醇是一种重要的有机化学原料,广泛用于化学合成、医药、涂料、塑料、橡胶、香料等领域。
其化学性质活泼,在氧化剂的作用下会发生燃烧反应,产生二氧化碳和水。
同时,甲醇还可以和酸、碱反应,生成相应的盐。
1.3 甲醇的危险性1.3.1 防爆炸性甲醇具有易燃易爆的特性,容易与空气形成可燃气体,一旦遇到明火或高温,就会发生爆炸事故。
因此,在甲醇罐区的设计中,必须考虑到防爆炸措施的实施。
1.3.2 防火性在甲醇的储存和使用过程中,由于其易燃性,容易引发火灾。
因此,在甲醇罐区的设计中,必须考虑到防火措施的实施,如设置灭火器、火灾报警系统等。
1.3.3 有毒性甲醇具有一定的毒性,长期接触会对人体造成危害,甚至会导致中毒和死亡。
因此,在甲醇罐区的设计中,必须考虑到有毒气体的排放和处理问题,确保工作人员的安全。
电22.10 排污阀的选型在选择排污阀时,需要考虑的因素包括介质、温度、压力和管道尺寸等。
排污阀的材料应该与介质相容,同时要考虑介质的腐蚀性和粘度。
温度和压力也是选型的重要因素,需要根据实际工况选择合适的排污阀。
此外,管道的尺寸也需要考虑,以确保排污阀的连接方式和尺寸与管道相匹配。
32.11 温度计温度计是用于测量介质温度的仪器,常见的温度计有水银温度计、电子温度计和红外线温度计等。
在选择温度计时,需要考虑介质的温度范围、精度要求和使用环境等因素。
对于高温介质,应选择能够承受高温的温度计,同时要注意温度计的安装位置和保护措施。
32.12 放空阀放空阀是用于排放管道内部气体的阀门,常用于管道启动和停止时的气体排放。
在选择放空阀时,需要考虑介质的性质、流量和压力等因素。
甲醇储罐工程设计方案

甲醇储罐工程设计方案一、设计方案概述甲醇是一种重要的有机化工原料,广泛用于化工生产中,因其易燃易爆的特性,储存要求较高。
因此,对于甲醇储罐的设计和工程施工需要特别慎重。
本文将从储罐选址、设计标准、结构设计、安全防护等方面展开详细介绍。
二、储罐选址在确定甲醇储罐选址时,需要考虑以下因素:地质条件、交通便利程度、周围环境以及与周围建筑物的距离等。
首先,地质条件要求选址地点不宜有地质灾害隐患,如地震、滑坡等;其次,交通便利程度要求储罐到达道路畅通,便于运输车辆进出;再者,周围环境要求储罐周围无易燃易爆物质存放,且距离居民区、学校、医院等人口密集区要符合规定的安全距离。
最后,与周围建筑物的距离要求储罐与其他建筑物之间有一定的防护距离。
三、设计标准甲醇储罐的设计应符合国家相关法律法规和行业标准,如《危险化学品储存场所安全规范》(GB 50158-2009)、《甲醇仓储输送设施设计规范》(GB 17378-2007)等。
同时,根据实际情况结合公司内部标准,进行设计,并在设计中充分考虑到甲醇易燃易爆的特性,尽可能减少安全隐患。
四、结构设计1. 储罐材质选择甲醇储罐的材质选择需要考虑到甲醇的特性,一般采用碳钢或不锈钢材质制作,其中不锈钢材质的耐腐蚀性更好,适用于储存高纯度的甲醇。
2. 储罐容积储罐的容积应该根据生产需求和现场条件进行合理确定,同时要考虑到甲醇的膨胀性和运输的需要。
3. 储罐结构甲醇储罐一般为圆柱形,其设计需考虑到内外压力、受力分布等因素,同时设置相关的检测和转运设施。
五、安全防护1. 泄露风险预防在甲醇储罐的设计中,需要预留泄露风险预防的措施,如设置泄漏报警装置、防火防爆系统、泄露收集装置等,确保泄露时能及时发现和处理。
2. 防火防爆措施甲醇易燃易爆,因此在储罐的设计中需要设置相关的防火防爆措施,如设置防爆门、防爆窗、防爆灯具等,以确保工作环境的安全。
3. 安全监测系统储罐需要设置相关的安全监测系统,如设置气体监测仪、温度监测仪、压力监测仪等,及时监测储罐内部的气体浓度、温度和压力,以及时发现异常情况并采取措施。
甲醇储罐及甲醇投加方案 附甲醇技术要求

1.1.1 甲醇储罐及甲醇投加●概述反硝化生物滤池需要甲醇作为脱氮碳源,本工程最大设计投加浓度为40毫克/升。
设计采用一个地下的甲醇储罐池,并设置一个甲醇投加间,由于甲醇是易燃品,根据规范,其距离建筑物的最小距离不小于12米,因此需单独设置。
根据厂区平面,甲醇投加间设置在生物滤池西侧。
甲醇投加间土建设计规模11万m3/d,设备安装规模8万m3/d,甲醇投加间位于甲醇储罐池南侧,甲醇原液从甲醇储罐经重力接入甲醇投加泵,加压后送至生物滤池,甲醇投加浓度为5%~10%。
●主要设计参数最大投加量40mg/L处理水量8万m3/d甲醇消耗量3200 kg/d甲醇储罐的容积:30m3存储天数:7.5d甲醇投加浓度5%~10%●主要设备甲醇储罐数量:1台规格:容积30m3甲醇投加泵数量:2台(1用1备)规格:Q=250L/h,N=0.75kW稀释装置数量:2台(1用1备)1.2 4.13 甲醇间1.2.1 4.13.1设计描述为满足系统脱氮要求,保证反应池内充足碳源,本工程设计新建甲醇间一座。
当系统内各系列生物反应池如出现碳源不足,可投加甲醇,以满足脱氮除磷要求。
根据《建筑设计防火规范》(GB 50016-2006),甲醇属甲类火灾危险性等级,且甲醇易挥发,在甲醇罐区通常都存在一定量的甲醇蒸气。
当罐区内甲醇蒸气与空气混合达到甲醇的爆炸浓度范围 6.7%~3.6%时,遇火源就会发生爆炸。
因此甲醇储罐及甲醇间均按防爆设计。
甲醇投加系统作为本设备包中一个完整的系统,应由投标商成套地配备安全、有效及可靠运行所需的附件,以保证系统安全、有效、可靠地运行。
1.2.2 4.13.2 供货范围不论本技术规范是否指明,设备必须的附件供应是投标商的职责。
设备供货范围除主机外,还应包括与主机关联的各类附属设备、材料和启动柜等必要的配套设施,材料采购、安装、调试均由投标商完成。
投标商应提供完整的甲醇投加系统:包括甲醇贮罐、计量投加泵和电气控制设备、连接管道、阀门、安全阀、背压阀、脉冲阻尼器、Y型过滤器、在线稀释系统、配套流量计设施等其它必须的附件等。
甲醇仓储企业常用的储罐规格

甲醇仓储企业常用的储罐规格
一、储罐类型
甲醇仓储企业常用的储罐类型有立式储罐、卧式储罐、球形储罐等。
不同类型的储罐适用于不同的场合和需求,可以根据实际需要选择合适的类型。
二、公称直径
公称直径是储罐的重要参数之一,它决定了储罐的容量和进出口管径。
常见的甲醇储罐公称直径有1000mm、1500mm、2000mm、2500mm、3000mm等。
三、公称容量
公称容量是指储罐的标称容量,它通常根据储罐的实际容量和使用需要而确定。
常见的甲醇储罐公称容量有1立方米、5立方米、10立方米、50立方米、100立方米等。
四、材质
甲醇是一种腐蚀性较强的化学品,因此对储罐的材质要求较高。
常用的甲醇储罐材质有碳钢、不锈钢等。
具体选用哪种材质要根据甲醇的浓度、温度和压力等因素来决定。
五、接口方式
接口方式是指储罐的进出口管径和连接方式。
常见的接口方式有法兰连接、螺纹连接等。
接口方式的选择要根据实际需要和使用场合来决定。
六、储罐高度
储罐高度是指储罐从基础面到罐顶的高度。
对于立式储罐,其高度通常是根据容量和直径来确定的。
对于卧式储罐,其高度则通常是根据长度和直径来确定的。
七、设计压力
设计压力是指储罐在正常工作时所承受的压力。
设计压力的大小取决于甲醇的物性和操作条件,一般要求能够承受正常操作压力和真空度。
八、设计温度
设计温度是指储罐在正常工作时所承受的温度范围。
设计温度的大小取决于甲醇的物性和环境温度,同时还要考虑管道的热膨胀和机械振动等因素。
甲醇储罐的课程设计

设计任务书设计课题:甲醇贮罐的机械设计工艺参数:最高使用温度:T=50℃公称直径:DN=2200mm筒体长度(不含封头):L0=3819mm 设计内容:1.筒体材料的选择2.罐的结构尺寸3.罐的制造施工4.零部件型号及位置5.相关校核计算设计人:学号:指导老师:完成时间:目录一、材料及结构选择错误!未定义书签。
1 材料的选择错误!未定义书签。
2 结构的选择错误!未定义书签。
封头的选择错误!未定义书签。
人孔的选择错误!未定义书签。
法兰的选择错误!未定义书签。
液面计的选择错误!未定义书签。
鞍式支座的选择错误!未定义书签。
二、设计计算内容错误!未定义书签。
1 设计温度和设计压力的确定错误!未定义书签。
设计温度的确定错误!未定义书签。
贮罐长度以及内径确定错误!未定义书签。
设计压力的确定错误!未定义书签。
2 罐体壁厚设计错误!未定义书签。
3 封头厚度设计错误!未定义书签。
计算封头厚度错误!未定义书签。
校核罐体与封头水压试验强度错误!未定义书签。
4 鞍座设计错误!未定义书签。
罐体质量m1错误!未定义书签。
封头质量m2错误!未定义书签。
甲醇质量m3错误!未定义书签。
附件质量m4错误!未定义书签。
贮罐总质量错误!未定义书签。
5 人孔设计错误!未定义书签。
6 人孔补强设计错误!未定义书签。
7 选配工艺接管错误!未定义书签。
碱液进料管错误!未定义书签。
碱液出料管错误!未定义书签。
排污管错误!未定义书签。
液面计接管错误!未定义书签。
放空管接口管错误!未定义书签。
安全阀接口管错误!未定义书签。
8 总装置配图错误!未定义书签。
参考文献错误!未定义书签。
一、材料及结构选择1 材料的选择甲醇的物理化学性质化学名称:甲醇,别名:甲基醇、木醇、木精分子式OHCH3,分子量,有类似乙醇气味的无色透明,易挥发性液体,密度(20℃)mL,熔点为—℃,沸点为℃。
甲醇是一种无色、透明、易燃、易挥发的有毒液体,略有酒精气味。
甲醇是最常用的有机溶剂之一,与水互溶且体积缩小,能与甲醇乙酸等多种有机溶剂互溶,甲醇为有毒化工产品,用途广泛,是基础的有机化工原料和优质燃料,主要用于精细化工、塑料等领域,用来制造甲醛。
15M3甲醇储罐设计

15M3甲醇储罐设计甲醇储罐是用于储存甲醇的设备,其设计需要考虑到甲醇的特性、安全性和操作性。
本篇文章将介绍一个用于储存15m3甲醇的储罐设计。
首先,我们需要了解甲醇的特性。
甲醇是一种无色、透明液体,具有较低的沸点和闪点,易燃易爆。
因此,在设计储罐时,应考虑到甲醇的易燃性和安全性。
其次,设计储罐时需要考虑到储罐的材料。
由于甲醇具有高腐蚀性,我们需要选择耐腐蚀的材料来制造储罐。
一般来说,316不锈钢是常用的材料之一,可以抵抗甲醇的腐蚀。
接下来,我们需要考虑储罐的尺寸和形状。
15m3的储罐可选择圆柱形或方形。
一般而言,方形储罐可以更好地利用空间,而圆柱形储罐则更易于设计和制造。
为了确保储罐的安全,我们需要设计相应的安全系统。
储罐应配备压力传感器和温度传感器,以监测储罐内的压力和温度。
此外,我们还可以考虑添加报警系统和自动灭火系统,以确保在发生事故时及时采取措施。
在设计储罐时,还需考虑到容量和操作性。
15m3的储罐应该具备足够的容量来储存所需的甲醇,并且应该容易进行操作和维护。
为了方便操作,可以在储罐上设置上、下料口和排污口,并使用适当的泵设备进行填充和排除甲醇。
此外,在储罐的设计中,还应考虑到环境因素。
储罐应考虑地震和风力等因素的影响,确保储罐的稳定性和安全性。
最后,我们需要进行储罐的施工和测试。
在施工过程中,需要遵循相关的安全规范和施工标准。
完成施工后,应进行相应的测试和检查,确保储罐的质量和性能。
综上所述,15m3甲醇储罐的设计需要考虑到甲醇的特性、安全性和操作性。
在设计过程中,我们应选择耐腐蚀的材料,确定储罐的尺寸和形状,并设计相应的安全系统。
此外,还需在施工和测试过程中遵循相关的规范和标准,以确保储罐的质量和性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2500.0 9580.0
主体设计参数
设计压力 (MPa) 1.6 支柱底板与基础的摩擦系数0.3 设计温度 (℃) 25 压力试验类型液压容器公称容积(m3) 2500 试验压力(MPa) 2 壳体腐蚀裕量(mm) 2 指定壳体材料负偏差为0 0 壳体焊接接头系数 1
球型壳体输入数据
容器充装系数0.85 基本雪压值(N/m2) 600 物料密度(Kg/m3) 791 球壳类型混合型壳体保温层厚度(mm) 0 地震类型近震壳体保温层重度(Kg/m3) 0 地震强度八级附件质量(Kg) 7000 场地土类型II级球壳分带数 3 地面粗糙度类别B类基本风压值(N/m2) 500
第1球带输入数据
该带球壳名义厚度(mm) 45 壳体材料在常温下的许应用力(MPa) 174 该带底部至液面距离(mm) 0 壳体材料在设计温度下许应用力(MPa) 174 壳体材料16MnR(正火) 壳体材料在常温下屈服点(MPa) 305
第2球带输入数据
该带球壳名义厚度(mm) 45 壳体材料在常温下的许应用力(MPa) 174 该带底部至液面距离(mm) 0 壳体材料在设计温度下许应用力(MPa) 174 壳体材料16MnR(正火) 壳体材料在常温下屈服点(MPa) 305
第3球带输入数据
该带球壳名义厚度(mm) 45 壳体材料在常温下的许应用力(MPa) 174 该带底部至液面距离(mm) 0 壳体材料在设计温度下许应用力(MPa) 174 壳体材料16MnR(正火) 壳体材料在常温下屈服点(MPa) 305
球壳支撑件和附件设计数据输入
拉杆与支柱连接形式0 支柱底板材料16MnR(正火) 支柱数目16 支柱底版材料屈服点(MPa) 305 支柱外径(mm) 480 拉杆直径(mm) 65 支柱壁厚(mm) 13 拉杆腐蚀裕量(mm) 2 支柱底板腐蚀裕度(mm) 3 拉杆材料类型 3 支柱材料类型管材拉杆材料16Mn 支柱材料20(GB9948) 拉杆材料屈服点(MPa) 275 支柱材料屈服点(MPa) 245
支柱与球壳连接最低a点至主球
2300 地脚螺栓材料40MnB 壳中心水平面距离(mm)
一根支柱上地脚螺栓个数 2 地脚螺栓材料屈服点(MPa) 635 地脚螺栓公称直径(mm) 36 球壳中心至支柱底板底面距离Ho(mm) 9580 地脚螺栓腐蚀裕度(mm) 3 拉杆与支柱交点至基础距离 I(mm) 6000 耳板和支柱单边焊缝长L1(mm) 500 耳板材料16MnR(热轧) 拉杆和翼板单边焊缝长L2(mm) 250 耳板材料屈服点(MPa) 325 支柱和球壳焊缝焊脚尺寸(mm) 10 翼板材料16MnR(正火) 耳板和支柱焊缝焊脚尺寸(mm) 9 翼板材料屈服点(MPa) 345 拉杆和翼板焊缝焊脚尺寸(mm) 10 销子材料35
销子材料屈服点(MPa) 265。